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Rational Julia Sets Introduction

Fatou and Julia

Given: R : C∞ → C∞ is a rational function.
Fatou set of R, denoted F(R), is the domain of
normality for the family of functions {Ri | i ∈ N}.
A component of the Fatou set is called a Fatou
component.
Julia set of R, denoted J(R), is the complement
of F(R).
The Julia set is the set with chaotic dynamics;
the Fatou set is stable.
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Rational Julia Sets Introduction

Julia and Fatou

Degree of R ≥ 2 =⇒ Julia set J(R) is a
non-empty, compact, perfect subset of C∞.
J(R) is nowhere dense in C∞ or equal to C∞.
The Julia set and Fatou set are each fully
invariant under R, meaning that R−1(J(R)) = J(R)
and R−1(F(R)) = F(R).
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Rational Julia Sets Introduction

Continuum Theory

We are interested in the case when the Julia set
is not all of C∞.
We are interested in the case when the Julia set
is connected.
Under these assumptions, the Julia set is a
one-dimensional continuum.
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Rational Julia Sets Residual Julia Set = Buried Points

Residual Julia Set

Definition (Residual Julia Set)
Let F be the collection of components of the Fatou
set F(R). We define the residual Julia set as

Bur(J(R)) = J(R) \
⋃

F∈F

∂F.

The residual Julia set Bur(J(R)) is sometimes
called the set of buried points of J(R).
That is, a point of the Julia set is buried if it is not
in the boundary of any Fatou component.
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Rational Julia Sets Residual Julia Set = Buried Points

Polynomials have empty residual sets

Michael Becker, http://www.ijon.de/index.html
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Rational Julia Sets Residual Julia Set = Buried Points

Some rational functions do not

Michael Becker, http://www.ijon.de/index.html
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Rational Julia Sets Residual Julia Set = Buried Points

Residual Julia Set

The residual Julia set is non-empty iff the
boundary of each Fatou component is nowhere
dense in J(R).
Baire Category Theorem =⇒
if not empty, Bur(J(R)) is a dense Gδ subset of
the Julia set J(R).
The residual Julia set and the union of
boundaries of Fatou components are each fully
invariant subsets of J(R).
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Rational Julia Sets Residual Julia Set = Buried Points

Julia Sets with Buried Points

Functions of the form z 7→ zn +
λ

zd (n, d ≥ 2)

Some have Julia sets homeomorphic to the
Sierpinski carpet
[Milnor/Tan:1993; Devaney:2005].
Some have Julia sets homeomorphic to a
generalized Sierpinski gasket
[Devaney/Rocha:2007].

“Singular” perturbations of z 7→ zn. [Devaney]
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Rational Julia Sets Residual Julia Set = Buried Points

"Standard" Models for Julia sets with
Buried Points

The Sierpinski carpet The Sierpsinski gasket
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Rational Julia Sets Residual Julia Set = Buried Points

σ-Fatou Domain

Definition
A collection F of Fatou domains will be called
σ-Fatou if it is maximal with respect to the property
that for every F1,F2 ∈ F there exist finitely many
Fatou domains U0, . . . ,Un such that U0 = F1,
Un = F2, and Ui−1 ∩ Ui 6= ∅ for each 1 ≤ i ≤ n.

Observe that the σ-Fatou collections form a
partition of the set of all Fatou domains.
Compare carpet and gasket.
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Connectedness of Buried Points

Theorem
Let J be a continuum in the sphere S. Suppose

1 for every ε > 0, there are only finitely many σ-Fatou
collections F such that

⋃
F has diameter ≥ ε;

2 for any σ-Fatou collection F , its closure
⋃
F does not

separate S;
3 the closures of σ-Fatou collections are pairwise disjoint;

and
4 the closures of σ-Fatou collections are dense in J.

Then the buried point set of J contains a dense Gδ

subset homeomorphic to the buried point set of the
Sierpinski carpet.
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Connectedness of Buried Points

The 3, 3 Family – degree 6

For definiteness we consider the family

z 7→ z3 +
λ

z3

z is the dynamical variable – Julia sets live in
dynamical space.
λ is the parameter – λ lives in parameter space.
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Connectedness of Buried Points 0-Dimensional versus Connected

Zero-Dimensional Buried Point Set

"Checkerboard" Julia set

Gasket type – 0-dimensional buried point set –
homeomorphic to the irrationals.

Pictures by Bob Devaney’s programs.
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Connectedness of Buried Points 0-Dimensional versus Connected

Connected Buried Point Set

"Very" connected Julia set

Carpet type – buried point set homeomorphic to
Sierpinski carpet.
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Connectedness of Buried Points 0-Dimensional versus Connected

Nontrivial σ-Fatou domains

Buried point set contains a dense Gδ subset
homeomorphic to Sierpinski carpet.

Curry, Hoehn & Mayer (HC/NU/UAB) Buried Points SumTop2013, July, 2013 17 / 38



Connectedness of Buried Points 0-Dimensional versus Connected

Connectedness of Buried Points

Is there anything "in between" topologically?

λ Parameter Space

Main cardioid on right.
Curry, Hoehn & Mayer (HC/NU/UAB) Buried Points SumTop2013, July, 2013 18 / 38



Connectedness of Buried Points Infinitely Many Topological Types

0-Dimensional Buried Point Set

Theorem
Let λ be either in the main cardioid or the result of
one satellite bifurcation from the main cardioid. Then
the buried point set is zero-dimensional.
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Connectedness of Buried Points Infinitely Many Topological Types

Checkerboard Puzzle Piece Basis

First stage of puzzle piece basis for buried points.
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Connectedness of Buried Points Infinitely Many Topological Types

Checkerboard Puzzle Piece Basis

Distinguish ruled arcs.

Curry, Hoehn & Mayer (HC/NU/UAB) Buried Points SumTop2013, July, 2013 21 / 38



Connectedness of Buried Points Infinitely Many Topological Types

Checkerboard Puzzle Piece Basis

Pullback stage 1 puzzle pieces.
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Connectedness of Buried Points Infinitely Many Topological Types

Bifurcations in the Main Cardiod

2-bulb off main cardioid, Embedded basillicas,
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Connectedness of Buried Points Infinitely Many Topological Types

Bifurcations in the Main Cardiod

Blow-up of embedded basillica Julia set.
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Connectedness of Buried Points Infinitely Many Topological Types

Basillica Puzzle Piece Basis

Ruled arc all the way through the basillica.
Buried point set still 0-dimensional.
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Connectedness of Buried Points Infinitely Many Topological Types

Bifurcations in the Main Cardiod

Blow-up of embedded basillica, with ruled arc.
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Connectedness of Buried Points Infinitely Many Topological Types

"Suddenly" Connected Buried Points

Theorem
If λ is the result of at least two satellite bifurcations
from the main cardioid, then the buried point set is
arcwise connected and locally arcwise connected,
and has a countable dense set of local cut points.
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Connectedness of Buried Points Infinitely Many Topological Types

Bifurcations in the Main Cardiod

4-bulb off 2-bulb. Embedded basillica of basillicas.
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Connectedness of Buried Points Infinitely Many Topological Types

Bifurcations in the Main Cardiod

New buried points are where basillicas meet.
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Connectedness of Buried Points Infinitely Many Topological Types

Bifurcations in the Main Cardiod

Puzzle pieces. Ruled arcs thru quadratic Julia set.
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Connectedness of Buried Points Infinitely Many Topological Types

Bifurcations in the Main Cardiod

3-bulb off main cardioid. Embedded rabbit Julia sets.
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Connectedness of Buried Points Infinitely Many Topological Types

Bifurcations in the Main Cardiod

Buried point set still 0-dimensional.
Ruled arc all the way through rabbit.
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Connectedness of Buried Points Infinitely Many Topological Types

Bifurcations in the Main Cardiod

2x3-bulb off 3-bulb Embedded rabbit of basillicas.
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Connectedness of Buried Points Infinitely Many Topological Types

Bifurcations in the Main Cardiod

New buried points where three basillicas meet.

New buried points are cut points of order 3 (in the
buried points).
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Connectedness of Buried Points Infinitely Many Topological Types

Infinitely Many Connected Buried
Point Sets

Theorem
Let λn be in the period-doubling bulb connected to
the n-bulb connected to the main cardioid.

Then the local cut points of the set of buried
points of J(Rλn) are all of order n.
Hence, for m 6= n, the buried point sets of J(Rλm)
and J(Rλn) are not homeomorphic.
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Connectedness of Buried Points Infinitely Many Topological Types

Second Bifurcations
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Connectedness of Buried Points Infinitely Many Topological Types

Pairwise disjoint σ-Fatou domains

In the family z 7→ z3 + λ
z3 :

Is the buried point set homeomorphic to the buried
points of the Sierpinski carpet?

Curry, Hoehn & Mayer (HC/NU/UAB) Buried Points SumTop2013, July, 2013 37 / 38



Connectedness of Buried Points Infinitely Many Topological Types

Questions

Question
Is there a topological characterization of the set of
buried points (the “irrational” points – Krasinkiewicz)
of the Sierpinski carpet?

A conjectured start:
Planar 1-dimensional.
Path connected and locally path connected.
No local separating points.
Nowhere locally compact.
Topologically complete.

Curry, Hoehn & Mayer (HC/NU/UAB) Buried Points SumTop2013, July, 2013 38 / 38


	Rational Julia Sets
	Introduction
	Residual Julia Set = Buried Points

	Connectedness of Buried Points
	0-Dimensional versus Connected
	Infinitely Many Topological Types


