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ON MONOTONE RETRACTS, ACCESSIBILITY,
AND SMOOTHNESS IN CONTINUA

G. R. Gordh, Jr. and Lewis Lum

1. Introduction

Consider the following conditions which a continuum M may
satisfy.

(*) Each subcontinuum of M is a monotone retract of M.

(**) (Pointed version) Each subcontinuum of M which contains

a fixed point p is a monotone retract of M.

It is easy to verify that dendrites satisfy both condi-
tions (see [10], Theorem 2.1). The second author has proved
that if M is a dendroid, then each of (*) and (**) implies that
M is a dendrite ([10], Theorem 2.3, and [12], Theorem 3). More
recently, the authors have obtained the same conclusion for
arbitrary metric continua satisfying (*), and for arcwise con-
nected metric continua satisfying (**) [6].

In particular, (*) and (**) are equivalent for arcwise con-
nected continua. However, they are not equivalent in general
since the familiar "sin 1/x curve" satisfies (**).

Thus it is natural to ask for a characterization of con-’
tinua satisfying (**). The main purpose of this paper is to

provide such a characterization.

Theorem. A continuum M satisfies (**) <f and only iIf

(a) M is smooth at p, and

(b) for each subcontinuum N of M containing p, N 18
accesstible and the components of M - N form a null

family.

In this result "smoothness” refers to the concept intro-

duced by the first author in [4]. A more general definition
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of "smoothness" has been studied by T. Madkowiak [14].

It is also shown that a metric continuum M satisfying (**)
becomes a dendrite under the canonical monotone decomposition
9 of smooth continua defined in [4]. Thus condition (*) is

recovered in the decomposition space M/9D.

2. Definitions and Preliminary Remarks

A continuum is a compact connected Hausdorff space. The
reader is referred to [7] for basic properties of continua and
undefined terms.

A subcontinuum N of a continuum M is called a monotone
retract of M if there exists a mapping r:M - N which is both
monotone and a retraction.

Let X be a subset of a continuum M. A point x € X is said
to be accessible from a point y € M - X if there exists a sub-
continuum H such that y € H and H N X = {x}. If some point of
X is accessible from some point of M - X, then X is called
accessible.

A collection € of subsets of a continuum M will be called
a null family if each convergent net Cn of elements of € which
is not eventually constant has a degenerate limit.

A continuum M is <Zrreducible from the point p to the point
g if no proper subcontinuum of M contains p and g. If, in addi-
tion, no proper connected subset of M contains p and g, then M
is called an arc (sometimes generalized arc or ordered continuum).

The continuum M is hereditarily unicoherent at p if for
each pair of subcontinua H and K containing p, H 1 K is con-
nected; or equivalently, if for each g in M - {p}, there is a
unique subcontinuum, denoted by pg, which is irreducible from
p to g. If M is hereditarily unicoherent at p and for each con-
vergent net 9 lim 9, = 4 implies that the net of subcontinua

pq, converges to pq, then M is said to be smooth at p [4].
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A tree (dendrite) is a locally connected, hereditarily uni-
coherent (metric) continuum. A generalized tree (smooth dendroid)
is an arcwise connected, hereditarily unicoherent, smooth (metric)
continuum.

Let M be a continuum which is hereditarily unicoherent at
the point p. The weak cutpoint order on M with respect to p
will be denoted by < (i.e., x <y if px € py). For each x € M
the set D(x) = {y € M: py = px} is the level set of x relative
to <. The collection D of all level sets forms a decomposition
(not necessarily upper semicontinuous) of M. Let ¢:M » M/ <D
denote the natural mapping where M/ 9 is given the gquotient
topology. Observe that for any subcontinuum N of M which con-
tains p, ¢—l(¢(N)) = N. We now list, for reference, some of
the basic facts concerning the decomposition D.

(i) For each x € M, D(x) is connected (see [9], Theorem 3,

p. 210 for metric continua, and [2], Theorem 1.2 for
the general case).

(ii) For each x € M, D(x) has void interior in px (see [7],

Theorem 3-44).

(iii) If M is smooth at p, then 9 is a monotone upper semi-
continuous decomposition and M/ D is a generalized tree
which is smooth at D(p) (see [4], Theorem 5.2 and
Theorem 4.1).

(iv) 1f M/ 9D is a continuum which is smooth at D(p), then

M is smooth at p (see [13], Theorem 3.1 for metric

continua, and [11], Theorem 6.3 for the general case).

3. The Main Results
Throughout this section M will denote a continuum contain-
ing a fixed point p.

We shall prove

Theorem 1. Each subcontinuum of M which containsg p 18 a
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monotone retract of M (i.e., M satisfies (**))<f and only if
(a) M 78 smooth at p, and
(b) for each subcontinuum N of M containing p, N 18 acces-
gible and the components of M = N form a null family.

Furthermore, if (**) holds, then M/ D is a tree.
We shall need several lemmas.

Lemma 1. Let M be hereditarily unicoherent at p, and let
N and P be subcontinua of M such that p € NcP. If riM > N
18 a monotone retraction, then rlP 18 @ monotone retraction.
Proof. It suffices to show that r T(x) N P is connected
for each x € N. If not, there exist disjoint closed sets A and
B such that r 2(x) N P = A UB and x € A. But this contradicts
hereditary unicoherence at p since (r_l(x) UN)NP=(AUN) UGB

and (A UN) NB=g.

Lemma 2. Let M be irreducible from p to q. If each sub-
continuum of M which contains p 18 a monotone retract of M,
then M 18 smooth at p.

Proof. According to the Lemma of [6], M is hereditarily
unicoherent at p. Thus, by (iv) of Section 2, it suffices to
show that M/ 9D is a continuum which is smooth at D(p). We
begin by showing that D(z) is closed for each z in M. First
suppose that x and y belong to cl(D(z)) - D(z). By the hypothe-
sis and Lemma 1, there is a monotone retraction r:pz - px U py.
By irreducibility pz = (px U py) U r—l(r(z)). Thus
{x,y} € r(D(z)) = r(z) and x = y. In particular,

cl(D(z)) - D(z)

{x}. since D(z) is connected (by (i) of
Section 2) and pz is irreducible, pz = px U D(z). But this
implies that D(z) has nonvoid interior in pz, contradicting (ii)
of Section 2. Thus D(z) is closed. We now show that each

element D(z) of @D distinct from D(p) and D(g) separates D({(p)
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from D(q) in M/D. Let z € M - (D(p) U D(g)) and let r:M - pz
be a monotone retraction. By irreéducibility M = pz U r—l(r(q))
and r(g) € D(z). Since r(qg) separates p from g in M, D(z)
separates D(p) from D(qg) in M/ED.4 It follows that M/ 9 is an
arc (e.g., [3], Theorem 2.1). Consequently M/ 9D is a continuum

which is smooth at D(p).

A quite different (and somewhat longer) proof of Lemma 2
can be obtained by applying the characterization of smoothness
for irreducible continua given by J. J. Charatonik in [1].

Example 2 in Section 4 shows that the converse of Lemma 2

is false.

Lemma 3. Let M be hereditarily unicoherent at p and assume
that M/ D is a tree. Let N be a subcontinuum of M containing
p and let C be a component of M - N. Then
(a) C is open and continuumwise connected.
(b) At most omne point of N is accessible from any point
of C.
(¢) If r:M >~ N is a monotone retraction, then r(C) is de-
generate.
Proof. Note that M is smooth at p by (iv) of Section 2.

(a) Using the facts that ¢:M + M/ is monotone and

¢_l(¢(N)) = N (see (iii) of Section 2), it is easy to
verify that ¢—1(¢(C)) = C, It follows that ¢(C) is a
component of M/ 9 - ¢(N). As a component of an open

subset of a tree, ¢(C) is open and arcwise connected.

Thus C = ¢_l(¢(c)) is open and continuumwise connected.
(b) Suppose that x and y are distinct points of N which are

accessible from points in C. Then there exist subcon-

tinua X and Y of M such that X NCc# g # Y N C,

X NN ={x}, and Y N N = {y}. Applying (a), there

exists a subcontinuum K = C such that X 1 K # #.# Y N K.
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But then (NU X UK) N (NUYUK) =NU(®RUEXNY)
which is a separation, contradicting hereditary uni-
coherence at p.

(¢) If x,y € r(C), then ) n e 0 # r-l(y) N ¢. Thus

x =y by (b).

We shall need the notion of aposyndesis due to F. B. Jones
(see [8] for a discussion of the history of this concept). A
continuum M is said to be aposyndetic at X with respect to y
if there exists a subcontinuum K of M such that x € int(K) c
KoM - {y}. If for each pair of distinct points x and y of
M, M is aposyndetic at x with respect to y (either one of the
points with respect to the other), then M is said to be aposyn-
detic (semi-aposyndetic).

In the next lemma we shall use the facts that every gener-
alized tree is semi-aposyndetic, and that every aposyndetic

generalized tree is a tree ([5], Theorem 3.5 and Corollary 2.1).

Lemma 4. If M is smooth at p and for each subcontinuum N
of M containing p the components of M = N form a null family,
then M/D is a tree.

Proof. Applying the hypothesis and the properties of ¢
discussed in Section 2, it is easy to verify that for each sub-
continuum K of M/9 which contains D(p), the components of
M/9D - K form a null family. Thus it suffices to assume that
M is a generalized tree (i.e., M = M/ 9), and prove that M is
aposyndetic. ILet x and y be distinct points of M. Since M is
semi-aposyndetic, we can assume that there is a subcontinuum H
of M such that y € int(H) c Hc M - {x}. If x<y, then M is
aposyndetic at x with respect to y ([5], Corollary 3.6), and
the proof is complete. Otherwise, x ¢ py U H. Let C denote
the components of M - (py U H), and let C denote the member of

C containing x. If x ¢ int(C), then there is a net x_ in
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M- (py UH UC) such that lim xn = x. Let Cn be the corre-
sponding net in C (i.e., X, € Cn), and assume without loss of
generality that Cn converges. Since X, ¢ C for each n, Cn is
not eventually constant. But x € lim C, and (lim c) n

(py U H) # #, which contradicts the assumption that € is a null
family. Consequently, x € int(C) < ¢c1(C) < M - {y}, and M is

aposyndetic.

Lemma 5. Let M be smooth at p and assume that for each
subcontinuum N of M containing p, N is accessible and the compo-
nents of M = N form a null family. If N is a subecontinuum of
M containing p and C ig8 a component of M — N, then N [l cl(C) is
degenerate.

Proof. Suppose that N and C are as in the hypothesis and
that N N ¢1(C) is nondegenerate. According to Lemma 4, M/ 9
is a tree and thus Lemma 3 applies. Consequently C is open
and M - C is a subcontinuum of M containing p. By hypothesis
and Lemma 3(b), there is a unique point x € M - C which is
accessible from each point of C. Observe that x € N ] c1(C).
Let H be a nondegenerate subcontinuum of M such that N 1 H = {x}
and H - {x} = C. Let y € N fl c1(C) such that y # x, and let
Yy, be a net in C - H converging to y. Arguing as above, we
conclude that for each n there is a unique point z €N UH
which is accessible from Y, Since C is continuumwise connected
(Lemma 3(a)) and M is hereditarily unicoherent at p it follows
easily that z, € H - N for each n. Let Cn denote the component
of M - (H UN) which contains Yy - Passing to a subnet if neces-
sary, assume that Cn converges to a continuum Co. Since y € C0
and C_ NH# @, the net C, must be eventually constant. It
follows that z, is eventually constant, say z_ = z, for suffi-

n

ciently large n. Thus z, € pyn.for sufficiently large n; and by

smoothness z, € py < N. Thus zg € N and z, € H - N which is a

contradiction.



24 Gordh and Lum

Proof of Theorem 1. (Only if) By the Lemma in [6], M is
hereditarily unicoherent at p; and by Lemma 1 and 2, each ir-
reducible subcontinuum of the form px is smooth at p. To show
that M is smooth at p it suffices to prove that < is closed in
M x M ([5], Theorem 3.1). Let (xn,yn) be a net in < converging
to (x,y). Let r:M » px U py be a monotone retraction. By [4],
Theorem 4.1, r preserves order, and hence r(xn).ir(yn) for each
n. Since px and py are smooth at p, so is px U py; and conse-
quently x = r(x) <r(y) = y. Thus (x,y) belongs to < and M is
smooth at p.

Let N be any subcontinuum of M containing p, and let
r:M + N be a monotone retraction. If x € M - N, then
rl(r(x)) N N = {r(x)}, so N is accessible.

We next show that M/9D is a trée. By [12], Theorem 3, it
suffices to show that each arc of the form D(p)D(x) in M/ 9D
is a monotone retract of M/9. Let r:M + px be a monotone re-
traction. Since r preserves order, it is easy to verify that
the induced map r*:M/% > D(p)D(x) defined by r*(D(y)) = D(r(y))
for each y € M is a monotone retraction.

Finally, let N be a subcontinuum of M containing p and
let C denote the components of M - N. Assume that Cn is a net
of elements of € which is not eventually constant and converges
to a subcontinuum C. Since each Cn is open by Lemma 3, it fol-
lows that C & N. Let r:M > N be a.monotone retraction. Then,
by Lemma 3, r(Cn) is degenerate for each n. Hence C = r(C) =
lim r(C ) is degenerate; i.e., C forms a null family.

(If) Let N be an subcontinuum of M which contains p. We
must define a monotone retraction r:M - N. For each x € M - N,
denote by C(x) the component of M =« N containing x. Define
r:M - N to be the unique retractiop such that for each x € M - N,
{r(x)} = N N cl(c(x)). Note that r is a well-defined function

by Lemma 5. Since point inverses of r are clearly connected, it
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remains only to show that r is continuous. If not, there exists
an open set U in the relative topology on N such that r—l(U) is
not open in M. Let z € r_l(U) - int(r_l(U)). Applying Lemma 4
and Lemma 3, it follows that C(x) is open for each x, and thus

zZ € Uc N. Consequently, there is a net z, in M - N such that

z, ¢ r_l(U) for each n, lim z, =z, and (N N cl(C(zn))) Nu=g
for each n. Without loss of generality, assume that the net

C(zn) converges to a continuum C. The net C(zn) is not eventually
constant; for otherwise z € r 'z ¢ r 1 (U) for sufficiently
large n. But C contains z and meets N - U, contradicting the

assumption that the components of M - N form a null family.

Thus r is continuous.

Corollary 1. Let M be a generalized tree which is smooth
at p. Then M is a tree 1f and only 1f for each subcontinuum N
of M eontaining p, the components of M = N form a null family.

Proof, (Only if) If M is a tree then each subcontinuum of
M is a monotone retract of M ([10], Theorem 2.1), and Theorem 1
applies.

(If) By Lemma 4, M/9D = M is a tree.

Corollary 2. Let M be a continuum which is irreducible
about a finite set. Each subcontinuum of M which contains p 18
a monotone retract of M (i.e., M satisfies (**)) if and only if

(a) M is smooth at p, and

(b) each subcontinuum of M containing p is accessible.
Furthermore, if (**) holds, then M/D is a finite tree.

Proof. If N is a subcontinuum of M which contains p,
then the components of M - N form a finite, hence null, family.

Now apply Theorem 1.

4. Examples

Corollary 2 shows that the "null family" condition in
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Theorem 1 is superfluous for continua irreducible about finitely
many points. The following example shows that this condition
cannot be omitted in general, even if M/ is known to be a

tree.

Example 1. Let M be the plane continuum defined by:

M= {(x,y): ¥y 1 + sin 1/x for -1 <x <0}

U{(x,y): x =10 and 0 <y <2}

U(U:=0{(x,y): y = nx for 0<y<2}).
Note that M is the union of a "simple harmonic fan" and a "sin
1/x curve." The "sin 1/x curve" is not a monotone retract of

M; and M/9 is a locally connected fan (i.e., a dendrite with

only one ramification point).

The next example shows that the "accessibility" condition

in Theorem 1 cannot be omitted even for irreducible continua.

Example 2. Let M be the plane continuum defined by:

M= {(x,y): y = sin 1/x for -1 <x<0 and 0<x<1}
U{({x,y): x =0 and -1<y<1}.
Note that M is the union of two "sin 1/xX curves" with a common

limit segment. Neither of the "sin 1/x curves" is a monotone

retract of M. Thus M does not satisfy (**).

5. Concluding Remarks
Consider the following weak version of condition (*%*).
(***) Each subcontinuum of M which is irreducible
between a fixed point p and some other point is
a monotone retract of M.
If M is a dendroid, then (**%*) is equivalent to (**) by

[12}, Theorem 3.

Question. Are conditions (**) and (***) equivalent for an

arbitrary continuum M?
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We remark that it is possible to modify the proof of
Theorem 1 to obtain an affirmative answer to this question in
the special case when M is hereditarily unicoherent at the point
p. Thus it suffices to determine whether a continuum M satisfy-

ing (***) must be hereditarily unicoherent at p.
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