A construction of hyperbolic right-angled Coxeter groups whose boundaries are a Menger universal curve

Naotsugu Chinen (joint work with T. Hosaka)

National Defense Academy of Japan (Shizuoka University)

July 25, 2013
Nipissing University
28th Summer Conference on Topology and its Applications
Table of Contents

1 Motivation
2 Right-angled Coxeter groups
3 Main result
4 Construction
Motivation

It is said that N. Benakli constructed a hyperbolic Coxeter group whose boundary is a Menger universal curve.

Then I started to give an elementary and simple construction by myself, adding to interesting results.
Right-angled Coxeter groups

Definition ((Right-angled) Coxeter group and Coxeter system)

A Coxeter group is a group W having a presentation

$$\langle S \mid (st)^{m(s,t)} = 1 \text{ for } s, t \in S \rangle,$$

where S is a finite set and $m : S \times S \to \mathbb{N} \cup \{\infty\}$ is a function satisfying the following conditions:

1. $m(s, t) = m(t, s)$ for each $s, t \in S$,
2. $m(s, s) = 1$ for each $s \in S$, and
3. $m(s, t) \geq 2$ for each $s, t \in S$ such that $s \neq t$.

The pair (W, S) is called a Coxeter system.

If, in addition,

4. $m(s, t) = 2$ or ∞ for each $s, t \in S$ such that $s \neq t$,

then (W, S) is said to be right-angled. A group W is called a right-angled Coxeter group, if there exists a generating set $S \subset W$ such that (W, S) is a right-angled Coxeter system.
Nerves

Definition (Nerve of a right-angled Coxeter system)

The nerve K of a right-angled Coxeter system (W, S) is a finite simplicial complex defined as follows:

1. The vertex set of K is the set S and
2. For each subset T of S, T spans a simplex of K if and only if $m(s, t) = 2$ for each $s, t \in T$ with $s \neq t$, i.e., K is a flag complex.

Also a finite flag complex K determines the right-angled Coxeter system (W, S) with K as the nerve. We only consider that K is a finite simplicial complex satisfying that all the edges have length one and that it has the length metric d_K.

Remark (The dimension of the nerve of a right-angled Coxeter system)

Let (W, S) be a right-angled Coxeter system with the nerve K.

1. Then, $\dim K = 1$ if and only if the length $\ell(c)$ of any circle c in $K^{(1)}$ is greater than 3.

2. Then, (W, S) is hyperbolic if and only if K has the no- \square condition i.e., for every circle L in $K^{(1)}$ with 4 edges and 4 vertices, some opposite vertices in L span an edge (G. Moussong).
Davis complexes

Remark(Davis complex)

(1) Every Coxeter system \((W, S)\) determines a *Davis complex* \(\Sigma = \Sigma(W, S)\) which is a CAT(0) geodesic space with its boundary \(\partial \Sigma\).

(2) \(\Sigma^{(1)}\) is the Cayley graph of \(W\) with respect to the generating set \(S\).

(3) The natural action of \(W\) on \(\Sigma\) is proper, cocompact and by isometries.

(4) We can consider a certain fundamental domain \(C\) which is called a *chamber* of \(\Sigma\) such that \(WC = \Sigma\). Here we can identify the chamber \(C\) as the cone of the nerve \(K\).

(5) Let \(B(n) = \bigcup \{aC \mid a \in W, \ell_S(a) \leq n\}\) and let \(S(n)\) be the boundary of \(B(n)\) in \(\Sigma\) for each \(n \in \mathbb{N}\). Then, there exists a natural projection \(\rho_n^{n+1} : S(n + 1) \rightarrow S(n)\) such that \(\partial \Sigma\) is homeomorphic to \(\lim\{S(n), \rho_n^{n+1}\}\).
Definition

A connected simplicial complex \((K, d_K)\) is said to be *strongly co-connected* if \(\{y \in K \mid d_K(x, y) \geq 2\}\) is a nonempty connected set for each \(x \in X\).

Definition

A connected simplicial complex \(K\) is said to have no cut pair, if \(K \setminus \{x, y\}\) is a nonempty connected set for any \(x, y\) in \(K\) satisfying that no simplex of \(K\) contains \(\{x, y\}\).
Main results

The following theorem provides a criterion for boundaries which are homeomorphic to either a Sierpiński carpet or a Menger universal curve.

Main Theorem (C-Hosaka)

Let K be a strongly co-connected finite simplicial 1-complex, let Σ be the Davis complex of the right-angled Coxeter system (W, S) with the nerve K, and let $\partial \Sigma$ be the boundary of Σ.

1. Then, $\partial \Sigma$ is homeomorphic to a Sierpiński carpet if and only if K has no cut pair and $K \hookrightarrow S^2$.
2. Then, $\partial \Sigma$ is homeomorphic to a Menger universal curve if and only if K has no cut pair and $K \not\hookrightarrow S^2$.

Using main theorem, we construct concrete examples of hyperbolic right-angled Coxeter groups with boundaries as a Sierpiński carpet and a Menger universal curve.
Construction

Definition

A connected simplicial complex \((K, d_K)\) is said to be **strongly co-connected** if \(\{y \in K \mid d_K(x, y) \geq 2\}\) is a nonempty connected set for each \(x \in X\).

Definition

A connected simplicial complex \(K\) is said to **have no cut pair**, if \(K \setminus \{x, y\}\) is a nonempty connected set for any \(x, y\) in \(K\) satisfying that no simplex of \(K\) contains \(\{x, y\}\).

Remark

Let \(K\) be a 1-dimensional strongly co-connected simplicial complex. Then, \(K\) is a flag complex.

Remark

Let \(K\) be a 1-dimensional strongly co-connected simplicial complex with no cut pair and let \((W, S)\) be the right-angled Coxeter system with the nerve \(K\). Then, \(W\) is hyperbolic.
Then, F and T_{16} are strongly co-connected finite simplicial 1-complexes with no cut pair. Let (W_0, S_0) and (W_1, S_1) be the hyperbolic right-angled Coxeter systems with F and T_{16} as the nerves, respectively. From main theorem, ∂W_0 is homeomorphic to a Sierpiński carpet and ∂W_1 is homeomorphic to a Menger universal curve.
Then, R_6 has no cut pair, but not strongly co-connected
\[
\{ y \in K \mid d_K(x, y) \geq 2 \} \text{ is not connected}, \text{ and}
\]
$F_{2,2}$ is strongly co-connected, but has a cut pair.
Definition

Let L be a 2-skeleton of a connected closed PL n-manifold M with $n \geq 2$ and let F be a truncated icosahedron as above. Fix a hexagon H in the set of all 2-cells of F. Set $D = \text{Cl}_F(F \setminus H)$. We replace of all 2-simplexes of L by copies of D as follows: For every 2-simplex σ of L, let D_σ be a copy of D such that $\text{Int}D_\sigma \cap \text{Int}D_{\sigma'} = \emptyset$ whenever $\sigma \neq \sigma'$. For every 2-simplex σ of L, we can identify $(\text{sd}(\sigma^{(1)}), \{\text{sd}(\sigma^{(1)})^{(0)}\})$ with $(\partial D_\sigma, (\partial D_\sigma)^{(0)})$, and, set $L_F = \text{sd}(L^{(1)}) \cup \bigcup \{D_\sigma | \sigma \text{ is a 2-simplex of } L\}$ with the natural cell subdivision.
We can show that $L^{(1)}_F$ is strongly co-connected with no cut pair. Hence,

Theorem (C-Hosaka)

Let L, M, and L_F be as above, and, let (W, S) be the hyperbolic right-angled Coxeter system with $L^{(1)}_F$ as the nerve.

1. Then, ∂W is homeomorphic to a Sierpiński carpet if and only if M is homeomorphic to S^2.
2. Then, ∂W is homeomorphic to a Menger universal curve if and only if M is not homeomorphic to S^2.
(Sketch of proof of Main Theorem)

Let K be a strongly co-connected finite simplicial 1-complex, let Σ be the Davis complex of the right-angled Coxeter system (W, S) with the nerve K.

We use the characterizations of a Sierpiński carpet due to G. T. Whyburn, and a Menger universal curve due to R. D. Anderson.

(Step 1)
Let $m, n \in \mathbb{N}$ with $m > n$ and $w \in W$ with $\ell_S(w) = n + 1$. We show that $(\rho_m^n)^{-1}(wK \cap S(n))$ is connected. (Note that a fiber of a projection $\rho_m^n : S(m) \to S(n)$ is not necessarily connected.)

(Step 2)
By Step 1, $\partial \Sigma$ has no local cut point if and only if K has no cut pair.

(Step 3)
By Steps 1 and 2, for every open subset U of ∂W, there exists a finite graph $K' \hookrightarrow U$ which contracts to K.