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AN INTRODUCTION TO NORMAL MOORE SPACES 

IN THE CONSTRUCTIBLE UNIVERSE 

William G. Fleissner 

The title refers to a paper which has already appeared, 

[F]. That paper was the first that I wrote, rereading it now 

I agree with the response that it is unreadable. So there is a 

need for a less rigorous and more intuitive version. 

Following Kunen's suggestion in [T], I was trying to prove 

that normal Moore spaces are collectionwise normal, assuming 

Godel's axiom of constructibility. What I did prove was 

Theorem. (V = L). Normal Hausdorff spaces of character 

<c are collectionwise Hausdorff. 

Definition. A space X has character <c if every y E X has 

a neighborhood base, {B (y, y) : y < c}. 

Definition. A subset Y of a space X is closed discrete if 

every point of X has a neighborhood intersecting at most one 

point pf Y. 

Definition. A closed discrete set Y can be separated if 

there is a family of disjoint open sets Gl.L = {V : y E Y} wi th 
y 

Y E V . 
Y 

Definition. A space X is (K-) collectionwise Hausdorff 

if every closed discrete set (of cardinality ~K) can be separated. 

Let me first remark that this theorem extends 

Tall's Theorem. [T]. In a certain model of set theory~ 

normal Hausdorff spaces of character <c are K-collectionwise 

Hausdorff for all K < ~ 
WI 
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Secondly, there are limitations on improving this theorem. 

Some additional set theoretic assumption is necessary because 

assuming Martin's Axiom plus the negation of the continuum hy­

pothesis, there is a separable, normal, not collectionwise 

Hausdorff Moore space, [T]. Bing's example G [B] is a normal 

not collectionwise Hausdorff space, so the character restriction 

is necessary. Finally, while there still is hope of proving 

the normal Moore space conjecture in L, such a proof cannot 

extend to prove that normal spaces of character <c are collec­

tionwise normal [F']. 

Before proceeding to the proof, let us define some notions 

about cardinals. 

Definition. A cardinal K is regular if the union of <K 

sets of cardinality <K has cardinality <K. A cardinal is 

singular otherwise. For example, ~l is regular because a 

countable union of countable sets is countable. Another 

example: ~ w is singular because the cardinality of the union 

of sets of cardinality N , nEw, has cardinality = ~ . If n w 
K is shown singular by a countable union we say that K has co­

finality w. 

Proof of Theorem. We prove normal Hausdorff spaces of 

character <c are K-collectionwise Hausdorff by induction on K. 

Case I. K is finite. Use Hausdorff. 

Case II. K = w. Use regularity. 

Case III. K is singular of cofinality w. Let Y be closed dis­

crete set of cardinality K. Then Y can be written Y = U Y. 
iEw 1 

where the cardinality of Y <K. Y can be separated as indi­i 

cated below. 
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Use 
Induction 
Hypothesis 

Use Normality 

Case IV. K is regular. Instead of jumping in, let's do a 

couple similar but simpler proofs to develop a rhythm. 

Theorem. (Bernstein). There is a subset z of~ such that 

neither Z nor R - Z contains a perfect closed subset of~. 

Proof. Well order the set of perfect closed subsets of 

R and inductively assign points to Z or ~ - Z. The details are 

left to the reader. We take note of three things: 

1. There are c steps--R has c points. 

2. There are c tasks--~ has c perfect closed subsets. 

3. Each task can be done after <c steps--every perfect 

closed set has c points. 

The next example is too contrived to be called a theorem, 

so call it 

Exercise. Suppose X is a regular Hausdorff space in which 

two disjoint closed sets 3 one of which is countable 3 can be 

separated; Y = {Yy:Y < WI} is a (!Zosed discrete collection of 

points; and ~ is a fami ly of X 1 open covers Gl1, = {Uy:y < WI} of 

Y such that yy E U . y 

Then either Y can be separated or therg is an HeY that 

can not be separated from Y - H by any GU E ~; i. e. for all 
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u Un u U ~fJ 
Y EH y Y ~H Y 

Y y 

Proof· Let us attempt to define such an H by the above 

method, and see what conditions we need. 

1. There are wI steps--Y has points.wI 

2. There are wI tasks-- ~ has GU's.wI 

3. Each task can be done after <wI steps. 

To satisfy condition 3 we need to know that for any countable 

subset K of Y, and any GU E ~, there are yS' yy ~ K so that 

Us n U ~~. We do task U by assigning yS to Hand yy to Y - H.y 

If for some K and Gl.L there are no such y S' Yy' then Y can be 

separated, as shown below. 

K Y - K 

o 
o 

Of course, the idea of the above exercise is that if ~were 

all coversqr of Y and Y cannot be separated then X is not normal. 

Let us return to the proof of the theorem. For concrete­

ness, let us consider the case K (The proof for arbitrary 

regular K is the same.) Suppose that X has character wI' and 

that Y c X is closed, discrete, and cannot be separated. To 

show that X is not normal, it is sufficient to do all the tasks 

~f' where f is a function from wI to wI' and Uy = B{yy,f{y». 
WI

The problem is that there are 2 tasks and only wI steps. 

Let us note that the GUf's do not have to be done separately. 

When we assign yS to Hand yy to Y - H,we do all tasks qrf where 
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When we are faced with doing tasks indexed by functions 

from wI to wI in wI steps, it is often helpful to use 

The Technique of o. Suppose a family of tasks is indexed 

by the functions from wI to wI. Suppose almost all initial seg­

ment tasks can be done. Then, assuming 0, in wI steps we can 

do all the tasks. 

Definition. o is the assertion of the existence of a 

sequence {ry: y < WI} of functions from y to WI such that for 

every f from WI to WI and every C closed unbounded in WI' 

there is y E C, fly = r .y 

Definition. "Almost all initial segments" means that for 

every function f from WI to WI' there is a closed unbounded sub­

set Cf of WI so that for all y E C
f 

, the task corresponding to 

fly (the restriction of f to y) can be done. 

Definition. Let 0 be a function from a countable ordinal 

Y to WI. To' the task corresponding to o,can be done, if, after 

the first y steps have been done, the yth step can be done in a 

way that does the task indexed by g for all g extending o. 

{Because we want to give the _reader an intuitive idea of 

how to use 0 in a variety of cases, the last definition is some­

what vague. Here we give an expansion and clarification that 

should be omitted on first reading. 

In the application in this paper, we can tell whether To 

can be done at the yth step no matter how the first y steps have 

been done. Somewhat more involved is the construction of a 

Souslin tree from 0, where whether To can be done depends on 

the construction. This prevents us from explicitly defining Cf 

from f, but does not prevent from proving that no matter what 
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the construction, there is some closed unbounded C .)
f 

In the exercise, we did a task T by assigning two new 

points Ya' YS with U n Us ~~. This method does not sufficea 

to do a task T because a does not assign neighborhoods to new a 

points. In fact, because the space is Hausdorff, if Y ' Y are 
a S 

two points not assigned neighborhoods by a, there is g extending 

a with B(ya,g(a)) n B(yS'y(S) =~. So to do T we must assign
a 

a new point so that all its neighborhoods meet the neighborhoods 

of points already assigned. 

Call U B (y S' a (S)) n {y6: 6 2. y} the H-limi t points of 
S<y'YSEH 

a. Similarly define the (y-H)-limit points of a. The way to do 

task T is to assign an H-limit point Y6 to Y-H (or a (Y-H)­a 

limit point to H). 

U B(ys,a(s)) 
S<y 

YSEH 

No matter how we extend a to g, task T is done. g 

Proof 0 f Technique of O. Let {ry: y < wI} be the sequence 

o says exists. At step y, do task T ' if possible. By 0 ,r 
y 

for every f there is y E C with fly = rye So every f is donef 

at some initial segment. 

(We have glossed over a technical problem. In order to do 

task T ' we may have to assign Y6' with 6 >y. Then we simplyr y 
assign the points Yn' y ~ n < 6 arbitrarily. Because wI is regular, 

the set of n such that no Y6' 62.n, is already assigned contains a 

closed unbounded set C. Now C n C is again closed, unbounded.)f 
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Although 0 does a variety of wonderful things, to prove 

our theorem we need 

Technique of 0 F. Suppose a family of tasks is indexed by 

the functions from w to wI. If many initial segment tasks canl 

be done, then, assuming V = L, in w steps we can do all thel 

tasks. 

Definition. "Many"--for all f there is a set A whichf , 

meets every closed unbounded subset of w ' for which y E A
l f 

implies that task Tfl can be done.y 

Now, back to proving the theorem by induction. If many 

initial segments have limit points, X is not normal. (Assuming 

V = L and using the technique of ¢ F. ) So we assume not and 

prove that Y can be separated. Explicitly, "assume not" means 

that there is a function f from wI to w and a closed unboundedl 

set C such that for all y E c, fly has no limit points. 

Then, for y E C 

Vy = X - U B(YS,f(S)) 
S<y 

is an open set containing {y8: 8 ~ y} . Because C is closed, 

y(S) = sup{y E C:y < S} is in C. Because C is unbounded, only 

countably many SiS have the same y(S). So there are open sets 

Ws so that if 8<8', y(S) = y(S'), then W n w ' =~.s s 
Now Y can be separated, because S < S' implies 

(B(YS,f(6)) n Vy(S) n Ws n (B(YS"f(S')) n VY(S') n wS ' fJ. 

Cas e 1. y (S ') ~ S < S '. Then y (S) = y (S ' ) . 
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Case 2. S < Y (S ') 2. S ' • 

• 

U B(YA,f(A» 
A<Y(S') 

x -

Case v. K >cf K >W. The basic idea is quite similar to 

Case IV. We can inductively define an H showing that X is not 

normal if we can find a sequence of initial segment tasks doing 

all the tasks. If there is no such sequence, we can use that 

fact to separate Y. 

H can be defined if there is an order such that every func­

tion has at least one initial segment with many limit points. 

Rather than do Case V in detail, we simply list the dif­

ferences between Case IV and Case V. 

1.	 We consider all possible orders on Y. 

2.	 We consider only cf K many initial segments of a function. 

3.	 In the condition when H can be defined "many" goes with 

limit points rather than initial segments. 

4.	 The steps are arranged into supersteps. A superstep is an 

induction to ruin all initial segments of a given length. 

5.	 If H cannot be defined, we don't separate Y in one blow. 

We separate as many points as we can; then reorder so that 

every bad point has a lower index. Because there are no 

infinite descending sequences of ordinals, after w steps, 

there are no bad points left. We then separate our countably 

many separations as in Case III. 

The gory details of when H can be defined finish this arti ­

cle. Let C be a set of cardinals of order type cf K cofinal in 

K. H can be defined if there is a permutation TI of K such that 

for all functions f from K to wI there is Y E C such that 
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card [ U B (y B ' f ('IT ( B) )) n {y <S : 'IT ( <S) 2. y}] > y. 
'IT(B)<y 
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