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AN ELEMENTARY ROMP THROUGH SOME 
ADVANCED EUCLIDEAN TOPOLOGY 

D. E. Sanderson 

In a discussion following R. H. Bing's talk on "The 

elusive fixed point property" [2] at the 1968 Houston Topology 

Conference it was observed that the easy proof of Brouwer's 

Fixed Point Theorem for an interval, obtained by considering 

points which move right and those moving left, extends to two 

dimensions with the aid of a Phragmen-Brouwer property but no 

further. The author tried for some time to find the proper 

extension of this property with little success. Upon reading 

a new solution of this two-dimensional problem (and others) 

by Albrecht Dold [3], the proper extension was eventually found 

to be a variation of what is sometimes called Alexander's Addi­

tion Theorem. Since it is really a restatement of the latter, 

it is not a new result but is a new way of interpreting and 

relating known results. 

This new approach permits very short simple proofs, using 

only a few simple concepts (finite Euclidean complexes, mappings, 

compactness and connectedness properties), of a large number of 

powerful theorems in Euclidean topology. It most nearly re-

fleets the work of the above-mentioned work of Dold and 

Chapter Five of M. H. A. Newman's book [5]. Unlike these, it 

does not explicitly involve any homotopy or homology theory 

but they are just under the surface (especially the singular 

theory) so that it could serve as excellent motivation for the 

introduction of algebraic topology. 

The presentation is simplified if we agree to reserve some 

symb~ls to represent certain standard objects. Let En be 

Euclidean n-space, Dn its unit disk (all x in En with II x " .::.1) 
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and Sn the unit n-sphere (all x in En +l with II x II = 1). 

Homeomorphs of Dn and Sn will be called n-disks and n-spheres, 

respectively. An n-simpZex, an, is the convex hull of n+l in­

dependent points of En, called vertices of an, and the convex 

hull of any subset of vertices is called a face of an. Let Kn 

denote an n-compZex, a finite union of n-simplexes which are 

pairwise disjoint or meet in a common face (Kn is properly a 

pair consisting of a collection of n-simplexes and their union) . 

The (n-l)-simplexes which are faces of an odd number of n­

simplexes of Kn form an (n-l)-complex aKn called the (mod 2) 

boundary of Kn . An n-complex with empty bounda~y is called an 

n-boundary and denoted Bn . ·A map (continuous function) f:B
n 

~ X 

is a,boundary map (in A) if it extends to a map F:Kn +l ~ X 

l Bn l ) Cwhere aKn + = (and F(Kn + A). Dimensional superscripts 

may be omitted if no confusion results. 

The only result needed to establish Alexander's Addition 

Theorem is the familiar fact, proved below, that the boundary 

of an !n-complex is an (n-l)-boundary. The converse of this is 

also true (justifying the terminilogy) since the cone over an 

(n-l)-boundary B is easily seen to be an n-complex with boundary 

B. Two more comments will make the conditions in the Addition 

Theorem seem more natural or attainable. First, if two complexes 

K and K have the same boundary B, for most purposes it is nol 2 

loss of generality to assume K n K = B. One need only embedl 2 

the (finite number of) vertices of B, Kl-B and K2-B independently 

in some En in order to obtain isomorphic (isometric if need be) 

copies of B, Kl . and K with the des~red properties. Finally,2 

any map of an n-boundary B into a convex set A is a boundary map 

in A since it extends to the cone over B (linear on each element 

of the cone) . 

Lemma. aaKn 
~. 
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Proof. If on-2 in dKn is a face of m (n-l)-simplexes 

n 
0 1 , · · : , om of dK , we ·need only show m is even. Let 0 i, ... ,o~, 

be all other (n-l)-simplexes of Kn with face on-2. By defini­

ntion of dK , 0. is a face of 2n.+l n-simplexes of Kn and o! is111 

a face of 2ni such simplexes. This counts each n-simplex with 

n-2 . ( f h . n-2 F'f ace 0 tWlce once or eac vertex not In 0 , see 19ure 1) 

so L~=1(2ni+l)+L~~12ni = 2(L~=lni+L~~lni)+m is even which 

implies m is even. 

an 
V V' 

ai or ai' 

Figure 1 

Theorem (Alexander Addition). For i = 1,2 suppose Ci is 

n l n l
closed in X, B - = dK~ = K~ n K~ and K~ U K~ = dK + . If 

lf:Bn- ~ x-c1 U C2 extends to fi:K~ ~ X-C i and £1 U £2 extends 

1 l lto F:Kn+ ~ X-C
l 

n C2, then for some KnC Kn+ , aKn = Bn - and 

F (Kn ) c: X-C U C2 .l 

Proof. Since F-l(C ) is compact and F-l(C ) n (F- l (C ) U K~) = i l 2

-1 n -1 U -1 n n -1 n U-l
(F (C ) F (C 2 » (F (C ) K ) = F (C C ) f (C ) = cp,l l l l 2 l l 

then Kn+1 can be subdivided so that the complex K of (n+l)­

simplexes meeting F- l (C ) U K~ misses F-l(C ). Then aK = K~ UKn 
2 l
 

n -1 U -1 nUn
where K misses F (C ) F (C ), i.e. F(K ) C X-C C2 (K andl 2 l I 

Kn have no common n-simplex, see Figure 2). The Lemma gives 

a(K~ U Kn ) = aaK = cp so if on-l is a face of m n-simplexes of 

Kn and m' n-simplexes of K~, then m+m' is even. Thus m is odd 
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iff m' is odd and dKn 

Figure 2 

Corollary (No Retraction). No complex retracts to an 

n-sphere which is its (mod 2) boundary. 

ppoof (by induction). If dK I is a a-sphere, K~ contains 

an arc joining the two points of dK I which, being connected, 

Icannot be retracted to the disconnected set dK . Suppose n> a 

and the corollary is true for values less than n. If F retracts 

l lX = Kn+ to S = dKn+ , an n-sphere, let C
I 

be all of S except 

for the interior of an n-simplex and C a single point in S-C .2 I 
lSubdivide Kn+ so there is an n-simplex in S-C

I 
with C

2 
in its 

interior, let K~ be this inner n-simplex and K~ the union of all 

other n-simplexes of dKn+1 (see Figure 3). If f and f. are the 
1 

identity on dK~ = dK~ and K~ respectively, then Alexander's 

Addition gives a complex Kn with dKn = dK~ (an (n-l)-sphere) and 

F(Kn ) C X-C
I

V C2 . But then F followed by projection from C
2 

re­

tracts Kn to dKn contrary to the induction assumption. 



83 TOPOLOGY PROCEEDINGS Volume 1 1976 

Figure 3 

Corollary (Intermediate Value). If a map f:Dn ~ En is the 

n-l n n.identity on S then D C f(D ), l.e. f takes on every "value" 

in Dn
. 

nProof. If P is a point of Dn not in f(Dn ), let K be the 

cube bounded by the planes xi = ±l which circumscribes Dn and r 

the radial homeomorphism shrinking Kn to Dn • Then for followed 

by projection on the (n-l)-sphere aKn from p is a retraction 

contradicting the previous Corollary. 

Corollary (Brouwer Fixed Point). Every map g:Dn 
~ En 

either leaves a point of on fixed or stretches a point of sn-l. 

That is, for some p E , g (p) = AP, A > 1 and p E sn-l if A > 1.Dn 

Proof. Let f (x) = 2x-g (2x) if II x II ~ 1/2 and f (x) = 

x/II x II - 2(1-11 x II)g(x/1I x II) if II x" ~1/2. Then f satisfies 

the hypotheses of the previous corollary so f(x) = 0 for some 

x in on. If II x II ~ 1/2 then p = 2x is fixed under g and if 

II x II > 1/2, p = x/II x" in Sn-l is mapped by g to AP where 

A = (2-211 x II ) -1 > 1. 

As indicated in the opening paragraph, Alexander's Addi­

tion Theorem is a generalization of a Phragmen-Brouwer property. 
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Namely, for Euclidean and other simply connected, locally path 

connected spaces it implies (n = 1) that if neither of two dis­

joint closed sets separates two points then their union does not. 

For this reason (and to have a name to distinguish it) the fol­

lowing complementary restatement of the Theorem will be called 

the Phragmen-Brouwer corollary. It is useful here in obtaining 

a simple but powerful special ~ase of the Mayer-Vietoris formula 

for Betti numbers (see [4], page 53). This formula, as noted 

by Dold [3] appears in many different contexts, e.g. where 

k(X) denotes cardinality of fi~ite sets, dimension of linear 

subspaces, Euler characteristic, measure, etc. 

Corollary (Phragmen-Brouwer). If every g:Bn 
~ Ul UU2 is 

n-l na boundary map (U open), then f:B ~ Ul U2 is a boundaryi 

map in Ul n U if it is a boundary map in each u .2 i 

Proof. This follows immediately from the Theorem with 

X = U U U and C = X-U since the extension f exists if fl 2 i i i
 

is a boundary map in U X-C and F exists since g = f
i i l U f 2 

is a boundary map in U U U = X-C n C (the conclusion impliesl 2 l 2
 

f is a boundary map in X-C UC =U n U2).
l 2 l 

lCorollary (Mayer-Vietoris). If every g:B ~ U UU2 is al 

boundary map and each U is open and locally path connected,i 

then the components of ul n u are the non-void intersections2 

'of components of U and U2 . AZso, if k(X) is the number ofl 

components of X, then 

(A) k(U )+k(U ) = k(U U U )+k(U n U ).l 2 l 2 l 2 

Proof. Ignore components of U missing U (and vicel 2 

versa) as they contribute nothing to U n U and equally to both
l 2
 

sides of formula (Al.
 

(i) Components Wi of Ui are path connected, so any map 

f:Bo 
= SO ~ WI n Wi cUI n U2 is a boundary map in each U •i 

The previous Corollary, with n = 1, gives a path P in U n'U2l 
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between the two points of f(SO). A connected set in U n Ul 2 

meeting Wi lies in Wi so P C WI n W2 and WI n W is connected.2 

Similarly, WI n W contains therefore equals the component of2
 

n U containing WI n W
Ul 2 2 . 

(ii) If Wl' ... 'W are the components of Ul and U2 and Pmn 

is the number of intersecting pairs in {Wl, ... ,Wm}, then (i) 

reduces (A) to k( U ~=lWi) n-Pn. Using induction, k(Wl ) 1 = 

I-PI so assume k( U ~=lwi) m-Pm for 1 <m<n. Let V be a com­

ponent of U~=lWi meeting W +l , a component of Ul (similarm

proof for U ). The hypotheses of this Corollary still hold if2 

U is replaced by V U U so by (i) the intersection of W and2 2 m+l 

the component of V U U2 containipg V is connected. Thus W +lm 

meets exactly one Wi c: V (i 2. m) and W +l "ties together"m 

Pm+l-Pm components of U ~=lWi to make one of U ~:iWi. Then 
m+l

k( U i=lWi ) = m-Pm-(Pm+l-Pm)+l = (m+l) - Pm+l as required. 

A third and final application here of Alexander's Addition 

is what amounts to a special case of Alexander's Duality Theorem 

(which i.s the extension of the Jordan-Brouwer Separation Theorem 

for which Alexander originally proved his Addition Theorem [1]). 

It is used in conjunction with the other applications to obtain 

Jordan Separation theorems. Formula(AJgives a very simple short 

proof of Jordan Separation for an embedding of- Sm-l in Sm which 

is locally flat at one point (in contrast to Dold's requirement 

that the entire embedding is flat [3]). Using the No Retraction 

Corollary gives Jordan Separation with no side conditions al ­

though no simple way was found for showing there are not more 

than two complementary components. 

n-l mCorollary (Alexander Duality). Every f:B ~ S -0 is a 

boundary map if D is a k-disk in sm. 

Proof (by induction). A O-disk D is a point and Sm_D is 

homeomorphic to Em. In this case, f is a boundary map by the 
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comment preceding the Lemma. Assume the Corollary is true for 

kdisks of dimension less than k and let h:D ~ D c Sm be an 

embedding. Since the image D(s) of the part of Dk in the hyper­

plane xl = s ( Is I .::.1) is a disk of dimension less than k, 

f:Bn- l ~ Sm_D C Sm_D(s) extends to fl:K~ ~ Sm_D(s) where 

Bn l~Knl -- - . f act, . t h e compact h-lf (n)K .a In Slnce set 1 m1ssesl 

Xl = s, it misses a "hyperslab" r .::.xl .::. t where r .::.S.::. t, r<s 

if -1 < S and s < t if s < 1. Then if D(r,t) is the image under h 

kof the part of D in this hyperslab (see Figure 4) , f is a 

boundary map in Sm_D(r,t). Choose s to be the least upper 

bound of all'real numbers X in [-1,1] such that f is a boundary 

map in Sm-D(-l,x). Then -1 < s so r < s and if X 

and C D(-l,r), fl(K~) C X-C and by choice of s, f also ex­2 l
 
m .. n n-l
tends to f :K ~ X-C w1th-aK = B (and we may assume2 2 2 2 

n n n n-l n .K K = B ). But C C = D(r) 1S a disk of dimension less
l 2 l 2 

than k so f U f2:K~ U K~ ~ X-C l n C = Sm_D(r) extends tol 2 

F:Kn+l ~ X-C
l 

n C
2 

and Alexander Addition implies f is a boundary 

map in X-C
l 

U C
2 

= Sm-D(-l,t). This violates the choice of s 

if s < 1, since s < 1 implies s < t. Thus s = 1 t and f is a 

boundary map in Sm-D(-l,l) = Sm_D as required. 

~_a.-.. __ D ( 1 ) 

D (-1) 

Figure 4 
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Corollary (Jordan Separation I). An (m-l)-sphere S embedded 

in Sm is the (point set) boundary of each component of sm-s . 

Proof. If U is a component of Sm- S and N is a neighbor­

hood of a point p of S, there is an (m-l)-disk Des with 

S-D C N. The previous result with n = 1, k = m = 1 implies­

p is joined to any point q of U by a path A CSm-D. The com­

ponent of A-S containing q contains a point of N (else it is a 

proper open and closed subset of A) hence lies in U. Thus p 

is in the closure ij of the (open) component.U and S = U-U is 

the boundary of U. 

Corollary (Jordan Separation II). If S is an (m-l)-sphere 

in Sm which is locally flat at one point~ then Sm- S has two 

componen ~~s. 

Proof. "Locally flat" means there is a neighborhood N of 

a point p of S and a homeomorphism h:N ~ Em such that heN n S) 

is the hyperplane xl = O. Let D be an (m-l)-disk as in the 

previous proof and note that N-D is connected and S-D separates 

it into two components (images of upper and lower half space 

of Em under h- l ). Let U
l 

= N-D and U2 = Sm-S . By Alexander 

n-l m
Duality, every f:B ~ U

l 
U U

2 
= S -D is a boundary map so 

(n = 2) formula(A)applies and k(Sm-S ) = k(Sm-D)+k(N-S)-k(N-D) 

1+2-1 = 2. 

Corollary (Jordan Separation III). An (m-l)-sphere S in 

Sm separates Sm. 

Proof· If f :Bo ~ Sm- S is not a boundary map, then Sm-S 
m 

has at least two components so the Corollary follows from an 

inductive proof that	 for any (n-l)-sphere S in Sm there is a 

m-n mnon-boundary map fn:B ~ S -S, l<n<m. If n 1, the two 

point set S is separated by a hyperplane H. As in the Inter­

mediate Value proof, H contains a cube circumscribing H n Sm 

B
m lwhose boundary, -	 , is an (m-l)-sphere. Let L be the line 
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lcontaining Sand f l be radial projection, from L n H, of Bm­

onto H n Sme: Sm_S. Then f is a non-boundary map since an ex­
l 

tension F:Km ~ Sm-S (aKm = Bm- l ) followed by projection onto H 

parallel to L and then projection from L n H onto Bm- l violates 

the No Retraction Corollary. Suppose 1.::. n < m and S is an n-sphere 

in Sm. Choose n-disks Di such that Dl U D = Sand D n D2 l 2 

is an (n-l)-sphere in Sm. By induction there is a non-boundary 

n map f :Bm- ~ Sm_D n D • Alexander Duality implies
n 1 2 

0 1 n fn(Bm-n) is non-void. Subdivide Bm-n so no simplex meets 

both sets f~l(Di) and let Kl (respectively, K2 ) be the complex 

of all (m-n)-simplexes of Bm- n missing (meeting) f~I(Dl). Then 

n l n land K2 have a common boundary Bm- - and f = fnIBm- - isKI n+l 

a non-boundary map in Sm-S. For if f +l extends to F:K ~ Sm-Sn
 

= Bm n l n )
with aK - - (we may assume aK K n Bm- then Alexander 
, 

Duality implies F U (fnIKi) :K U Ki ~ Sm-Di extends to Fi:Ki , , 
~ Sm-Di where aKi = K U Ki (and we may assume KI n K; = K). But 

, ,
then F I U F 2 :Ki U K2 ~ sm-DI n D2 extends f with a(K I UK;)n
 

U K Bm- n contrary to f being a non-boundary map (see
Kl 2 n 

Figure 5). 

D1 n f n (B
m- n ) 

5 

Figure 5 
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Corollary (Invariance of Domain). If U is open in Sm and 

h embeds U in Sm~ then h(U) is open. 

Proof. Every point p of U has a closed neighborhood D in 

U which is an m-disk with (m-l)-sphere boundary S. It suffices 

to show h(D-S) is open. Let V be the (open) component of Sm_h(S) 

containing h(p) and W Sm_h(S)-V. Jordan Separation III implies 

W is non-void. Since D-S is connected and contains p, h(D-S) C V 

so Sm-h(D) = W U (V-h(D». But Sm-h(D) is connected by Alexander 

Duality so V-h(D) = V-h(D-S) is empty and h(D-S) = V is open. 

Corollary (Invariance of Dimension). If h:Sm 
~ Sn is a 

homeomorphism~ then m = n. 

Proof. If n <m (m<n is similar) and i:Sn 
-+ Sm is inclu­

sion, then ioh is a non-open embedding of the open set U = Sm 

in Sm contradicting Invariance of Domain. 

There are undoubtedly many other simple but significant 

applications of the results of this paper and there remains 

the challenge of finding a simple proof that Sm-S (S is an 

(m-l) -sphere) has' at most two components without assuming a 

flat spot. 
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