HYPERSPACES OF KELLER COMPACTA AND THEIR ORBIT SPACES

Saúl Juárez-Ordóñez

National University of Mexico (UNAM)

28th Summer Conference on Topology and its Applications,

North Bay, Canada, July 22nd-26th
Joint work with Sergey Antonyan and Natalia Jonard-Pérez.

National University of Mexico (UNAM)
1. Keller compacta

2. G-spaces

3. The problem and the result

4. Important notions

5. Sketch of the proof
Keller compacta

An infinite-dimensional compact convex subset K of a topological linear space is called a Keller compactum, if it is affinely embeddable in the Hilbert space ℓ_2:

$$K \hookrightarrow \ell_2 = \{(x_n) \mid x_n \in \mathbb{R}, \sum_{n=1}^{\infty} x_n^2 < \infty\}.$$
Let K and V be convex subsets of linear spaces.

A map $f : K \rightarrow V$ is called \textbf{affine}, if for every $x_1, \ldots, x_n \in K$ and $t_1, \ldots, t_n \in [0, 1]$ such that $\sum_{i=1}^{n} t_i = 1$

$$f \left(\sum_{i=1}^{n} t_i x_i \right) = \sum_{i=1}^{n} t_i f(x_i).$$
Let K and V be convex subsets of linear spaces.

A map $f : K \rightarrow V$ is called **affine**, if for every $x_1, \ldots, x_n \in K$ and $t_1, \ldots, t_n \in [0, 1]$ such that $\sum_{i=1}^n t_i = 1$

$$f \left(\sum_{i=1}^n t_i x_i \right) = \sum_{i=1}^n t_i f(x_i).$$
Proposition

Every infinite-dimensional metrizable compact convex subset of a locally convex linear space is a Keller compactum.
Proposition

Every infinite-dimensional metrizable compact convex subset of a locally convex linear space is a Keller compactum.

The Hilbert cube

\[Q = \prod_{n=1}^{\infty} [-1, 1]_n \subset \mathbb{R}^\infty \]

is affinely homeomorphic to \(\{ x \in \ell_2 \mid |x_n| \leq 1/n \} \subset \ell_2 \).
Proposition

Every infinite-dimensional metrizable compact convex subset of a locally convex linear space is a Keller compactum.

The Hilbert cube

\[Q = \prod_{n=1}^{\infty} [-1,1]_n \subset \mathbb{R}^\infty \]

is affinely homeomorphic to \(\{ x \in \ell_2 \mid |x_n| \leq 1/n \} \subset \ell_2 \).

The space \(P(X) \) of probability measures of an infinite compact metric space \(X \) endowed with the topology of weak convergence in measures:

\[\mu_n \overset{\sim}{\to} \mu \iff \int f \, d\mu_n \overset{\sim}{\to} \int f \, d\mu \quad \forall f \in C(X). \]
Theorem (O. H. Keller)

Every infinite-dimensional compact convex subset of the Hilbert space ℓ_2 is homeomorphic to the Hilbert cube Q.
Theorem (O. H. Keller)

Every infinite-dimensional compact convex subset of the Hilbert space ℓ_2 is homeomorphic to the Hilbert cube Q.

However, not all Keller compacta are affinely homeomorphic to each other.
Theorem (O. H. Keller)

Every infinite-dimensional compact convex subset of the Hilbert space ℓ_2 is homeomorphic to the Hilbert cube Q.

However, not all Keller compacta are affinely homeomorphic to each other.

We consider Keller compacta together with its affine-topological structure.
Let G be a topological group. A **G-space** is a topological space X together with a fixed continuous action of G:

\[G \times X \longrightarrow X, \quad (g, x) \longmapsto gx. \]
Let G be a topological group. A G-space is a topological space X together with a fixed continuous action of G:

\[G \times X \longrightarrow X, \quad (g, x) \longmapsto gx. \]

A map $f : X \rightarrow Y$ between G-spaces is called **equivariant** if for every $x \in X$ and $g \in G$,

\[f(gx) = gf(x) \]
Let X be a G-space. A subset $A \subset X$ is called **invariant** if

$$A = \{ga \mid g \in G, \ a \in A\}.$$
Let X be a G-space. A subset $A \subset X$ is called **invariant** if

$$A = \{ ga \mid g \in G, \ a \in A \}.$$

The **orbit of** $x \in X$ is the smallest invariant subset containing x:

$$Gx = \{ gx \mid g \in G \}.$$
The orbit space of X is the set

$$X/G = \{ Gx \mid x \in X \}$$

endowed with the quotient topology given by the orbit map

$$X \longrightarrow X/G, \quad x \longmapsto Gx.$$
Let \((X,d)\) be a metric space. The **hyperspace** of \(X\):

\[2^X = \{ A \subset X | \emptyset \neq A \text{ compact}\}\]

endowed with the topology induced by the Hausdorff metric:

\[d_H(A,B) = \max \left\{ \sup_{b \in B} d(b,A), \sup_{a \in A} d(a,B) \right\}, \quad A, B \in 2^X.\]
Let \((X, d)\) be a metric space. The **hyperspace** of \(X\):

\[
2^X = \{ A \subset X \mid \emptyset \neq A \text{ compact} \}
\]

endowed with the topology induced by the Hausdorff metric:

\[
d_H(A, B) = \max \left\{ \sup_{b \in B} d(b, A), \sup_{a \in A} d(a, B) \right\}, \quad A, B \in 2^X.
\]

Let \(X\) be a subset of a topological linear space. The **cc-hyperspace** of \(X\):

\[
cc(X) = \{ A \in 2^X \mid A \text{ convex} \}.
\]
If X is a metrizable G-space, then 2^X becomes a G-space with the induced action:

$$G \times 2^X \longrightarrow 2^X, \quad (g, A) \longmapsto gA = \{ga \mid a \in A\}.$$

In case X is a subset of a topological linear space and every $g \in G$ preserves convexity, $cc(X)$ is an invariant subspace of 2^X under this action.
Question (J. West, 1976)

Let G be a compact connected Lie group. Is the orbit space $2^G/G$ an AR? If it is, is it homeomorphic to the Hilbert cube Q?
Motivation

Question (J. West, 1976)

Let G be a compact connected Lie group. Is the orbit space $2^G/G$ an AR? If it is, is it homeomorphic to the Hilbert cube Q?

Toruńczyk and West proved that $2^{S^1}/S^1 \in$ AR not homeomorphic to Q.
Motivation

Question (J. West, 1976)

Let G be a compact connected Lie group. Is the orbit space $2^G/G$ an AR? If it is, is it homeomorphic to the Hilbert cube Q?

Toruńczyk and West proved that $2^{S^1}/S^1 \in \text{AR}$ not homeomorphic to Q.

Antonyan proved that $2^{S^1}/O(2) \cong BM(2)$, which is an AR but not homeomorphic to Q.
Theorem (S. Antonyan)

For $n \geq 2$, the orbit space $2^\mathbb{B}^n / O(n)$ is homeomorphic to the Hilbert cube Q.
Theorem (S. Antonyan)

For $n \geq 2$, the orbit space $2^{B^n} / O(n)$ is homeomorphic to the Hilbert cube Q.

Theorem (S. Antonyan and N. Jonard-Pérez)

For $n \geq 2$, the orbit space $cc(B^n)/O(n)$ is homeomorphic to $\text{cone}(BM(n))$.
Theorem (S. Antonyan)

For \(n \geq 2 \), the orbit space \(2^\mathbb{B}^n / O(n) \) is homeomorphic to the Hilbert cube \(Q \).

Theorem (S. Antonyan and N. Jonard-Pérez)

For \(n \geq 2 \), the orbit space \(cc(\mathbb{B}^n) / O(n) \) is homeomorphic to \(\text{cone}(BM(n)) \).

The Hilbert cube \(Q \) is a natural infinite-dimensional analog of \(\mathbb{B}^n \). An analog for \(O(n) \) is the group \(O(Q) \) of affine isometries of \(Q \), which leave the origin fixed.
Theorem (S. Antonyan)

For $n \geq 2$, the orbit space $2^{\mathbb{B}^n}/O(n)$ is homeomorphic to the Hilbert cube Q.

Theorem (S. Antonyan and N. Jonard-Pérez)

For $n \geq 2$, the orbit space $cc(\mathbb{B}^n)/O(n)$ is homeomorphic to $\text{cone}(BM(n))$.

The Hilbert cube Q is a natural infinite-dimensional analog of \mathbb{B}^n. An analog for $O(n)$ is the group $O(Q)$ of affine isometries of Q, which leave the origin fixed.

The purpose of this talk is to show that

$$2^Q/O(Q) \cong Q \quad \text{and} \quad cc(Q)/O(Q) \cong Q.$$
Centrally symmetric Keller compacta are infinite-dimensional analogs of \mathbb{B}^n.
Centrally symmetric Keller compacta are infinite-dimensional analogs of \mathbb{B}^n.

In analogy to the action of $O(n)$ in \mathbb{B}^n, we consider actions of compact groups on centrally symmetric Keller compacta that respect their affine-topological structure.
Centrally symmetric Keller compacta are infinite-dimensional analogs of \mathbb{B}^n.

In analogy to the action of $O(n)$ in \mathbb{B}^n, we consider actions of compact groups on centrally symmetric Keller compacta that respect their affine-topological structure.

We say that a group G acts **affinely** on a Keller compactum K if for every $g \in G$, $x_1, \ldots, x_n \in K$ and $t_1, \ldots, t_n \in [0,1]$ such that $\sum_{i=1}^n t_i = 1$

$$g\left(\sum_{i=1}^n t_i x_i\right) = \sum_{i=1}^n t_i g x_i.$$
Problem

Given a centrally symmetric Keller compactum K (e.g., the Hilbert cube $Q \subset \mathbb{R}^\infty$), describe the topological structure of the orbit spaces of 2^K and $cc(K)$ with respect to the affine action of a compact group G (not necessarily Lie).
Problem

Given a centrally symmetric Keller compactum K (e.g., the Hilbert cube $Q \subset \mathbb{R}^\infty$), describe the topological structure of the orbit spaces of 2^K and $cc(K)$ with respect to the affine action of a compact group G (not necessarily Lie).

Theorem

Let G be a compact group acting affinely on a centrally symmetric Keller compactum K, then the orbit spaces $2^K/G$ and $cc(K)/G$ are homeomorphic to Q.
Let K be a Keller compactum. A point $x_0 \in K$ is called a **center of symmetry**, if for every $x \in K$, there is a point $y \in K$ such that

$$x_0 = (x + y)/2.$$

If K admits a center of symmetry, then it is called **centrally symmetric**.
Let K be a Keller compactum. A point $x_0 \in K$ is called a center of symmetry, if for every $x \in K$, there is a point $y \in K$ such that

$$x_0 = (x + y)/2.$$

If K admits a center of symmetry, then it is called centrally symmetric.
Let K be a Keller compactum. A point $x_0 \in K$ is called a **center of symmetry**, if for every $x \in K$, there is a point $y \in K$ such that

$$x_0 = (x + y)/2.$$

If K admits a center of symmetry, then it is called **centrally symmetric**.
Let K be a Keller compactum. A point $x_0 \in K$ is called \textit{radially internal} if for every $x \in K$

$$\inf_{t \in \mathbb{R}} \{ |t| : x_0 + t(x - x_0) \notin K \} > 0.$$
Let \(K \) be a Keller compactum. A point \(x_0 \in K \) is called \textbf{radially internal} if for every \(x \in K \)

\[
\inf_{t \in \mathbb{R}} \{|t| \mid x_0 + t(x - x_0) \notin K\} > 0.
\]
Let K be a Keller compactum. A point $x_0 \in K$ is called **radially internal** if for every $x \in K$

$$\inf_{t \in \mathbb{R}} \{|t| \mid x_0 + t(x - x_0) \notin K\} > 0.$$

$$\exists \ t_1 < 0, \ y = x_0 + t_1(x - x_0) \in K,$$
The **radial interior** of \(K \) is the set

\[
\text{rint } K = \{ x \in K \mid x \text{ is radially internal} \}.
\]

The **radial boundary** of \(K \) is the complement

\[
\text{rbd } K = K \setminus \text{rint } K.
\]
The **radial interior** of K is the set

$$\text{rint } K = \{ x \in K \mid x \text{ is radially internal} \}.$$

The **radial boundary** of K is the complement

$$\text{rbd } K = K \setminus \text{rint } K.$$

Proposition

Let K and V be Keller compacta and $h : K \to V$ and affine homeomorphism. Then $h(\text{rint } K) = \text{rint } V$.
The space of probability measures $P([0,1])$ of $[0,1]$ is a Keller compactum with

$$rint P([0,1]) = \emptyset.$$

Since

$$rint Q = \{ x \in Q \mid \sup_{n \in \mathbb{N}} |x_n| < 1 \} \neq \emptyset$$

$P([0,1])$ cannot be affinely-homeomorphic to Q.
Let \((X, d)\) be a metric \(G\)-space. If for every \(x, y \in X\) and \(g \in G\),
\[
d(gx, gy) = d(x, y),
\]
then we say that \(d\) is an **invariant metric** and that the action of \(G\) is **isometric**.
Let \((X, d)\) be a metric \(G\)-space. If for every \(x, y \in X\) and \(g \in G\),

\[
d(gx, gy) = d(x, y),
\]

then we say that \(d\) is an **invariant metric** and that the action of \(G\) is **isometric**.

If \(G\) is compact, then every metric \(G\)-space \(X\) admits an invariant metric \(d\). In this situation, \(d\) induces a metric in the orbit space \(X/G\):

\[
d^*(Gx, Gy) = \inf \{ d(gx, g'y) \mid g, g' \in G \}.
\]
A metrizable G-space $X \in \mathbf{G-ANR}$, if for every metrizable G-space Y containing X as a closed invariant subset, there is an invariant neighborhood U of X in Y and a G-retraction $r : U \to X$.

If we can always take $U = Y$, then we say that $X \in \mathbf{G-AR}$.
A metrizable G-space $X \in \mathbf{G-ANR}$, if for every metrizable G-space Y containing X as a closed invariant subset, there is an invariant neighborhood U of X in Y and a G-retraction $r : U \to X$.

If we can always take $U = Y$, then we say that $X \in \mathbf{G-AR}$.
A metrizable G-space $X \in \mathbf{G-ANR}$, if for every metrizable G-space Y containing X as a closed invariant subset, there is an invariant neighborhood U of X in Y and a G-retraction $r : U \to X$.

If we can always take $U = Y$, then we say that $X \in \mathbf{G-AR}$.

\[
\begin{array}{c}
Y \\
\bigcirc \\
U \longrightarrow \quad X
\end{array}
\]
Theorem (S. Antonyan)

Let G be a compact group and $X \in G\text{-ANR}$ (resp., $G\text{-AR}$). Then the orbit space $X/G \in \text{ANR}$ (resp., AR).

Theorem (S. Antonyan)

Let G be a compact group and X a completely metrizable locally connected G-space. Then 2^X is a $G\text{-ANR}$. If, in addition, X is connected, then 2^X is a $G\text{-AR}$.
A **Q-manifold** is a separable metrizable space that is locally homeomorphic to the Hilbert cube Q.

Teorema (H. Toruńczyk)

A locally compact ANR X is a Q-manifold if and only if for every $\epsilon > 0$ there exist continuous maps $f_1, f_2 : X \to X$ such that $d(f_1, 1_X) < \epsilon$, $d(f_2, 1_X) < \epsilon$ and $\text{im}(f_1) \cap \text{im}(f_2) = \emptyset$.
Result

Sketch of the proof:

The orbit space $cc(K)/G$ is a compact AR. Let $\epsilon > 0$ and x_0 the center of symmetry. We construct equivariant maps

$$f_1 : cc(K) \to cc(K) \quad \text{and} \quad f_2 : cc(K) \to cc(K)$$

ϵ-close to the identity map $1_{cc(K)}$ such that

$$im f_1 \subset rint K \quad \text{and} \quad im f_2 \cap rbd K \neq \emptyset.$$
Indeed,

\[f_1(A) = x_0 + t(A - x_0), \quad A \in cc(K), \quad t \in (1 - \epsilon, 1) \]

\[f_2(A) = \{ x \in K \mid d(x, A) \leq \epsilon \}, \quad A \in cc(K). \]

Then \(f_1 \) and \(f_2 \) induce continuous maps

\[\tilde{f}_1 : cc(K)/G \to cc(K)/G \quad \text{and} \quad \tilde{f}_2 : cc(K)/G \to cc(K)/G \]

also satisfying the properties of Toruńczyk’s Theorem. \(\square \)
Theorem

Let G be a compact group acting affinely on a Keller compactum K. If there is a G-fixed point $x_0 \in \text{rint } K$, then the orbit spaces $2^K/G$ and $cc(K)/G$ are homeomorphic to the Hilbert cube Q.
THE END