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ON CERTAIN ISOCOMPACT SPACES

S. W. Davis

1. Introduction

A space is called igocompact if every closed countably
compact subset is compact [2]. Among the classes of spaces
having this property are the 6-refinable spaces [13] (and,

hence, the Moore spaces), the spaces having G . ~diagonal [3],

8
and the symmetrizable spaces [10], to name a few.

In this paper, we discuss weak base properties generalizing
symmetrizability of the type defined by Harley and Stephenson
[6]. Further, we consider some generalizations of paracompact-
ness of the type defined by Bacon [2] and their relations to
the above mentioned base properties.

Our set theoretic notation will conform roughly to that

used by Monk [9].

2. Weak Base Properties
Definition 2.1. Suppose X is a topological space and
B : Wy X X » 2X. Consider the following conditions:
i) For each n € Wy and x € X, B{(n+l,x) < B(n,x), and for
each x € X, nnEmoB(n,x) = {x}.
ii) A subset U € X is open if and only if, for each x €U,
there exists n(x) € Wg such that B(n(x),x) C U.
iii) If F < X is closed and x £ F, then there exists n €
such that for each y € B(n,x)\{x}, there exists n(y) € wg

such that {x,y} ¢ U B(n(y),f).

fer

iv) If F € X is closed and x ¢ F, then there exists n amo
such that for each y € B(n,x)\{x}, there exists n(y) €l wy
such that {x,y} N UfEFB(n(y),f) = d.

v) If F € X is closed and x ¢ F, then there exists n € u

such that x ¢ U_.__B(n,f).

fer
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A. A space X which has a function B satisfying i) and
ii) is called weakly first countable [1l].

B. A space X which has a function B satisfying i), ii)
and iii) is called an F-space [6].

C. A space X which has a function B satisfying i), ii)
and iv) is called an ifs-space (or strong JF -space).

D. As seen in 2.2 below, a space X which has a function

B satisfying i), ii) and v) is a symmetrizable space.

The following is due to Harley and Stephenson and a proof is

given in [6].

Theorem 2.2. A space X is symmetrizable if and only <i1f it

has a funection B satisfying i), 1i) and v) of 2.1.

Corollary 2.2.1. Every js-space in which the isolated
points form an F0 set is symmetrizable.

Proof. Suppose X is an ?s with function B : w_ x X > 2 x
satisfying i), ii) and iv) of 2.1. Let I be the set of isolated

points of X, and suppose I = UnEwan, where Fn is closed for

each n € w_.
o
Suppose x € X\I. We may inductively choose, for each
k € w, n (x) € w  such that 1) n (x) > k, 2) B(n (x),x) N F, =g
and 3) nk(x) z2n 4 (x) whenever k-1 € Wy
Define B* Wy X X > @X as follows: if x € I, let
B*(k,x) = {x}, for each k € Wi if x € X\I, let B*(k,x) =
B(nk(x),x), for each k € Wy
We shall show B* satisfies i), ii) and v) of 2.1. Since
B(nk(x),x) = B*(k,x) € B(k,x) for x € X\I, i) and ii) are clearly
satisfied. Suppose x ¢ F. If x € X\I, then there exists
k, € w, such that x ¢ lerFB(kx,f) > lerFB(nkx(f),f) =

UfeFB*(kx’f)' If x € I, then there exists n w, such that

x € F_, thus x & Uy#xB*(n’y)'
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Hence, by 2.2, X is symmetrizable.
Corollary 2.2.2. Every perfect gs-space is symmetrizable.

In view of the observation above, one might well ask if
the difference between iv) and v), or, in fact, between iii)
and iv), of 2.1 is merely one of semantics. To dispel any such

concern, we cite the following examples.

Example 2.3.

a) The Sorgenfrey line [11l] is an ¥ -space but fails to be
and ?s—space.

b) The Michael line [8] is an ifs—space but fails to he

symmetrizable.

To demonstrate that ¥ -spaces (and, hence, 5S-spaces and
symmetrizable spaces) are isocompact, we state, without proofs,
Theorems 2.4, 2.5, and 2.6. All are due to Harley and Stephenson

[61.

Theorem 2.4. If X is an JF-space, then X is N_l—compac'!:

if and only if X i& Lindeldf.

Theorem 2.5. If X is an ff—space, AcC X, and A is either

open or closed, then A 18 an ff—space.
Theorem 2.6. Every J-space is isocompact.

Further, it follows easily from 2.4 and 2.5, that under the
assumption that closed sets are GcS sets, we may extend 2.4 to

include the hereditary versions of these properties.

3. Covering Properties
Definition 3.1. For 'k € Card, and ®U and UV collections of
subsets of a space X, we say Vis « -weakly cushioned in aU if

and only if there exists f : U+ U such that if 8§ ¢ U with
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8] < xand x : 8+ US with x(G) € G, for each G € §, then
@ T GeEgFc UtS.

We say a space X has property «L if and only if for every
open cover AU of X there is a sequence < EDn : n € wgy> such that
UnEwogn is a covering of X, and, for each n € u_, @n is
Kk -weakly cushioned in w@l. (QQL is the set of unions of counta-
ble subcollections of U .)

For the case « = No' we have property L as defined by
Bacon [2].

In view of Michael's characterization of paracompactness in
terms of cushioned refinements [7], these properties seem to be
natural generalizations of paracompactness.

Among the classes of spaces which satisfy property «L,
for every « € Card, are the 98-refinable spaces, the semistrati-

fiable spaces, the semimetric spaces, and the regular g-spaces,

to name a few.

Remark.

1) 1f a < B € Card, then BL => aL.

2) If X is a space with countable tightness, then, for
each k € card, X has «xL if and only if X has L.

3) If X is a space which satisfies « L and A is an Fc-

subset of X, then A satisfies «L.
The following result is due to Bacon [2].
Theorem 3.2. Every space which satisfies L is isocompact.

The question of which of the isocompact spaces have the
stronger property that Nl—compact and Lindelof are equivalent
has been of great interest. This interest is heightened by the
example of Wicke [12] of a Tyr Nl-compact, hereditarily weakly
6-refinable, scattered space which is not metalLindeldf, and

the subsequent example of van Douwen and Wicke [5] which has
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the above properties and is locally compact, separable and sub-
metrizable, in addition.

To explore this gquestion for'the properties kL, k € Card,
we first prove the following basic lemma, and we will use the

notation of the lemma throughout the remainder of this section.

Lemma. If Qlis a non-empty collection of non-empty open
subsets of X, and D is Ro-weakly cushioned in U via
£ . D> w, with no countable subcollection of 9l covering U D,

then there exist functione a : w, - u9, o : wy > D, and

1
U : wy > {the open subsets of X} such that the following are

true:

1) for each o €w;, a € UED\UB<afD

l.'
2) for each a € wy, a, € Da

3) u, ﬂ{aB : B <wl}={aa}

B

4) U a<wan = Ua<wlfDa
Proof. Suppose U, 9D, and f are as in the hypothesis of
the lemma. Since no countable subcollection of AU covers U 9D,

choose a_ € U 9, and choose D, € 9D such that a, €D,. Let

Uy = fDo'
Suppose a < wy and, for B < a, we have chosen aB, DB such
€ € . i i
that a; € D, and a, VRY)] \UY<BfDY Now UB<afDB is the union

of a countable subcollection of U ; hence, we choose
a, €U ED\UB<afDB, and we choose D, € D with a €D . Let
u, = b \{a; = B < al.

Thus we inductively construct functions a : wy > u g),
D : w > D, u: w; > ?X. since, for each a, fD, is open, we
have that the range of U is contained in the open subsets of X.
Clearly, we have 1) and 2) satisfied. Moreover, since D is

Ro-weakly cushioned in 09U via f, we have, for each a < Wyr

1aB t B<alc UB<afDB' Hence, 3) and 4) are satisfied.

Theorem 3.3. If x > and X is a T,-épace satisfying

@y
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KL, then X 8 8 ,-compact tf and only if X is Lindelof.

Proof. Without further assumption Lindeldf implies Rq-
compact; hence, we consider the other implication.

Suppose U is an open cover of X with no countable subcover.
Apply kL to obtain a sequence (g)n :n € ) with g)n R-

weakly cushioned in w®U via £ ¢ g)n + w9, for each n € wg v

and U newog)n covering X.
Since no countable subcollection of 9U covers X, there
exists n € N such that no countable subcollection of 9U covers
U
g)n' Apply lemma to U, g)n' £ -
: H . i i
Suppose x € 1aa a < wlf\{aa a < w;}. Since g)n is

actually X ,-weakly cushioned in w O by £r X € Ua<wlana =

U _ U . Choose o < w, such that x € Ua' Let U = Ua\{aa}'

c.<uul a 1
Since x ¢ {aa :a < wl}, U is open, x € U and U ﬂ{aa ta < e} =
#, which is impossible.

Thus {aa :a < wl} is a closed, discrete subspace of cardi-

nality Nl' but this is impossible since X is Nl-compact.

Hence the result is proved.

Theorem 3.4.

a) If X is a T,-space with countable tightness which
satisfies L, then X is RN |-compact if and only 1f X is
Lindelsf.

b) If X is a Ty sequential space which satisfties L, then
X is B -compact if and only if X is Lindelof.

Proof. As noted previously, we need only show that R 1”

compact implies Lindeldf.

Suppose X is Tl’ satisfies L, and is Nl—compact, and U
is an open cover of X with no countable subcover. Apply L to
obtain a sequence ¢ g)n : n € wo) with fDn R ,~weakly cushioned
in o U via £ for each n € w,, and UnewOEDn covering X.

There exists n € wo such that no countable subcollection of
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covers Uﬂ)n. Apply lemma to €U, EDn, £

Suppose B < {a  : a < w;} with |B] < R, and x € B. If

a
IB| < X s x €B =B. If [B] = 8 _, letB = {aak : k €agl,
then x € BC UkEmoanOLk c Ua<m1ano¢ c Ua<m1Ua‘ Choose a < w;
such that x € Ua‘ Since Ua n {aB : B < Lul} = {aa}, x =a..

Thus {aa s a < ml} contains all its sequential limit points: in

fact, it contains the closure of each of its countable subsets.
Hence, if X has countable tightness, or X is sequential,

then {aa :a < ml} is a closed discrete subset, contrary to X

being Nl—compact, and the result is proved.

Corollary 3.4.1. If X is a T first countable space

lJ
satisfying L, then X is Nl—aompact 1f and only if X is Lindeldf.

Theorem 3.5. If X i1s hereditarily 8. -compaet and satis-

1
fies L, then X is Lindeldf.

Proof. Suppose Ul is an open cover of X with no countable
subcover. Apply L to obtain a sequence ( EDn :n € mo> with
Qn No-weakly cushioned in w°l via fn' for each n € We s and
U D covering X. Choose n € w_ such that no countable

new, "~ n o
subcollection of ?U covers U EDn'
Apply lemma to U, @n, fn' The set {aa ta < ml} is not

Nl—compact in its subspace topology, and the result is proved.

Corollary 3.5.1. A space X is hereditarily Nl-compact
and hereditarily satisfies L 1f and only 1f X is hereditarily

Lindelof.

Theorem 3.6. A Ty-space X 18 hereditarily Lindeldf if and
only i1f X is perfect, Nl—compact, and satisfiées L.

Proof. It is well known that a T3 hereditarily Lindeldf
space is perfect. Further, Lindeldf implies Nl—compact and L,

so the 'only if' is shown.

Suppose A < X and A is an open collection covering A which
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has no countable subcover of A. Since open subsets of X are

F, sets, UB satisfies L. Choose a sequence (EDn : n € Wy ?

with EDn X j-weakly cushioned in wUvia £, for each n €  , and

U

w
nGo

space U au .

EDn covering UU . apply lemma to U, fDn, £ in the

. . R _
Now, since open subsets are Fc sets, Uu<w1Ua. is 1 com

pact, thus, {aa t a < wl} has a limit point in Ua<w1Ua' How-

ever, since X-is Tl' this is impossible.
4. Relations
We turn our attention now to the relationships which exist

between the properties defined in sections 2 and 3.

Theorem 4.1. If X 18 a symmetrizable space, then X satis-
fies x L, for every «x € Card.

Proof. Suppose U is an open covering of X. Well order °U.
For each x € X, we define F(x,U) to be the first element of U
which contains x. For each U€ U, let p(U,U) = {x : U =

F(x,qU)}. For each n € wyr let D = {x : x & Uzex\F(x,GlL)B(n’z)}’

and let Q)n = {Dn Npw,W) : U €U}. Define £ EDn + U
as follows:

1. if D N p,U) # g, let £, N pw, W) =uv;

2. if D N p(u,U) = g, let £ (D N p(u,U)) be the first

element of AU.

Tlearly, Unewo EDn is a covering of X.

Suppose §c 9 and x : 8§+ UG such that x(G) € G, for
each G € 8. sSuppose x ¢ {x(g) : Ge §}. Ifx¢g Ufng,
then B(n,x) N {x(G) : G€ 8} = g. Suppose x € Ufng. There
is a first G € § such that x € fnG, where § is given the order
induced by U. et F(x, 9,) denote this element. Hence, we
have x & U{fnG : G< F(x,8)}, so B(n,x) N {x(G) : 6 < F(x,8)}
=g, Now, if G > F (x,8), then x(G) € p(fnG,GlL); thus

x(G) ¢ £.( Fi(x,8)). However, £.( F(x,8)) is open, so there
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exists k € Wy such that B(k,x) fn( F(x,98)). Hence we have
B(k,x) N {x(G) : 6 > F(x,98)}is empty. Finally, x ¢ {x(G) :

G €9}, and n_

- B(m,x) = {x}, so there exists m € Wy such
o

that x( F(x, §)) & B(m,x). Let N = max{n,k,m}, then we have
B(N,x) N {x(6) : G € 8§} =4g.

Hence we have that {x(G) : G € §} is closed. Therefore,
x@G) : GEG T =1{x(6G) : Ge §})c Ufn §. since no reference
is made to | §| in this argument, kL is satisfied, for every

K € Card.

Theorem 4.2. Every ?s-space satisfies kL, for every
K € Card.
Proof. Suppose (X,1) is an ffs—space with ffs—system B.
Let A = {x : {x} g 1}. Let U be an open covering of X.
Define B* : u_ x X » 2 X as follows:
1. Suppose x € A. Let B*(n,x) = B(n,x), for each n € Wy
2, Suppose X ¢ A. For each n € Wy let B*(n,x) be the
set {z € A : x € B*(n,2)} U {x}.
Let 0 = {[UCS X : X € U => there is n, € g such that B*(nx,x) c U},

Clearly, o is a topology on X and 0 € 1. We now show that (X,o0)

is symmetrizable, by showing that i), ii) and v) of 2.1 are

satisfied.
i) For each x € X, n € wgr B* (n+l,x) < B*(n,x). If x €A,
B*(n,x) = B(n,x) for each n € Wy i hence,
ﬂnemOB*(n,x) = {x}. For x ¢ A, consider z # x. If

z €A, z £ B*(0,x). If z € A, then there is n € Wy such
that x ¢ B*(n,2z), but then z ¢ B*(n,x). BHence,
* =
nne%a (n,x) {x}, for every x € X.
ii) This is clear from the definition of o.
v) Suppose X\F € 0 and x ¢ F. Since o € 1, X\F € 1. First,

if x € A, there exists n € Wy such that B*(n,x) < X\F

and x ¢ UzEFB(n,z). Therefore, x & UzeFB*(n’z)'
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Suppose x € A. There exists n € Wy such that
B*(n,x) < X\F, but then x is not in UzeFB*(n,z).
Hence, (X,0) is a symmetrizable space.
Suppose U € 1. For each n € Wy s let Un = {x €A : B*(n,x)

U and for every y € B(n,x)\{x} there exists n® € Wy such that

Y
X
{x,yl} c X\UzeUB(ny,z) }. Clearly, UnewOUn =UNA. Let
L = U{Bmx :xeuyadr =U {B*(n?,y) : y € (x\a) N B(n,x)
for some x € Un}. Let V =1L u I, and Vy = U newovn‘
We shall show 1) vy €U, 2) vy NA=uNA, and 3) vy € 0.

1) Suppose x € V There exists n € Wy such that x € Vn'

U
Thus either there is z € Un such that x € B(n,z) € U,
or there is y € (X\A) N B(n,z) for some z € Un with

X € B*(n;,y). If x U, v €& B*(n;,x) , so x & B*(n;,y).

Therefore, V U.

n

U
2) By 1), Vy NAcUNA. Further, since X is an js_

a
I

space, U U N A, but U, eV, for every n € w_.

ncw n [o]

o]
Thus U 1 A = Une%url c Une%vrl < Vyr

and we have
UnNAaA=V f A.

3) Suppose x € V First, if x € Vy N A, then there is

U
n € Wy such that x € Un’ by 2). Hence, B*(n,x) Vn ‘—:VU'
Now, suppose X € VU\A. There is n € Wy such that x € Vn'
If x € In’ then there exists z € Un such that

B*(nz,x) cV cV If x € L_, then there exists z € U
X = 'n = n n

U
such that x € B(n,z), so again there exists n}z( (<] wg such

. €aq.
U Thus VU g

Now O = {VU : U€ QU and U N A # g} is an open cover of the

(7
that B (nx,x) cv, eV

symmetrizable space U . Hence, by 4.1, we may choose, for any
(S :
k € Card, a sequence ( SDn n € w \{0}> such that UnEwO\{O} EDn
covers UV, and fDn is k -weakly cushioned in w®, for each
n € wo\{O}.
UDeoct, so UD e1. rLet Dy = {{x} : x e x\UT},

then EDO is k -weakly cushioned in w9, since X\U TV is a closed
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discrete subspace of (X,t). Now w® refines w9l and for
sc U0, §° > T, so @n is K -weakly cushioned in o%U, for

each n € Wy Therefore (X,t) satisfies I, for each ¥ € Card.

In the above proof, we have shown that if (X,1) is an
gs—space, then there is a weaker topology o on X such that
(X,0) is a symmetrizable space and a function V : 1 - ¢ such

that for each U e 1, V. €U and V. N1 {x : {x} £ 1} =

U U
UN{x : {x} & 1}. The converse is not difficult, so we have

the following.

Theorem 4.3. A space (X,T) 18 an gs-spaee tf and only if
there is a topology O on X such that (X,0) 18 a symmetrizable
space and a mapping V : T > 0 such that for each U € 1,

VyEUu and Vs N{x : {x} g1} =0N{x: {x} &1}

We now give an example showing that it is not true, in

general, that all iT-spaces satisfy L.

Example 4.4. Let S be the set of one-to-one sequences
of real numbers. Since |S| = ¢, choose g : R >~ S, a bijection.
(R denotes the real numbers) Let X = R x {0;1}.
For (x,1) € R x {1}, we let {(x,1)} be an open set. For
(x,0) € R x {0}, we define B*(n,x) = {(x,0)} U {(g(x),,1) :
k > n} and let {B*(n,x) : n ¢ wo} be an open neighborhood base
at (x,0).
X is clearly an J-space, for if we define B : wy X X > Lx
by B(n,(x,0)) = B*(n,x) and B(n, (x,1)) = {(x,1)}, for each x € R
and n € W then x ¢ UZ#XB(l,z) when x is a non-isolated point.
To see that X does not satisfy L, let Al = {B*(1,x) :
x € R} U {{(x,1)} : x € R} and suppose (EDn :n € wo> and
(fn : ne wo> are as in L. There exists n € w, such that
| (U @n) N (R x {1})|] = ¢c. For each D € Q%V there is a couptable

subcollection of U covering D; hence, we may choose c points in
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R x {1} from distinct elements of EDn. In particular, we may
choose countable sets {xk : k € wo} c R x {1} and

o, : k €} g)n such that x, € D, for every k € w, and if

k
i # j, then X # xj and Dy # Dj' Now |{xk : k € wo} N (R x {0})]

= c; hence no countable subcollection ofGU/may cover

{xk : k € wo}. Thus X is an J -space which does not satisfy L.

Remark. It was suggested to the author by E. K. van Douwen
that a regular example of this type may be constructed using the
techniques of [4]. This is, in fact, the case. With a small
modification, example 1.2 of [4] is easily seen to supply such
an example. The example above is a Tl space but fails to be

even T2.

On the other side of the ledger, as one might expect, the

results are all negative.

Ezample 4.5. The ordinal space w, + 1 is compact, but
cannot be an J-space since the open subset wy is not even

isocompact.
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