TOPOLOGY PROCEEDINGS

Volume 1, 1976

Pages 11-16

http://topology.auburn.edu/tp/

p-adic POLYHEDRA AND p-adic ACTIONS

by Louis F. McAuley

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

p-adic POLYHEDRA AND p-adic ACTIONS

Louis F. McAuley

1. Introduction

The characterization of light open mappings given in [1] involves a sequence $\{C_i\}$ of closed coverings of X with various properties. Among these is the property that for each i, C_i is partitioned into collections C_k^i which are pairwise disjoint. In [2], we were concerned with a sequence $\{C_i\}$ of coverings of a compact metric space X where each C_k^i consists of 2^i pairwise disjoint closed sets with certain topological properties. These were necessary and sufficient for the existence of free action by a dyadic group on X. We defined dyadic polyhedra in [2] and used certain inverse systems of such polyhedra. Here, we generalize the concept to include p-adic polyhedra. We also show that these may be used to generate p-adic actions.

2. p-adic Polyhedra

We say that P is a p-adic n-polyhedron, where each of p and n is a positive integer, if and only if P is a polyhedron whose vertices can be partitioned into n+l pairwise disjoint sets $V_1, V_2, \cdots, V_{n+1}$ consisting of either exactly p points or a singleton with not all sets being singletons such that (1) no two points in V_k are connected by an interval (1-simplex), (2) given two sets V_i and V_j such that a point in V_i is joined to a point in V_j by a 1-simplex, then each point of V_i is joined to each point of V_j by a 1-simplex, i.e., the join V_i * V_j lies in P, and (3) if $\partial \alpha = (a_1, a_2, \cdots, a_{k+1})$ and $\partial \beta = (b_1, b_2, \cdots, b_{k+1})$ are the boundaries of two k-simplexes in P such that a_i and b_i belong to the same set V_i of the partitioning of V_i , then α lies in P iff β lies in P. Such a partitioning of V_i is said to be one which defines P.

12 McAuley

Lemma 1. A p-adic n-polygon admits a <u>natural</u> periodic homeomorphism of period p.

Proof. By definition, the set of vertices V and P can be partitioned into sets V_1, V_2, \dots, V_{n+1} where at least one set, say V_1 , contains exactly p points. Order these points as x_0, x_1, \dots, x_{p-1} . Define $h(x_s) = h(x_{s+1})$ with addition mod p. Now, define h similarly for each V; which contains p points. If V_{i} is a singleton $\{x\}$, then let h(x) = x. Clearly, h can be extended linearly to all 1-simplexes in P. Suppose that h is defined on $\partial \alpha$ where $\alpha = (a_0, a_1, a_2) - a$ 2-simplex in P. Consider $\beta = (b_0, b_1, b_2)$ where $h(a_i) = b_i$. If $a_i \in V_i$, then V_0 , ${
m V_1}$, and ${
m V_2}$ are \it{three} (different) members of the partitioning of V. Now, $b_i \in V_i$, consequently, β contains three vertices. Since the various 1-simplexes in $\partial \alpha$ are in P, it follows from (2) of the definition of P that $\partial\beta$ is in P. From (3) of the same definition, it follows that β lies in P. Now, h can be extended linearly taking α onto β . An induction yields that h can be extended linearly to all of P. It should be clear that h is a periodic homeomorphism with period p.

A p-adic n-polyhedron is strongly connected if and only if for a \in V_i and b \in V_j, i \neq j, where V₁, V₂, ..., V_{n+1} is a partitioning of the set V of vertices of P which defines P, then a is joined to b in P with a 1-simplex.

Lemma 2. Suppose that P is a strongly connected p-adic n-polyhedron, Q is a strongly connected p-adic m-polyhedron and φ is a simplicial mapping of P onto Q. Furthermore, let $V_1, V_2, \cdots, V_{n+1} \text{ and } U_1, U_2, \cdots, U_{m+1} \text{ be partitions of the set of vertices of P and Q.} \text{ If } a,b \in V_i, \text{ then } \varphi(a), \varphi(b) \in U_i.$

Proof. This is obvious since if $\phi(a) \in U_k$ and $\phi(b) \in U_j$, $k \neq j$, then a 1-simplex α joins $\phi(a)$ to $\phi(b)$ in Q. Since ϕ is simplicial, some simplex β in P with $a,b \in \alpha$ maps onto α

under ϕ . This implies that a is joined to b in P with a 1-simplex which contradicts the fact that P is a p-adic n-polyhedron.

3. Proper Inverse Systems of p-adic n;-polyhedra

We say that an inverse system $\{P_i,\phi_i\}$ of p-adic n_i -polyhedra P_i with simplicial bonding maps $\phi_i\colon P_{i+1}\to P_i$ is a proper inverse system iff the partitionings of the vertices \overline{V}_{k+1} and \overline{V}_k defining P_{k+1} and P_k , respectively, are such that if V_i is an element of the partitioning of \overline{V}_k and $A,b\in V_i$, then $\phi_k^{-1}(A)=\bigcup_{j=1}^m U_j$ and $\phi_k^{-1}(B)=\bigcup_{j=1}^m U_j$ such that (1) each of U_j and U_j for $J_j=1,2,\cdots,M$ is an element of the partitioning of V_k , which defines P_{k+1} and (2) if V_i is not a singleton, then each of U_j and U_j is not a singleton (each consists of exactly P_j points). That is, if V_i is not a singleton, then $\phi_j^{-1}(A)$, for each A_j is the union of a fixed number A_j of the "defining partition" of A_j . We shall use this restriction to define A_j actions on the inverse limit. Perhaps, a weaker restriction could be imposed, but an uncomplicated one has not come to our attention.

Lemma 3. Suppose that $\{P_i, \phi_i\}$ is a proper inverse system of p-adic n_i -polyhedra. Furthermore, for each i, f_i is the <u>natural</u> periodic homeomorphism of P_i onto itself of period p (Lemma 1). Then $\phi_i f_{i+1} = \phi_i$ and there is a periodic homeomorphism g_k of P_k onto itself of period p^k such that $\phi_k g_k = g_{k-1} \phi_k$.

Proof. It should be clear from the definition of f_i and the fact that $\{P_i,\phi_i\}$ is proper that $\phi_if_{i+1}=\phi_i$.

Now, the sets of vertices V and U of P_2 and P_1 , respectively, are partitioned into sets $V_1, V_2, \cdots, V_{n_2+1}$ and $U_1, U_2, \cdots, U_{n_1+1}$ which define P_2 and P_1 . If U_s is not a singleton, then $U_s = x_0, x_1, \cdots, x_{p-1} \text{ where } x_i \neq x_j \text{ for } i \neq j. \text{ The elements of }$

the partition of V can be labelled so that $\phi_1^{-1}(x_j) = \bigcup_{n=1}^m V_{jn}$, m fixed for all j. Also, each V_{jn} consists of exactly p points $\{x_{n0}^j, x_{n1}^j, \cdots, x_{p-1}^j\}$. We also say that the points in U_s and V_{jn} are labelled so that $f_1(x_i) = x_{i+1} \pmod{p}$ and $f_2(x_{ni}^j) = x_{ni+1}^j \pmod{p}$. Next, define $g_2(x_{ni}^j) = x_{ni}^{j+1}$ for j < p-1, $g_2(x_{ni}^{p-1}) = x_{ni+1}^0$ for i < p-1, and $g_2(x_{np-1}^{p-1}) = x_{n0}^0$. If U_s is a singleton $\{x\}$, then let $g_2(y) = f_2(y)$ for each $y \in \phi_1^{-1}(x)$. Extend g_1 linearly to the rest of P_2 . It follows that $\phi_1 g_2 = f_1 \phi_k$. Furthermore, g_2 is a periodic homeomorphism of P_k onto P_k of period p^2 . Let $g_1 = f_1$.

Now, consider the partition $W_1, W_2, \cdots, W_{n_k}$ of the set of vertices W of P_3 which defines P_3 . As before, if U_s is not a singleton, then $U_s = \{x_0, x_1, x_2, \cdots, x_{p-1}\}$ exactly p different points. Note that $(\phi_1 \phi_2)^{-1}(x_i)$ is the union of a fixed number t of elements of the partition of W which defines P_3 each of which consists of exactly p points. In a manner similar to that used in defining g_2 , we define g_3 which is a periodic homeomorphism of P_3 onto P_3 which has period p^3 . Also, $\phi_3 g_3 = g_2 \phi_3$. By induction, we define g_k which is a periodic homeomorphism of P_k onto P_k with period p^k such that $\phi_k g_k = g_{k-1} \phi_k$.

Inverse Limits of Proper Inverse Systems of p-adic Polyhedra Admit p-adic Actions

In this section, we provide a theorem which illustrates one use of p-adic polyhedra. It is easy to construct p-adic polyhedra and inverse systems of such polyhedra. See [2] for constructions of dyadic polyhedra and proper inverse systems. The techniques are applicable to constructions of p-adic polyhedra.

Theorem. Suppose that $\{P_{\mbox{i}}, \varphi_{\mbox{i}}\}$ is a proper inverse system of p-adic $n_{\mbox{i}}$ -polyhedra. Furthermore, for each i, $t_{\mbox{i}}$ is the

natural periodic homeomorphism of P_i onto itself of period p. Then there is an action by a p-adic group (homeomorphisms) on the inverse limit $X = \lim_{i \to \infty} P_i$.

Proof. By Lemma 3, there is a sequence $\{g_i^i\}$ such that for each i, g_i^i is a periodic homeomorphism of P_i^i onto P_i^i of period p^i and $\phi_i^i g_i^i = g_{i-1}^i \phi_i$. Thus, $G_p^i = \lim_{i \to \infty} G_i^i$ where G_i^i is the cyclic group of homeomorphisms generated by g_i^i (i.e., $g_i^i, g_i^2, \cdots, g_i^p, \cdots, g_i^p = id$). The homeomorphisms $\theta_i : G_i^i + G_{i-1}^i$ for i>1 are defined in the obvious manner by $\theta(g_i^i) = g_{i-1}^i$. That is, $\theta(g_i^k) = g_{i-1}^k e^{i(mod p^{i-1})}$. Thus, G_p^i is a p-adic group. An action by G_p^i on X is given as follows: If $x = (x_1, x_2, \cdots)$ and $g \in G_p^i$ where $g = (a_1, a_2, \cdots)$, then $g(x) = (a_1(x_1), a_2(x_2), \cdots)$. This is, of course, the usual way that such actions are defined on inverse limits.

We proved in [2] that a necessary and sufficient condition that a dyadic group act (freely) on a compact metric space X is that there exist a sequence $\{C_i\}$ of coverings of X such that the (a) the inverse system $\{N(C_i),\phi_i\}$ where $N(C_i)$ is the nerve of C_i be a proper inverse system of (strict) dyadic n_i -polyhedra and (b) $X = \lim_{i \to \infty} P_i$. A similar theorem should hold true for p-adic actions on such spaces X. In fact, a proof should mimic the one for the dyadic case.

Questions. Is it possible to obtain an n-manifold $\mathbf{M}^{\mathbf{n}}$ as the inverse limit of a proper inverse system of p-adic $\mathbf{n_i}$ -polyhedra? Could such an inverse limit be an ANR? Just how "nice" can such an inverse limit be?

References

- 1. L. F. McAuley, A characterization of light open mappings and the existence of group actions, to appear in Colloq. Math.
- Dyadic coverings and the existence of dyadic actions, to appear in The Houston Jour. Math.

16 McAuley

3. L. Pontrjagin, Topological Groups, Princeton University Press, 1958.

4. F. Raymond and R. F. Williams, Examples of p-adic transformation groups, Annals of Math. 78 (1963), 92-106.

State University of New York at Binghamton Binghamton, New York 13901