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ON CERTAIN ISOCOMPACT SPACES 

s. W. Davis 

1. Introduction 

A space is called isoaompaat if every closed countab1y 

compact subset is compact [2]. Among the classes of spaces 

having this property a~e the e~refinab1e spaces [13] (and, 

hence, the Moore spaces), the spaces having Go-diagonal [3], 

and the symmetrizable spaces [10], to name a few. 

In this paper, we discuss weak base properties generalizing 

sYmmetrizability of the type defined by Harley and Stephenson 

[6]. Further, we consider some generalizations of paracompact

ness of the type defined by Bacon [2] and their relations to 

the above mentioned base properties. 

Our set theoretic notation will conform roughly to that 

used by Monk [9]. 

2. Weak Base Properties 

Definition 2.1. Suppose X is a topological space and 

B w o x X ..... ~ X. Consider the following conditions: 

i) For each n E w 
0 

and x E X, B(n+l,x) ~B(n,x), and for 

each x E X, nnEwoB(n,x) = {x}. 

ii) A subset U c X is open if and only if, for each x 'E[U, 

there exists n(x) E W o such that B(n(x),x) S U. 

iii) If F c X is closed and x ~ F, then there exists n E, Wo 

such that for each y E. B(n,x)\{x}, there exists n(y) E Wo 

such that {x,y} ~ U fEFB(n(y) ,f)'. 

iv) If F C X is closed and x ~ F, then there exists n ~wo 

such that for each y E. B(n,x)\{x}, thera exists n(y) -e( 00 
0 

such that {x,y} n UfEFB(n(y) ,f) = ~. 

v) If F C X is closed and x ~ F, then'there exists n e 00 
0 

such that x ~ UfEFB(n,f). 
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A.	 A space X which has a function B satisfying i) and 

ii) is called weakly first countable [1]. 

B.	 A space X which has a function B satisfying i), ii) 

and iii) is called an ~ -space [6]. 

c.	 A space X which has a function B satisfying i), ii) 

and iv) is called an ~ -space (or strong ~ -space) . 
s 

D.	 As seen in 2.2 below, a space X which has a function 

B satisfying i), ii) and v) is a symmetrizable space. 

The following is due to Harley and Stephenson and a proof is 

given in [6]. 

Theorem 2.2. A space X is symmetrizable if and only if it 

has a function B satisfying i)~ ii) and v) of 2.1. 

Corollary 2.2.1. Every ~ -space in which the isolated 
s 

points form an Fa set is symmetrizable. 

Proof. Suppose X is an ~ with function B : w x X -+ ~ X s 0 

satisfying i), ii) and iv) of 2.1. Let I be the set of isolated 

points of X, and suppose I U F , where F is closed fornEW n n o 
each nEw . o 

Suppose x E X\I. We may inductively choose, for each 

and	 3) nk(x) > (x) whenever k-l E Woenk - l 

Define B* : W x X -+ ~X as follows: if x E I, let o 

B*(k,x) = {x}, for each k E w ; if x E X\I, let B*(k,x) = o 

B(nk(x),x), for each k E Woe 

We shall show B* satisfies i), ii) and v) of 2.1. Since 

B(nk(x) ,x) = B*(k,x) S B(k,x) for x E X\I, i) and ii) are clearly 

satisfied. Suppose x ¢ F. If x E X\I, then there exists 

k E W such that x f1. UfEFB(kx,f) 2 U fEFB(nk (f) ,f) = x o x 
UfEFB*(kx,f). If x E I, then there exists n c W such that o 

x E	 F , thus x ~ Uy~xB*(n,y).n 
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Hence, by 2.2, X is symmetrizable. 

Corollary 2.2.2. Every perfect ~s-space is symmetrizable. 

In view of the observation above, one might well ask if 

the difference between iv) and v), or, in fact, between iii) 

and iv), of 2.1 is merely one of semantics. To dispel any such 

concern, we cite the following examples. 

Example 2.3. 

a) The Sorgenfrey line [11] is an ~ -space but fails to be 

and ~ s-space. 

b) The Michael line [8] is an ~ -space but fails to be s 

symmetrizable. 

To demonstrate that ~ -spaces (and, hence, ~ s-spaces and 

symmetrizable spaces) are isocompact, we state, without proofs, 

Theorems 2.4, 2.5, and 2.6. All are due to Harley and Stephenson 

[6] • 

Theorem 2.4. If X is an ~ -space 3 then X is M.l-compact 

if and only if X is Lindelof. 

Theorem 2.5. If X is an ~-space, AS X3 and A is either 

open or alosed3 then A is an ~-spaae. 

Theorem 2.6. Every ~-space is isocompact. 

Further, it follows easily from 2.4 and 2.5, that under the 

assumption that closed sets are Go sets, we may extend 2.4 to 

include the hereditary versions of these properties. 

3. Covering Properties 

Definition 3.1. For K E Card, and GlL and 19 collections of 

subsets of a space X, we say 19 is K -weakly cushioned in ~.if 

and only if there exists f : ,,-+ GlL such that if § C 19 with 
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I ~ I ~ K and x : § -+ U ~ with x(G) E G, for each G E ~, then 

{x (G) : G E § } c=: U f § . 

We say a space X has property KL if and only if for every 

open cover GlL of X there is a sequence < 9) : nEw > such that 
n 0 

U 9) is a covering of X, and, for each nEw , 9) isnEw non o 
K-weakly cushioned in w~L. (wGlL is the set of unions of counta

ble subcollections of GlL.) 

For the case K = ~ 0' we have property L as defined by 

Bacon [2]. 

In view of Michael's char~cterization of paracompactness in 

terms of cushioned refinements [7], these properties seem to be 

natural generalizations of paracompactness. 

Among the classes of spac~s which satisfy property ~L, 

for every K E Card, are the e-refinable spaces, the semistrati

fiable spaces, the semimetric spaces, and the regular a-spaces, 

to name a few. 

Remark. 

1) If a ~ S E Card, then SL => aLe 

2) If X is a space with countable tightness, then, for 

each K E Card, X has K L if and only if X has L. 

3) If X is a space which satisfies K L and A is an F a 

subset of X, then A satisfies KL. 

The following result is dUe to Bacon [2]. 

Theorem 3.2. Every space which satisfies L is isocompact. 

The question of which of the isocompact spaces have the 

stronger property that ~l-compact and Lindelof are equivalent 

has been of great interest. This interest is heightened by the 

example of Wicke [12] of a T Nl-compact, hereditarily weaklyl , 

e-refinable, scattered space which is not metaLindelof, and 

the subsequent example of van Douwen and Wicke [5] which has 
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the above properties and is locally compact, separable and sub

metrizable, in addition. 

To explore this question for the properties K L, K E Card, 

we first prove the following basic lemma, and we will use the 

notation of the lemma throughout the remainder of this section. 

Lemma. If GlL is a non-empty aolleation of non-empty open 

subsets of x, and 9) is ~o-'Weakly aushioned in wGlL via 

f : 9) -+- wGlL, 'Wi th no aoun tab le subao lleation of GlL aoveping U 9), 

then thepe exis t funati.ons a : w -+- U 9), D : wI -+- 9), and
1 

U : wI -+- {the open subsets of x} suah that the follo'Wingape 

tpue: 

1) fop eaah a E wI' a a E U9) \ UB<afDB 

2) fop eaah a E a E DwI' a a
 
3) U n {a B < wI} = {aa}
a B
 
4) U U U fD
a<w l a a<w l a 

Ppoof· Suppose GlL, 9), and f are as in the hypothesis of 

the lemma. Since no countable subcollection of GlL covers U 9), 

choose a E U 9), and choose Do E 9) such that a E Do. Let o o
 

fD •
 o 

Suppose a < wI and, for B < a, we have chosen aB, DB such 

that a B E DB and a B E U 9) \U Y<BfDy. Now U B<afDB is the union 

of a countable subcollection of~; hence, we choose 

a E U 9) \ U B<a fD B' and we choose D E 9) with a E D Leta a a a 
U fDa\{a B 

: B < a}.a
 

Thus we inductively construct functions a : wI -+- U 9),
 

D : wI -+- 9), U : wI -+- ~X. Since, for each a, fDa is open, we 

have that the range of U is contained in the open subsets of X. 

Clearly, we have 1) and 2) satisfied. Moreover, since 9) is 

~o-weakly cushioned in w~ via f, we have, for each a < wI' 

taB : B < a} c.=. U B<afDB. Hence; 3) and 4) are satisfied. 

Theopem 3.3. If K ~ wI and X is a Tl-spaae satisfying 
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K L., then X is ~ I-compact if and only if X is Lindelof.
 

Without further assumption Lindelof implies ~
 1 

compact; hence, we consider the other implication. 

Suppose GlL is an open cover of X with no countable subcover. 

Apply K L to obtain a sequence < 9) : nEw ) with 9) ~ I-non 

weakly cushioned in wGlL via f : 9) n ~ wGlL, for each n E w ' n o 

and U 9) covering X.
nEw n o 

Since no countable subcollection of GlL covers X, there 

exists n E W such that no countable subcollection of GlL covers 
o
 

U9) . Apply lemma to GlL, 9) , f .
 
n n n 

Suppose x E {aa : a < wl}\{aa, : a < wI}· Since 9)n is 

actually ~ I-weakly cushioned in wGlL by f , x E U f D = n a<wl n a
 

U· U. Choose a < wI such that x E U. Let U = U \{a }.
a<w l a a a a 

Since x e {aa : a < wI}' U is open, x E U and U n {aa : a < wI} 

~, which is impossible. 

Thus {aa : a < wI} is a closed, discrete subspace of cardi

nality .~ l' but this is impossible since X is ~ I-compact. 

Hence the result is proved. 

TheoT'em 3.4. 

a)	 If X is a Tl-space with countable tightness which 

satisfies L., then X is ~ I-compact if and only if X is 

Lindelof· 

bJ If X is a T l sequential space which satisfies L., then 

X is ~ I-compact if and only if X is Lindelof. 

PT'oof. As noted previously, we need only show that ~ 1

compact implies Lindelof. 

Suppose X is T satisfies L, and is ~l-compact, and GlLl , 

is an open cover of X with no countable subcover. Apply L to 

obtain a sequence < 9) : nEw ) with 9) ~ -weakly cushioned non 0 

in wGlL via f , for each nEw , and U E 9) covering X. nonW n o 
There exists n E W such that no countable subcollection of o 
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covers U 9) • Apply lemma to "lL, 9) , f . n n n 

Suppose B S {au u < wI} with IBI ~ ~o and x E B. If 

IB I < ~ 0' x E B = B. If IB I = ~ , let B = {a k E w }'
o uk o 

then x E B C U f D c U f D c: U U. Choose u < wIkEW n uk - u<w l n u - u<w l U o 
such that x E U . Since U n {as: B < wI} = {au}' x = au·'u u 

Thus {au : u < wI} contains all its sequential limit points: in 

fact, it contains the closure of each of its countable subsets. 

Hence, if X has countable tightness, or X is sequential, 

then {au: u < wI} is a closed discrete subset, contrary to X 

being ~ 1-compact, and the resul1:; is proved. 

Corollary 3.4.1. If X is a Tl~ first countable spaoe 

satisfying L~ then X is ~ I-compact if and on ly if X is Linde lof. 

Theorem 3.5. If X is hereditarily Kl-compact and satis

fies L~ then X is Lindelof. 

Proo f. Suppose GlL is an open cover of X with no countable 

subcover. Apply L to obtain a sequence < 9) n : n E w ) wi th o 

9) n ~ 0 -weakly cushioned in w"lL via f , for each n E w ' and n o
 

U E 9) covering X. Choose n E W such that no countable
 
n W n	 o o 

subcollection of "lL covers U 9) • 
n 

Apply lemma to "lL, 9) n' f . The set {au : u < wI} is not n
 

~l-compact in its subspace topology, and the result is proved.
 

Corollary 3.5.1. A space X is hereditarily ~l-compact 

and hereditarily satisfies L if ~nd only if X is hereditarily 

Linde lof. 

Theorem 3.6. A T 3-space X is hereditarily Lindelof if and 

only	 if X is perfect~ ~ l-compact~ and satisfies L. 

Proof. It is well known that a T hereditarily Lindelof3 

space is perfect. Further, Lindelof implies Kl-compact and L, 

so the 'only if' is shown. 

Suppose A c X and GlLis an open collection covering A which 



40 Davis 

has no countable subcover of A. Since open subsets of X are 

F a sets, U~ satisfies L. Choose a sequence <9)n : n E w )o 

with 9) ~ -weakly cushioned in wGlLvia f , for each n E wo' and non
 

U EW 9) covering U GlL. Apply lemma to GlL, 9) , f in the
 
non n n
 

space UGlL •
 

Now, since open subsets are Fa sets, U U is ~ l-com
a<wl a 

pact, thus, {a a : a < wI} has a limi t point in U U. How
a,<wl a 

ever, since X-is T this is impossible.l , 

4. RelatiOD8 

We turn our attention now to the relationships which exist 

between the properties defined in sections 2 and 3. 

Theorem 4.1. If X is a symmetri2able spaae, then X satis

fies 'K L, for every K E Card. 

Proof· Suppose GlL is an open covering of X. Well order GlL. 

For each x E X, we define F(x,GlL) to be the first element of Gl1 

which contains x. For each U E GlL , let p(U,GlL) = {x : U = 

F(x,GlL)}. For each n E w ' let D = {x : x ~ UZEX\F(x,6U)B(n,z)},o n 

and let 9)n = {D n p (U, GlL) : U E GlL } • Define f 9) -+- GlL 
n n n 

as follows: 

1. if D n p(U,GlL) ~ ~, let f (D n p(U,~» = Ui n n n 

2. if D n p(U,GlL) ~, let fn(D n p(U,~» be the first n n
 

element of GlL.
 

Clearly, U EW ,9) is a covering of X. 
non 

Suppose § S;9) n and x :§-+- U § such that x(G) E G, for 

each G E§ • Suppose x ~ {x(g) : G E § }. If x fl U f §,
n 

then B(n,x) n {x (G) : G E§ } ~. Suppose x E Uf §. There n 

is a first G E § such that x E fnG, where § is given the order 

induced by GlL. Let ~ (x, §J denote this element. Hence, we 

have x ~ U{f G G < ~(x,§)}, so B(n,x) n {x (G) : G < ~(x,§)} 
n 

= 11. Now, if G > 5' (x, §), then x(G) E p(f G~GlL) i thus n 

x (G) ~ f ( ~ (x, §) ). However, f ( 5' (x, § » is open, so there 
n n 
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exists k E w such that B (k,x) c f (1" (x, §». Hence we have o - n 

B(k,x) n {x(G) : G > 1"(x, §)} is empty. Finally, x ~ {x(G) : 

G E §}, and n E B(m,x) = {x}, so there exists m E W such m W o o 
that x( 1"(x, §) fi. B(m,x). Let N = max{n,k,m}, then we have 

B(N,x) n {x(G) : G E §} = {tf. 

Hence we have that {x(G) : G E § } is closed. Therefore, 

{x (G) : G E § } = {x (G) : G E § } c: Uf §. Since no reference n 

is made to I § I in this argument, K L is satisfied, for every 

K E Card. 

Theorem 4.2. Every 1" s-space satisfies K L, for every 

K E Card. 

Proof· Suppose (X,T) is an 1" -space with 1" -system B. s s 

Let A = {x : {x} fJ. T}. Let GlL be an open covering of X. 

Define B* : W x X -+ ~ X as follows: o 

1. Suppose x E A. Let B*(n,x) = B(n,x), for each n E Woe 

2. Suppose x ~ A. For each n E w ' let B*(n,x) be the o
 

set {z E A : x E B*(n,z)} U {x}.
 

Let a = {U ~ X : x E U => there is n E W such that B*(nx'x) S U}.x o 

Clearly, a is a topology on X and a c: T. We now show that (X,a) 

is symmetrizable, by showing that i), ii) and v) of 2.1 are 

satisfied. 

i) For each x E X, n E w ' B*(n+l,x) ~ B*(n,x). If x E A,o
 

B*(n,x) = B(n,x) for each n E w ; hence,
o 

n E B*(n,x) = {x}. For x ¢ A, consider z ~ x. If n W o 
z ~ A, z ~ B*(O,x). If z E A, then there is n E W such o 

that x ¢ B*(n,z), but then z ~ B*(n,x). Hence, 

n E B* (n,x) = {x}, for every x E X. n w 
o 

ii) This is clear from the definition of a. 

v) Suppose X\F E a and x ~ F. Since a ~ T, X\F E T. First, 

if x E A, there exists n E W such that B*(n,x) ~ X\F o 

and x ~ UZEFB(n,z). Therefore, x ~ UZEFB*(n,z). 
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Suppose x ~ A. There exists n E W such that o 

B*(n,x) ~ X\F, but then x is not in U ZEFB*(n,z). 

Hence, (X,a) is a symmetrizable space. 

Suppose U E T. For each n E w ' let Un {x E A : B*(n,x) C o 

U and for every y E B(n,x)\{x} there exists n~ E W such that o
 

{x,y} c: X \U EUB(nx,z)}. Clearly, U U UnA. Let
 - z y nEw n o 
L = U{B(n,x) : x E Un} and In = U {B*(n~,y) y E (X\A) n B(n,x)n 

for some x EU }. Letvn=LnUI andVu=U V. n n nEw n o 
We shall show 1) V ~ U, 2) V n A UnA, and 3) V E a. u u u 
1) Suppose x E VUe There exists n E W such that x E V . o n 

Thus either there is z E Un such that x E B(n,z) ~ U, 

or there is y E (X\A) n B(n,z) for some z E Un with 

x E B*(nZ,y). If x ~ U, Y ~ B*(nz,x), so x ~ B*(nZ,y).
y y y 

Therefore, V S u.u 
2) By 1) , V n A '= U n A. Further, since X is an ~ 

u s 

space, U U = u n A, but U c:Vn' for every n E w .nEw n n - 0 
0 

Thus U n A U U c: and we havenEw n U nEw Vn ~ Vu ' 
0 0 

UnA = V n A.u 
3) Suppose x E VUe First, if x E V n A, then there isu 

nEw such that x E Un' by 2) • Hence, B*(n,x) c:V ~ Vue0 - n 

Now, suppose x E VU\A. There is nEw 
0 

such that x E Vn 

If x E In' then there exists Z E Un such that 

B*(nz,x) c V c: VUe If x E L , then there exists Z E Un 
x - n- n 

Zsuch that x E B{n,z), so again there exists n E w such x 0 

that B*(nz,x) eVe Vue Thus V E a. x - n- u 

Now~ = {VU : U E ~ and UnA f ~} is an open cover of the 

symmetrizable space U~. Hence, by 4.1, we may choose, for any 

K E Card, a sequence ( 9)n : n E W \{O}) such that UnEw \{O} 9)no 
o 

covers U'tJ, and g) is K -weakly cushioned in wl~, for each n 

n E W \{O}.o
 

U~ E a ~ T, so U 1'1 E T. Let ~D 0 = {{x} : x E X \ U ~ },
 

then 9) 0 is K -weakly cushioned in wl1L, since X \ U 't) is a closed 
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discrete subspace of (X,T). Now w~ refines w~ and for 

S ~ U ~, SO ::> ST, so 9) is K -weakly cushioned in w~, for - n 

each n E Woe Therefore (X,T) satisfies K L, for each K E Card. 

In the above proof, we have shown that if (X,T) is an
 

~ -space, then there is a weaker topology 0 on X such that
 s
 

(X,a) is a symmetrizable space and a function V T -+ 0 such
 

that for each U E T, V ~ U and V n {x : {x} ~ T}u u 
u n {x : {x} ~ T}. The converse is not difficult, so we have 

the following. 

Theorem 4.3. A space (X, T) is an ~ -space if and only if s 

there is a topology 0 on X such that (X,o) is a symmetrizable 

space and a mapping V : T -+ 0 such that for each U E T, 

Vu s= U and Vu n {x : {x} ~ T} = U n {x : {x} ~ T}. 

We now give an example showing that it is not true, in 

general, that all ~-spaces satisfy L. 

Example 4.4. Let S be the set of one-to-one sequences 

of real numbers. Since lsi c, choose g : R -+ S, a bijection. 

(R denotes the real numbers) Let X = R x {O,l}. 

For (x,l) E R x {I}, we let {(x,l)} be an open set. For 

(x,O) E R x {O}, we define B*(n,x) = {(x,O)} U {(g(x)k,l) 

k > n} and let {B*(n,x) : n E w } be an open neighborhood base o 

at (x,D). 

X is clearly an ~-space, for if we define B : W x X -+ ~X 
o 

by B(n, (x,D)) = B*(n,x) and B(n, (x,l)) = {(x,l)}, for each x E R 

and n E wa' then x ~ Uz~xB(l,z) when x is a non-isolated point. 

To see that X does not satisfy L, let ~ {B*(l,x): 

x E R} U {{ (x,l)} : x E R} and suppose ( 9)n : n E w ) and o 

(fn : n E w ) are as in L. There exists n E W such that o o 

I (U 9)n) n (R x {I}) I = c. For each D E 9)n' there is a couptable 

subcollection of ~ covering D; hence, we may choose c points in 
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R x	 {I} from distinct elements of 9) • In particular, we may
n 

choose countable sets {x : k E w } ~ R x {I} andk o 

{Dk : k E w } ~ 9) such that xk E Ok' for every k E W and if o n o 

i ~ j , then x. ~ x. and O. ~ 0 .. Now I{xk : k E w } n (R x {O}) I 
1. J 1. J o
 

c; hence no countable subcollection of Gl£ may cover
 

{X	 : k E w }. Thus X is an ~ -space which does not satisfy L.
k o 

Remark. It was suggested to the author by E. K. van Douwen 

that a regular example of this type may be constructed using the 

techniques of [4]. This is, in fact, the case. With a small 

modification, example 1.2 of [4] is easily seen to supply such 

an example. The example above is a Tl space but fails to be 

even T2 . 

On the other side of the ledger, as one might expect, the 

results are all negative. 

Example 4.5. The ordinal space wI + 1 is compact, but 

cannot be an :J -space since the open subset wI is not even 

isocompact. 
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