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WHITNEY MAPS AND WHITNEY PROPERTlES OF C(X) 

Ann Petrus 

In [15] Whitney proved that for any continuum X there 

exists a map ~ from C(X), the hyperspace of subcontinua of X, 

into [ 0 , 00), satis f y i ng (1 ) ~ ( {x }) = 0 for a 11 x E X and (2 ) if 

A ¥ B, 'then ~(A) < ~(B). Any map from C (X) into [0,00)	 satisfying 

-1
(1) and (2) is called a Whitney map. Point inverses ~ (t) 

for t E [O,~(X)] are continua [2]; they are called Whitney con­

tinua. A topological property P is called a Whitney property if 

whenever X has property P, so does every Whitney continuum in 

C(X) . 

Since Kelley introduced Whitney maps into the study of 

hyperspaces in 1942 [6], these maps have played an important 

role in the investigation of the hyperspace C(X). Recently 

Krasinkiewicz [8], Nadler [8, 10] and Rogers [12, 13, 14] have 

studied Whitney continua and have determined whether or not 

certain topologocal properties are Whitney properties. This 

paper is closely related to the work of these three authors, 

and many of the results have been obtained in answer to ques­

tions raised by them. 

In Section 1 we deal with the question of whether the pos­

session of a Whitney property P by ~-l(tO) implies that ~-l(t) 

also has the property P for all t E (to' ~(X)]. This is true for 

local connectivity, arcwise connectivity and hereditary inde­

composability. We obtain a partial answer to the question for 

decomposability. In the second section we show that aposyndesis, 

finite aposyndesis, mutual aposyndesis and semi-aposyndesis are 

Whitney properties. 

Kelley has shown [6] that the function a defined on C(C(X)) 

by a ct = U{AI A E (1} is a continuous function from C (C (X)) onto 
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C(X). We make use of the map a in Section 3, where we investi­

gate continua having the following properties: (1) for any ~, 

any t E [O,~(X)] and any subcontinuum fiof ~-l(t), if a a = X, 

then a = ~-l(t); (2) for any ~, any t E [O,~(X)] and any subcon­

tinuum aof ~-l(t), if A E ~-l(t) and A S a a then A E a. It 

has been shown [8] that arc-like and hereditarily indecomposable 

continua have property (1). We show that non-planar circle-like 

continua have property (2). All continua having property (2) 

are shown to be atriodic. Moreover, if X has property (2), we 

prove that the "top of the hyperspace" is a hyperspace, i.e. we 

-1 
prove that for any t E [O,~(X)], ~ ([t,~(X)]) is homeomorphic 

in a natural way to C(~-l(t». The homeomorphism induces a 

Whitney map on C(~-l(t» which enables us to draw some con-

elusions about Whitney properties in C(X) . 

In Section 4 we answer negatively Nadler's question [10] 

of whether the topological types of Whitney map inverses is a 

topological invariant. 

A continuum is a non-empty compact connected metric space. 

The letter X will always denote a continuum, and d will be a 

metric on X. For x E X and £ >0, let Bd(x;£) = [y E Xld(x,y) < £}. 

If A c X, then let V£(A) = U {Bd(a i £) la E A}. The closure of A 

and the interior of A will be denoted by A and int A respectively. 

A map is a continuous function. 

Let p be the Hausdorff metric on C(X) [6]. The symbol ~ 

A 

represents a Whitney map on C(X). Let X be the subset of C(X) 

consisting of all singleton subsets of X. If A c X, then let 

C(A) = {y E C(X) IY ~ A}. For a fixed ~ and for t E [O,~(X)], 

-1 t-l
let C(A,t) = {y E ~ (t) IY S A} and CA = {Y E ~ (t) IA S Y}. If 

A = {p}, write C~ for ci. If A E C(X), then C(A,t) is a con­

tinuum, since it is a Whitney continuum in C(A). A simple ex­

tension of Theorem 4.2 of [14] shows that Ct is a continuum
A 

when A E C(X). 
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In his classical work on hyperspaces [6], J. L. Kelley 

defined a segment in C(X) as follows: if A,B E C(X) and 

A 1 B, then a segment from A to B is an arc {Atlt E [O,l]} in 

C(X) such that (1) A
O 

= AI' (2) Al = B, (3) lJ(At ) 

(l-t)lJ(A) + tlJ(B) , and (4) if t' < til, then At' ¥ At". Kelley 

[6] proved that if A,B E C(X) and A 7 B, then there exists a 

segment	 from A to B. 

Nadler [10] and Rogers [14] obtained the following result: 

Lemma O. For continua A,B E C(X), if lJ(A) = lJ(B) = t, 

A n B ~ ~, and C is a component of A n B, then there exists an 

-1 
arc in lJ (t) from A to B such that each point of the arc is a 

continuum which contains C and is contained in A U B. 

Another very useful fact was proved by Krasinkiewicz in [7]: 

Lemma 00. If lJ (A) = lJ (B) and E > 0, then there exists n > 0 

such	 that B c V (A) implies p(A,B) < E.- n 

We will make frequent use of these two lemmas in the re­

mainder of this paper. 

1. Relationships Among Whitney Continua 

In considering Whitney properties we deal with the rela­

tionship between lJ- 1 (0) and lJ- 1 (t) for t E (O,lJ(X)]. In this 

section we extend this idea and consider the relationship be­

-] -1 
tween lJ '(t ) and lJ (t ) for t t E [O,lJ(X)]. We provide

l
,l 2 2 

some answers to the following question raised by Nadler in [10]: 

-1If lJ (to) has a Whitney property P and t E (to'lJ(X)], does 

lJ (t) have the same property? 

We note that Nadler [10] has shown that local connectivity 

is a Whitney property and that Nadler [10] and Rogers [14] 

proved that arcwise connectivity is a Whitney property. Pro­

positions 1 and 2 will extend these results. 

-1 
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Proposition 1. If ~-l(tO) is locally connected~ then 

-1 
~ (t) is locally connected for t E (to' 'Il (X) ] ·
 

-1

Proof. Let 0 2.tO <t 2. ~(X), A E ~ (t) and let 

B . (Ai E) n ~-l (t) be a neighborhood of A in ~ 
-1 

(t). For 
p 

a c C(X) and s E [O,~(X)], let C«(l,s) denote U {C(M;s)IME a}. 
Step 1: Show that C(Bp(AiE), to) is a neighborhood of 

-1
C(A,t ) in ~ (to).O

-1
Since ~ (to) is locally connected, it has Kelley's Pro­

perty 3.2 [6], i.e. there exists 0 = O(E) such that if 

at -1 -1
Yl E u 1 E C(~ (to» and Y2 E Bp(YliO) n ~ (to)' then there 

exists cy 2 E C (~-1 (to» such that Y2 E cy 2 and p2 ( cy l' cy 2) < E 

(where p2 is the Hausdorff metric on C(C(X»). 

-1
Let X E Vo(C(A,t n ~ (to). Then there existsO»2 

-1
Xl E C(A,tO) such that X2 E Bp(XliO) n ~ (to). So by the 

choice of 0, there exists a E C(~-l(tO» with X
2 

E (l and 

p2(C(A,t ) ,a) < E. Now a: C(C(X» + C(X) is a distance-reducing
O

function [1.1 of 6], so p(aC(A,t )' a(l) < E. Since aC(A,t ) = A,O O


we have p(A,aa) < E. Thus aa E Bp(AiE) and so X
2 

E C(a(l,t
O

)
 

-1
 
~ C(Bp(AiE),tO)· Hence Vo(C(A,tO» n ~ (to) s: C(Bp(AiE),t )'O


and so C(Bp(Aic),tO) is a neighborhood of C(A,tO) in ~-l(to).
 

Step 2: Obtain a continuum GlL which is a neighborhood of 

C(A,tO) in ~ 
-1 

(to) and is c~ntained in C(Bp(AiE) ,to). 

By Lemma 00 there exists n such that if A,B E ~-l(t) and 

-1
B ~ Vn(A), then P(A,B) < E. Choose y = min{n,o}. Since ~ (to) 

is a locally connected continuum and C(A,t ) is a continuum,O
~f -1there exists a connected neighborhood -~of C(A,tO) in ~(tO) 

-1 ­
such thatGlLcViy(C(A,t n ~ (to). ThenGlLis a continuum andO» 

~f -1 -1
-~~Vy(C(A,tO» n.~ (to) s:Vo(C(A,tO» n ~ (to) SC(Bp(AiE),tO)· 

Now a GlL is a continuum and C (A, to) c:: int GlL ~ int C (0 GtL ,to) • 

Step 3: Show that c(a611,t) c B (AiE) n ~-l(t). 
- P 

Let B E c(aGlL,t). Then B ~ a 611, so for every b E B there 

exists B E GlL such that b E B • ButGlLcV (C(A,t »' so thereb b - y O
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exists A E C(A,tO) such that p(Bb,Ab )< y. Thus b E V (A ) andb by -
it follows that B c V (A) c V (A). Then, by the choice of n, 

- Y - n 
p(A,B) < E. SO B E B (AiE) and hence C(a"1.L,t) c B (AiE) n ll-l(t).

p - p 

Step 4: Since C(a~,t) is a continuum, we may complete the 

proof by showing that A E int C(a"1.L,t) . 

Suppose A ~ int C(a"1.L,t). Then there exists a sequence 

1 ­
{X } of elements of ll- (t)\C(a~,t) such that X -+ A. Since n n 

X ri:. a~, for each n there exists x E X \ a "1.L and E E II 
-1 

(to)n n n n 

such that x E En ~ X . Now some subsequence of {En} converges,n n 
-1 

so suppose En -+ E. Then E E II (to). For any y E E there is a 

sequence {Yn}' Y E En' with Y -+ y. But Y E En ~ X andn n n n 

X -+ A, so yEA and hence E E C(A,t ). Since ~ is a neighbor­n O

hood of C(A,tO) in II-1 (to)' there exists N such that n >N implies 

E E GU and hence x E aGU. This contradicts the assumption that 
n n 

x E X \aGU. Therefore, A E int C(aGU,t).
n n 

The proof of the next proposition is based on the idea in 

the proofs of Theorem 3.8 of [14] and Theorem 2 of [10]. 

-1 -1
Proposition 2. If II (to) is arc-connected~ then II (t) 

is arc-connected for t E (to,ll(X)]. 

Proof. Let 0 2. to < t 2. II (X) and A,B E II 
-1 

(t). Let 

A' E C(A,t
O

) and B' E C(B,t
O
). Since ~-l(tO) is arc-connected, 

-1
there is an arc y in II (to) from AI to B'. We consider two 

cases. 

Case I: Suppose II (a (y) ) 2. t. 

Let ¢: [0,1] -+ C(B) be a segment from B I to B. Since 

ll(a(y) U B') = ll(a(y)) 2. t and ll(a(y) U B) ~ll(B) = t, there 

exists U E [0,1] such that ll(a(y) U ¢(uO)) = t. Now ll(A) = t 
o 

and A n (a(y) U ¢(uO)) ~A' ~ ~, so by Lemma 0 there is an arc 

-1in II (t) from A to a(y) U ¢(uO). Similarly, there is an arc 

-1in II (t) from a(y) U ¢(uO) to B. Hence there is an arc in 

ll-l(t) from A to B. 
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Case II: Suppose ~(o(~) >t. 

By the uniform continuity of ~ there exists 0 such that if 

R,S E C(X) and p(R,S) < 0, then 1'll(R) - ~(S) I <t - to. Now Y is 

locally connected, so for each Y E y, the neighborhood B (Yi!o)
p 

n y of Y in y contains a connected neighborhood U(Y) of Y in y. 

Some finite collection {U(Yl ), .' •• ,U(Y )}, for Yl ,·· .'Y E y,n n 

covers y. 

For each i, U(Y.) is a subinterval [A.,B.] of y. Let
111 

{c.li=1, ••• ,2n} = {A.,B.li=l, ••• ,n} with 0 = y-l(A 1 
)

111
 
-1 -1 -1 -1
 y (C ) 2. y (C ) 2. ••• .5. y (C ) = y (B I) = 1. Then each

l 2 2n

interval [Ci,c + ], i=1,···,2n - 1, is contained in somei l 

U(Yj(i)) ~ Bp(Yj(i)i!O). So P(Yj(i)'o([Ci,c i +l ])) <0 for all 

i. This implies, by the choice of 0, that t - to 

> I~ (0 ( [C i ' Ci +1 ] )) - II (Y j (i) ) I = III (0 ( [C i ' Ci +1 ] )) - to I, and 

thus II (0 ( [C 'C + ] )) < t. Since II (0 (y)) > t, there exists a
i i l 

continuum 9). such that [C.,C.+ ] c: 9). c: y and ll(O(9).)) = t. 
111l - 1 - 1 

So for each i=1,···,2n - 1, we have 0(9).) E ll-l(t) and 
1 

C ~ 0 ( 9) i) n 0 ( 9) i+l) ~ 16. By Lemma 0 there exist arcs ini + l 

ll-l(t) from o( Wi) to o(9)i+l). Since A' c.= A n 0(9)1) and 

~ -1 ~ 
B 1 ~ B n 0(~2n-l)' there are arcs in II (t) from A to o(~l) 

and from 0(9)2n-l) to B. Therefore there is an arc in ll-l(t) 

from A to B. 

-1
Corollary 3. If II (to) has n arc components, 2 2.n < 00 and 

t E (to,ll(X)], then ll-l(t) has at most narc aomponents. 

Proof. Suppose A and B are in different arc components of 

ll-l(t). If there were an arc in ll-l(t ) from any point ofO

C(A,tO) to a point of C(B,tO)' then by the proof of Proposition 

2, there would be an arc in ll-l(t) from A to B. So there is at 

-1
least one arc component in II (to) for each arc component in 

ll-l (t) • 

Corollary 4. If X is decomposable, then there exists 
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-1 
to E [o,~(X)) such that ~ (t) is non arc-connected if t <to 

and arc-connected if t > to. 

Proof. If X is arc-connected, take to = O. If X is not 

arc-connected, then by Theorem 3.5 of [8] there exists t' such 

that ~-l(t) is arc-connected for t >t'. Let to g.l.b. 

{t' I~-l(t) is arc-connected for all t.:.t'}. Then ~-l(t) is 

arc-connected for t > to · Suppose there exists t l < to such that 

-1 
~ (t l ) is arc-connected. Then by Proposition 2, ~-l(t) is arc-

connected for all t > t contradicting the choice of to. Thusl , 

-1 
~ (t) is non arc-connected for t < to. 

We turn now to a consideration of the relationships among 

Whitney continua with regard to decomposability properties. We 

need the following lemma, which is a generalization of Corollary 

3.2 of [8]. 

-1 
L e mma 5. I f a E C (~ ( to)) an d t E (to' ~ (X)] the n
 

X(Ct,t) = U{ciIAE (t} is a subcontinuum of ~-l(t). If
 

~ (0 (t) .::. t., then X ( ct , t) is arc-connected. 

Proof. The compactness of (f readily implies that of 

X( a,t) . 

Suppose X ( a, t) is not connected. Then X( a , t) = e u 9) 

where e and 9) are disjoint, non-empty and open in X( a,t). 

Since X( a , t) = U {Ci IA E a} and ci is a continuum for each 

A E (f, we may write (f = e' u 9)' where e' {A E alci <;; e} ~ {J, 

9)' = {A E a Ici ~ 9)} ~ ~ and e' n 9)' = ~. Since e and 9) are open 

in X(a,t), it is easy to show that e' and 9) , are open in ct. 

This is impossible since a is a continuum. So X( a ,t) is con­

nected and hence a subcontinuum of ~-l(t). 

Suppose ~(oa) 2.t. Let D E ~-l(t) such that 0 a c D. If 

B E X( a , t), then B E ci for some A E a. But A ~ a (f s: D, so 

A c B n D. By Lemma 0 there is an arc in ~-l(t) from B to D. 

Hence X( (t, t) is arc-connected. 
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-1
Proposition 6. If ~ (to) is decomposable, then there 

-1
exists t E (to'~(X)] such that ~ (t) is decomposable for

l 

to ~ t ~ t l · 

Proof. Let ~ -1 (to) = (f u ffi be a decomposition. Let 

B E ffi\ct and 0 = p(B, (t). By Lemma 00 there exists s such that 

-1if R,S E ~ (to) and R ~ Vs(S), then p(R,S) < o. There exists 

B E C(X) such that B ~ B ~ Vs(B). Then B contains no point of 

(t, since p (B, (f) = o. Similarly, if A E (t \ ffi, then there 

exists A E C (X) such that A 1 A and A contains no point of ffi. 

Let t l min {~(A), ~(~)}. Let to~ t~ t l . Then there exist 

-1 ~ ~ 
At' Bt E ~ (t) such that A ~ At ~ Band B ~ Bt ~ B. Since 

-1 r~ {l} -1 {l} 
~ (to) = u U fA" we have ~ (t) = X( (f,t) U X( ~,t). This is 

a decomposition since X((f,t) and X(93,t) are continua and At E 

X( (t,t)\X( £B,t) and B E X( 93,t)\X( a,t). Therefore, ll-l (t)
t
 

is decomposable.
 

Although decomposability is a Whitney property [8], neither 

hereditary decomposability nor its opposite, non hereditary de­

composability, is a Whitney property. This is shown by the 

following examples. 

Examples 7. a) Let X = Al U A2 U A3 where each Ai is a 

copy of I = [0,1] and Ai n Aj = {O} for i ~ j. Then X is 

hereditarily decomposable. Let ~l be the Whitney map on C(I) 

for which ~l([a,b]) = b - a for all [a,b] E C(I). Define 

~: C(X) ~ [0,00) by ~(A) ~l(A n AI) + ~l(A n A2 ) + ~l(A n A3 )· 

Then ~ is a Whitney map. 

Let t E (0,3) and let B = {(x1 ,x2 ,x ) IXI + x + x = t}.3 2 3 

Define f: B ~ ~ 
-1 (t) by letting f(x 1 ,x2 ,x ) be the continuum3 

A such that A n Ai = [o,x ]. Then B is a 2-cell and f is ai 

homeomorphism. So ~-l(t) contains a 2-cell and hence is not 

hereditarily decomposable. 
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b) Let Y be an hereditarily indecomposable continuum and 

let aI' and a be points of Y contained in three differenta 2 3 

composants. Attach arcs Ai' i 1,2,3, to Y so that 

3
Ai n Y = {a i } and Ai n Aj = ~ for i ':I j. Let X = Y U Ui=lAi . 

Then X is not hereditarily decomposable, but l1-l(l1(Y» is homeo­

morphic to a figure T and so is hereditarily decomposable. 

It has been shown that indecomposability is not a Whitney 

property [6, 14]. However, hereditary indecomposability is a 

Whitney property [6], and we also have the following proposi­

tion. 

-1Proposition 8. If 11 (to) is hereditarily indecomposable 

and t E (to,l1(X)]~ then l1-l(t) is hereditarily indecomposable. 

Proof. If there exists A E l1-l(t), for some t E (to,l1(X)], 

such that A is decomposable, then C(A,tO) is a decomposable sub­

-1 -1
continuum of 11 (to). But 11 (to) is hereditarily indecomposable. 

So if A E C (X) and A is decomposable, then 11 (A) .::. to . 

Suppose (l EC(l1-l(t» and ct =(lIU (l2 is a decomposi­

tion of a. Since 11 «J (i) > to' (J a is indecomposable. So for 

at least one of (t 1 and (t 2' say (t l' we must have (J (t = (J ct1· 

Choose A2 E a2\ Ct 1 · Then A2 <:= (J (t = (J (f l' so there exists
 

Al E (11 such that Al n A 2 ~ ~. Then since Al ~ A 2 , Al U A2 is
 

a decomposable continuum, and 11 (AI U A2 ) > t > to. This is im­


possible, so l1-l(t) is hereditarily indecomposable.
 

2. Aposyndesis Properties of Whitney Continua 

In light of the local connectivity properties of Whitney 

continua discussed in Section 1, we proceed now to an examination 

of aposyndesis in Whitney continua. Aposyndesis is a weaker 

property than local connectivity. 

The concept of aposyndesis was introduced by F. Burton 

Jones [5] in 1941. If p, q E X, p ':I q, then X is said to be 
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aposyndetic at p with respect to q provided there exists a 

continuum M such that p E int M and q E X\M. If X is aposyndetic 

at p with respect to each point q E X\{p}, then X is aposyndetic 

at p. We say that X is finitely aposyndetic if for any x E X 

and {xl,---,x } S X with x 1 xi' there exists a continuum M n 

such that x E int M and M n {xl,---,x } =~. If X is aposyndeticn 

at each of its points, then X is aposyndetic. If for every pair 

of points (p,q) of X, X is aposyndetic at at least one of the 

points with respect to the other, then X is semi-aposyndetic. 

Stronger than aposyndesis is the property of mutual aposyn­

desis: X is said to be mutually aposyndetic if for any p, q E X, 

p 1 q, there exist disjoint continua M and N with p E int M, 

q E int N. If for any countable closed set F in X and any 

x E X\F, there is a continuum M such that x E int M and 

M n F = ~, then X is countable closed set aposyndetic. A good 

reference for variations on the idea of aposyndesis is [4]. 

J. Goodykoontz [3] has shown that C(X) is aposyndetic, in 

fact, countable closed set aposyndetici moreover, if X is semi­

aposyndetic, then C(X) is mutually aposyndetic. We will show 

that several aposyndesis properties are Whitney properties. 

Proposition 9. Aposyndesis is a Whitney property.
 

Proof. Suppose X is aposyndetic and let A,B ~ ~-l(t) for
 

some t E (O,~(X)]. Then there exists y E B\A. For every x E A 

there is a continuum Ax such that x E int Ax and y ~ Ax. Now 

{int A Ix E A} is an open cover of A and A is compact, so there x 

is a finite subcover {int AXili = l,---,n}. Let A' = U ~=lAxi. 

Then A c:= U n , =1 (int Ax,) c int UnA int A', and so A is an 
1 1 i=l Xi 

element of the interior of the continuum C(A',t). Since y E B\A 
x 

for all x E A, we have B $ A' and hence B E ~-l(t)\C(A',t). 

Therefore ~-l(t) is aposyndetic at A with respect to B, and it 

follows that ~-l(t) is aposyndetic. 
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Proposition 10. Finite aposyndeais is a Whitney property. 

Proof. Suppose X is finitely aposyndetic, 

{Al,---,An,A} ~ ~ 
-1 

(t) for some t E (O,~(X)), and A t Ai for 

all i = l,---,n. For each i = l,---,n, let a E Ai'A. Theni 

for each a E A there exists a continuum M such that a E int M a a 

and M n {al,---,a } =~. The remainder of the proof is exactlya n 

like that of the preceeding proposition. 

Proposition 11. MutuaZ aposyndesis is a Whitney property. 

Proof. Suppose X is mutually aposyndetic. Let 

A ,A2 E ~ -1 (t) for some t E (O,~(X)). Let a E Al\ andl l A2 

a 2 E A2\Al . Then there exist disjoint continua Ai and A2 such 

that for some n, Bd(ai;n) c Al for i = 1, 2. Let 

<5 <min{Tl, d(a ,A2), d(a Ai)' ¥(a ,A )}. We will construct2 , 

~ ~ -1 
l 2 l 

disjoint continua u and u in ~ (t) such that
l 2 

B (A.;<5) n ~-l(t) c a., for i = 1,2. 
p 1 1 

Let i 1 or 2. We consider 2 cases: 

Case I: Suppose that ~(Ai) < t. Let ffi i = {Ai}' where 

A~ is s(~e element of ~-l(t) such that A! c A~ c A! U A.. For 
1 11- 1 1
 

-1 
Di
each Di E ~ (t) n Bp(Ai,o), there exists gi(D i ) E n Bd(ai;o) 

c D. n A~. Then by Lemma 0 there is an arc {D~} in ~-l(t) from 
111 

D. to A'.' such that gi(Di ) E D~ and D~ c D. U A'.' for all s. Let
1 J. 1 1 - 1 1
 

9). ~ -1 (t) =:
= U {{D~} ID i E n B p (Ai; <5) } • Let ct. £8. U fJ) .• 
1 1 1 1 

Then ~ -1 (t) n B (A.; 8) ct .. To show that a. is a continuum,~ p 1 1 1 

note that each point of 9). is contained in an arc which con­
1 

tains the point A'.' 93 . , so 93. U g). is connected. Hence 
1 1 1 1 

(ti 93. U g). is a continuum.
1 1 

Case II: Suppose that ~ (Ai) > t. Let ffi. = C(AI,t) · We 
1 

construct arcs as in Case I except that each arc is from D toi 

some point D! E C(A!,t) such that g. (D.) E D~ c D. U D! for all 
1 1 1 1 1 - 1 1 

s. Let g). be def ined as above and let ct. = ffi. U 9).. Again
1 111 

we have ~-l(t) n B (A.;o) ca .. Note that 93 , is a continuum 
p 1 - 1 1
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and each point of 9), is contained in an arc which intersects 
1 

So ffi, U 9), is connected. Hence (t, ffi, U 9), is a 
111 1 1 

continuum. 

We now show that (t_1 n (t 2 = ~. Note that any element of 

(ti' i = 1, 2, either is contained in Ai or intersects 

Bd (a i i 0). Suppose F E (t1. If F E ffi 1 , then either 

(1) F ~ Ai, in which case F n Bd (a 2 io ) ~ since 

o <d(a2 ,Ai), and F <i A2 since Ai n A2 = ~, so F ~ (t2' 

or 

(2) ·F = A" Then A' c F A' U AI. So F g A2 since1· 1 - ~ 1 

A' n A2 = ~. Also F n Bd (a2i 0) = ~ since d(a ,A ) > 01 2 1 

and d(a ,Ai) > o. Thus F rj. (t 2.2
 

So assume F E Then F c A' U V (A ) and
9)1 · - 1 o 1 

F n B(a1 io) t~. Then F g A2 since d(a ,A2) > o. Now1 

Ai n Bd(a2io) = ~ since d(a 2 ,Ai) > 0, and V8(A1 ) n B(a 2 io) ~ 

since 0 <¥(a2 ,A1 ). Thus F n B(a2 i o) =~. Hence F ~ (12. 

Therefore (t1 n (t2 ~. So we have 11- 1 (t) mutua11yaposyndetic 

at the pair (A ,A ).
1 2 

The method used in constructing the continua (t, in the 
1 

preceeding proof can be used in proving the following proposi­

tion. 

Proposition 12. Semi-aposyndesis is a Whitney property. 

Proof. Suppose X is semi-aposyndetic. Let A,B E 11- 1 (t) 

for some t E (O,l1(X». Let a E A\B and b E B\A. There exists 

a continuum M such that for one of a and b, say a, a E int M 

and b ~ M. Let M = A'. There exists n such that Bd(ain) ~ A'. 

Let 0o<min{n,¥(a,B), ¥(b,A), d(b,A')}. Now by the method of 

Proposition 11, using A for Ai' A' for Ai, and 0 for 0, we can 
0 

construct a continuum (t in 11- 1 (t) such that A E int ct and B ~ (f. 

Thus 11-1 (t) is semi-aposyndetic at the pair (A,B). 
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3. A Covering Property of Whitney Continua 

In [8] Krasinkiewicz and Nadler raise the following question: 

What continua X have the property that if a is a subcontinuum of 

~-l(t), t E [O,~(X)], and a a = X, then a = ~-l(t)? It is shown 

in [8] that arc-like and hereditarily indecomposable continua 

have this property, which will be referred to as (1). We will 

also consider a stronger property, namely (2) if ct is a subcon­

tinuum of ~-l(t), t E [O,~(X)], then ct= C(aa,t) = C(act) 

n ~-l(t). What (2) says is that each subcontinuum A of X has 

(1) for t E [O,~(A)]. We note first that (1) and (2) are ac­

tually properties of the space X and do not depend on the 

choice of the Whitney map w. 

Proposition 13. Let ~l and ~2 be Whitney maps on C(X). 

If X has (1) with respect to ~l~ then X has (1) with respect 

to ~2. 

~ -1Proof. Let s E [O'~2(X)] and u E C(~2 (s)) such that 

~ -1 -1 
u ~ ~2 (s). Choose AO E ~2 (s)\ ct. Suppose ~l(AO) = t. Let 

93 {B E ~~l(t) Ifor some A E ct, Ac B or B ~A}. If A E ct 
-1

and ~l (A) ~ t, then for each a E A there is aBE ~l (t) such 

~ -1that a E: B C A. If A E u, ~l (A) < t, then there is aBE ~l (t) 

~ l7J l7J-lsuch that A c B. Hence au c a~. Now~ ~ ~l (t) since 

-1 (l)
A O E ~1 (t)\ ffi. So if v.J is a continuum, then by (1) for ~1 we 

will have that a ffi ~ X and act ~ X. This shows that X has (1) 

for ~2. Hence it remains only to show that ffi is a continuum. 

Let {B } be a sequence of elements of ffi such that B + B. n n 

With each B there is associated an An E ct such that A c B n n n 
or B cA Some subsequence {A } of {An} converges to A E ct. n n ni 
Then, since B + B, we have A c B or B S A, and so B E £B.n'1 

Thus 93 is closed. 

Finally, we show that ffi is connected. Suppose not. Then 

there exist disjoint, non-empty sets 93 1 and ffi 2' open in ffi, 
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such that ffi = ffi 1 U ffi 2· Let (1i = {A E (1 Ifor some B E ffi i' 

A c: B or B c.= A}, i = 1, 2. Suppose A E (11 n (12. If 1-11 (A) <t, 

there exist Bl E ffi l' B2 E ffi 2 such that A S Bl n B2 . By Lemma 

o there is an arc {B } in 1-1-1 (t) from B to B2 such that A c B
j 1 l j 

for all j. But then {B } is an arc in ffi from a point of ffi 1 toj 

a point of ffi 2. This is impossible. 

So assume 1-1 1 (A) 2. t. Then there exist Bl E ffi l' B2 E ffi 2 

with Bl , B ~ A, so that C(A) n 1-1~l(t) is a continuum contained
2 

in 93 and intersecting both ffi 1 and 93 2. This is also a contra­

diction, so we must have (11 n (12 = fJ. Since fB, and 93 2 are 

non-empty, so are (11 and (12. Since ffi 1 U ffi 2 = ffi, we have 

Cit U ct = ct.2 

To reach the contradiction that ct is not connected, it re­

mains to show that (11 and (12 are open in (1. Let {An} be a 

sequence of elements of (12 such that An -+ A. With each An 

there is associated a B E ffi 2 such that An <;; B or B c:= An· n n n 

Since ffi is closed in ffi, some subsequence of {B } converges2 n 

to an element B E ffi 2 and we must have A ~ B or B ~ A. Thus 

A E (12 and we conclude that (12 is closed in (1. Hence (11 is 

open in (t. By a symmetric argument (12 is open in a. But (1 

is a continuum, so ffi must be connected and hence a continuum. 

Corollary 14. If X has (2) with respect to some Whitney 

map 1-1~ then X has (2) with respect to any Whitney map. 

Proof. For A E C(X), 1-1IC(A) is a Whitney map. Apply the 

proposition to each A E C(X). 

Note that (1) and (2) are not equivalent since a ray 

spiraling down on a circle is a continuum which has (1) but 

not (2). 

We may view (1) and (2) in terms of the maps at which have 

been considered in [11]. For a given continuum X and Whitney 

-1 -1 map 1-1 on C(X), if t E [O,1-1(X)], then at: C(1-1 (t)) -+1-1 ([t,1-1(X)]) 
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. -1 -1 
is defined to be crIC(~ (t». We define ~t: ~ ([t,~(X)]) 

-1 -1 
-+ C(~ (t) by ~t(A) = C(A,t) for A E ~ ([t,~(X)]). Then (1) 

-1 -1
is equivalent to crt (X) = ~ (t) for all t E [O,~(X)], and (2) 

is equivalent to the injectivity of crt for all t E [O,~(X)]. 

P~oposition 15. If crt is injective fo~ some t E [O,~(X)], 

-1
then at is a homeomo~phiBm and at = ~t. 

P~oof. The function crt is continuous because it is a 

restriction of the map cr. If A E ~-l([t,~(X)]), then 

crt(C(A,t» = A, so crt is surjective. But C(~-l(t» is compact 

-1
and ~ ([t,~(X)]) is Hausdorff, so crt is a homeomorphism. 

-1 --1
Co~olla~y 16. If X has (2), then ~ ([t,~(X)]::: C(~ (t» 

fo~ all t. E [0, ~ (X) ] • 

If O't is injective and hence a homeomorphism, then 
-1 

~t = crt and so ~t is continuous. However, if crt is not in­

jective, then ~t need not be continuous, as in the case X = Sl 

for any t E (O,~(X». 

The following proposition shows that even when crt is not 

injective, point inverses are nice continua. 

-1 -1 
P~oposition 17. Fo~ any A E ~ ([t,~(X)]), crt (A) is an 

arc-connected, acyclic continuum. 

-1
P~oof. The set crt (A) is closed, since crt is continuous. 

If ~ E cr~l(A), then d~ C(A,t), so there is a segment in 

C(~-l(t» from a to C(A,t). If ill is any point of the segment, 

then a s ffi c=: C (A, t), so A = cr t ( ~) ~ cr t (ffi) <;; cr t (C (A, t)) = A 

and thus crt(ffi) = A. Hence the segment is an arc in cr~l(A) 

from ~ to C(A,t). So cr~l(A) is an arc-connected continuum. 

By Theorem 2 of [13], for any closed set ffi E C(C(A,t»), 

{cy E C(C(A,t)1 cy contains a subcontinuum of C(A,t) 

which is a point of ffi} is acyclic. Let d = 

{'Y E C (C (A, t) ) Icr t cy = A and if 'Y I 1 'Y, then crt 'Y I ] A}. 
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Then M(a) is acyclic. We show that M( (1) a~l(A). Let 

5, E M«(t). Then 5, contains some ~O E (t. But at(CY) = A 

for all ~ E (t, so by the continuity of at' at ( ~ 0) = A. Thus 

A = at(~O) s: a ( 5,) c:; at(C(A,t)) = A and so 5, E a~l(A). Hencet 
~ -1 -1M(u) ~ at (A). If ~ E at (A), then any segment from a point 

of ~to~ will contain a point of (t. SoCY EM«(t) ,=M«(1). 

Hence M«(t) = a~l(A) and a~l(A) is acyclic. 

We turn now to the question of which continua have proper­

ties (1) and (2). The next proposition follows immediately from 

a result of Krasinkiewicz and Nadler [8]. 

Proposition 18. Arc-like continua and hereditarily in-

decomposable continua have property (2). 

Proof. It is shown in [8] that these continua satisfy 

(1). Subcontinua of an arc-like (hereditarily indecomposable) 

continuum are also arc-like (hereditarily indecomposable). 

Therefore arc-like continua and hereditarily indecomposable 

continua satisfy (2). 

Proposition 19. If X is a non-planar circle-like con­

tinuum~ then X has property (2). 

Proof. If A is a proper subcontinuum of X, then A is 

arc-like and hence has (1). To show that X has (1), let (tbe 

-1 -1 
a proper subcontinuum of 11 (t), 0 2. t < 11 (X). Now 11 (t) is 

circle-like [14], so (t is arc-like. Suppose at (t = X. The 

function at can be considered as a continuum-valued function 

from 11- l (t) to X, and it has been shown by Rogers in [14] to 

be upper semi-continuous. Then since at«(t) = X, Theorem 7 of 

[1] implies that for some A E (t, at(A) is not a proper sub­

continuum of X. But at(A) = A and A is a proper subcontinuum of 

X for all A E a. Therefore at (1 ~ X and so X satisfies (1). 

Hence X sati~fies (2). 



TOPOLOGY PROCEEDINGS Volume 1 1976 163 

Although the case of X being a solenoid is covered by the 

preceding proposition, we include a particularly simple proof 

that solenoids satisfy (2). 

Proposition 20. If X is a solenoid~ then X has property 

(2) • 

Proof. Subcontinua of X are arcs and so have (1). Let 

la E C (lJ- l (t)), a 1- lJ- (t), a .2. t < lJ(X). Then, since lJ- l (t) is 

a solenoid ([8]), G is an arc. Suppose crt a = X. Then by 

Lemma 8.1 of [6], X E a since X is indecomposable. But X rI. a, 
so X has property (1). Hence X satisfies (2). 

In [8] it is mentioned that (1) implies the unicoherence 

of X. We provide proofs that (2) implies that X is both heredi­

tarily unicoherent and atriodic. 

Proposition 21. If 5 satisfies (2)~ then X is hereditarily 

unicoherent. 

Proof. Let Y be a subcontinuum of X and suppose 

Y = A U B, A,B E C(X), A n B not connected. Let M and' N be 

components of A n B, and let Y
M 

and YN be segments from M and 

N to A. Choose t and t so that lJ (M), lJ (N) < °t < t 2 < lJ (A) ,lJ (B) l 2 l 
-1 -1

and (Y n lJ (t )) n (Y n lJ (t )) =~. By using a segment
M l N 2 

-1
from M to B it is possible to find M' E lJ (t ) so that2 

M' n A = Y
M 

n lJ-l(t
l 
). Then M' n (B\A) 1- ~ ~ M' n (A\B), so 

-1
M' ~ C(A,t ), M' ~ C(B,t ). Let N' = Y n lJ (t ). By Lemma a

2 2 N 2 
-1

there is an arc {D j } in lJ (t ) from DO = N' to D ~ B such that2 l 

D. n A c N' for all j E [0,1]. Then M' ~{D.}since M' n A is 
] ] 

disjoint from N'. So C(A,t ) U C(B,t ) U {D } is a continuum2 2 j 

in C(Y,t ) not containing the point M' E C(Y,t ). But2 2 

cr (C(A,t ) U C(B,t ) U {D }) = Y and this contradicts the fact
t2 2 2 j 

that Y has property (1). Therefore Y is unicoherent and X is 

hereditarily unicoherent. 
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Proposition 22. If X has property (2)~ then X is atriodic. 

Proof. Suppose X contains a triod T = Al U A2 U A3 , 

Ai E C(X), Ai n Aj = Y, Ai\Y ~ ~ for all i,j E {1,2,3}, i ~ j. 

Without loss of generality assume that ~(Ai) = to for all i. 

Choose t so that ~(Y) < t < to. Let ct = C(AI U A3 ,t) U C(A2 U A3 ,t). 

Then a (i = T and (i is a continuum since C (A3 , t) ~ C (AI U A3 , t) 

n C(A2 U A3 ,t). But a ~ C(T,t) since there are points of 

C (AI U A2 , t) which are not contained in (i. This contradicts 

the fact that X satisfies (2). Hence X is atriodic. 

ExampZe 23. Let X be an hereditarily indecomposable arc-

like continuum with a pair of opposite endpoints identified. 

Then X is indecomposable and circle-like and also hereditarily 

unicoherent and atriodic. Let p be the point of X which is ob­

tained by the identification of endpoints. It has been shown, 

[8, 14], that for any t with 0 < t < ~(X), the set 

ct = {A E ~-l(t) Ip E A} is an arc in ~-l(t) with non-empty
p
 

interior. The set ]..I-l(t)\C~ is a proper subcontinuum of ]..I-l(t)
 

and at(]..I-l(t)\C~) = X. So X does not have property (1). 

Example 24. Planar, circle-like, non-are-like continua 

may satisfy (2). Take X to be the pseudo-circle. 

Continua which have properties (1) and (2) have some 

special characteristics with regard to Whitney properties. 

Lemma 25. If for some t E [O,~(X)]~ the map at is injec­

tive~ then there is a Whitney map ~O on C(~-l(t» so that ~t 

preserves Whitney continua~ i.e. for any sl E [t,~(X)], 

-1 -1 -1
~t(~ (sl» =11 0 (s2) for some s2 E [O,~o(C(~ (t»)]. 

f;j -1
Proof. For u E C(~ (t», let ~o«(t) = ~(a(t) - t. Then 

~O is a continuous function from C(~-l(t» into [0,00) such that 

~O (A) 0 for '""all A E ~ -1 (t). If (i, 93 E C(~-l (t» such that 

(i ~ fB, then since a t is inj ective, a ct ¥ a ffi and so 
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II (a (t) < II (a ffi). Thus 110 ( (f,) < 110 ( ffi), and it follows that 110 

is a Whitney map. 

If A,B E ll-l{[t,ll{X)]) and ll{A) = ll{B), then a{~t(A» = A 

and a{~t(B» =.B, so 1l0(~t(A» = ll(A) - t = ll(B) - t = 1l0(<pt(B». 
, -1 

If (t, ffi E C (ll (t» and 110 ( (f,) = 110 ( ffi ), then II (a (f,) = II (d fa) . 

But a (1 = <p~l( (1) and a 93 = <p~l( 93) since at is injective, so 

-1 ~ -1 lD -1 lDll(<P	 (u» = ll(<P (~» = (<p (~». Hence <P preserves Whitneyt t t	 t 

continua. 

Corollary 26. Let to E [O,ll(X)], ato be injective, P be 

-1 
a Whitney property such that II (to) has P, and t > to. Then 

ll-l(t) has P. 

Corollary 27. If X satisfies (2) and ll-l{t ) has a WhitneyO
-1 

property P, then II (t) has P for all t E [to' II (X) ] . 

Although indecomposability is not a Whitney property, we 

have the following: 

Proposition 28. If X is indecomposable and a~l{x) = {ll-l{t)} 

for some t E (O,ll(X», then ll-l(t) is indecomposable .. If X is 

indecomposable and has (1), then ll-l(t) is indecomposable for 

all t E [0, II (X) ] . 

Proof. Suppose cr~l{X) = {ll-l{t)} and ll-l{t) a u ill 

is a decomposition. Then at ((1) ¥ X ¥ at (ffi) and 

X = at (Cl) U at (ffi) is a decomposition of X. So ll-l (t) is 

-1 -1indecomposable. If X satisfies (1), then at (X) = {ll (t)} 

for all t E [O,ll{X)]. 

We note that the proof of the preceding proposition is 

the same as that used in [8] to show that being an indecomposa­

ble chainable continuum is a Whitney property. 

4.	 Essentially Different Whitney Maps 

In [10] Nadler raised the question of whether the 
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topological types of Whitney map inverses is a topological in­

variant. In other words, if X and Yare homeomorphic and ~l 

and ~2 are Whitney maps on C(X) and C(Y) respectively, then for 

each s E [O'~2(Y)]' does there exist atE [O'~l(X)] such that 

~il(t) is homeomorphic to ~;l(S)? We will answer this question 

negatively, give some examples, and make some statements about 

the types of spaces for which the answer may be negative. 

Definition. Let X be a continuum. If there exist a con-

E (s) is not homeomorphic (t), then 

tinuum Y homeomorphic to X, Whitney maps ~l and ~2 on C(X) and 

C(Y) respectively, and s E [O'~2(Y)] such that for every 

-1 r -1 
t [O'~l(X)], ~2 to ~l we 

will say that X admits essentially different Whitney maps. 

3Examples 29. (a) Let X Ui=lAi , where Ai is an arc for 

each i, and A. n A. = {p}, P E X, for i ~ j. Suppose ~l is a 
1 ] 

Whitney map on C(X) such that ~l(Al) ~. ~1(A2) = ~1(A3). Then 

for each t E [O'~l(X)], ~~l(t) is homeomorphic to one of the 

following: X, the union of a 2-cell and three mutually dis­

joint arcs each intersecting the 2-cell in a single point, a 

2-cell, a point. Define ~2: C(X) ~ [0,00) by ~2(A) = 

~l(A n AI) + ~l(A n A2 ) + 2 ~l(A n A3 )· Then ~2 is a Whitney 

-1 
map and there exists s E (O'~2(X» such that ~2 (s) is the 

union of an arc and a 2-cell which intersect in exactly one 

-1 -1point. Thus ~2 (s) fails to be homeomorphic to ~l (t) for all 

t E [O'~l(X)], and so X admits essentially different Whitney 

maps. 

(b) Using the same method as in (a) we can show that X 

admits essentially different Whitney maps if X is the union of 

three hereditarily indecomposable continua Ai' i = 1, 2, 3, 

joined together at a point p. Let ~l and ~2 be as in (a). 

-1
Then for t E [O'~l(X)], ~l (t) is homeomorphic to one of the 

following: X, the union of a 2-cell and three mutually disjoint 
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hereditarily indecomposable continua each attached to the 2-cell 

at a point, a 2-cell, a point. But for some s E (0'~2(X)), 

-1 
~2 (s) is the union of a 2-cell and an hereditarily indecomposable 

continuum with one-point intersection. 

(c) For X an arc, a circle, a pseudo-arc, or a pseudo-

circle, each Whitney continuum is C(X) is homeomorphic to X 

[7, 2, 14]. So X does not admit essentially different Whitney 

maps. 

(d) Let X be a ray spiralling down on a circle or the 

sin 1: continuum {(x,y) Ix E (0,1], Y = 'sin!} U ({O} x [-1,1]).x x 

In either case the topological types of the Whitney continua 

are exactly those of X, an arc, and a point for any Whitney map. 

So X does not admit essentially different Whitney maps. 

(e) Let X be the continuum pictured in Figure 1. Given 

analytically, 'X = Xl U X2 where Xl {(x,y) Ix E (0,1] , 

Y sin !} U ({O} x [-1,1] ) and X {(x,y) Ix E [-1,0) ,
x 2 

Y 2 + sin !} U ({O} x [1,3]) . Let ~l be a Whitney map on x 

C(X) such that ~1({0} x [-1,1]) = ~1({0} x [1,3]). Rogers has 

-1
noted [14] that for t E [O'~l(X)], ~l (t) is homeomorphic to 

X, an arc, a point, or the space shown in Figure 2. Now define 

~2: C(X) -+ [0,00] . by ~2(A) = 2 ~l(A n Xl) + ~l(A n X2 ) · Then 

-1 
1-12 is a Whitney map and for some s E (0,1-12 (X) ) , 1-1 2 (s) is homeo­

morphic to the space shown in F£gure 3. So X does admit es­

sentially different Whitney maps. 

(f) Let XI be the continuum X of example (e) with the points 

(-1, 2 + sin(-I)) and (1, sin 1) joined by an arc which is 

otherwise disjoint from X. Then Xl also admits essentially 

different Whitney maps. 

We see from the above examples that the collection of con­

tinua which admit essentially different Whitney maps includes 

continua which are triods (a), atriodic (e), 3-indecomposable 
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Figure 1
 

Figure 2
 

Figure 3
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(b), arc-like (e), circle-like (f), arc-connected (a), non arc-

connected (e), unicoherent (e), and non unicoherent (f). Among 

the continua which do not admit essentially different Whitney 

maps are included ones which are decomposable (d), hereditarily 

indecomposable (c), arc-like (d), circle-like (c), arc-connected 

(c), non arc-connected (d), unicoherent (c), and non unicoher­

ent (c). 

We now make some generalizations about continua which admit 

essentially different Whitney maps. 

Proposition 30. Let Y be a decomposable~ non arc-connected 

continuum with finitely many arc components~ and let p E Y. 

Let Xl and X2 be copies of Y and let X = Xl U X /{p}. Then X2

admits essentially different Whitney maps. 

Proof. Let ~ be a Whitney map on C(Y). Since Y is de­

composable, by Corollary 4 there exists to E (O,~(X)) such that 

~-1 (t) is arc-connected if t > to and non arc-connected if t < to. 

For i = 1, 2, designate ~ on C(X ) by ~i. Define a Whitney mapi 

~ on C(X) by ~(K) = ~l(K n Xl) + ~2(K n X2 ) for K E C(X). For 

t E [0, lJ(X)], let K = {K E ~-l (t) Ip E K}. Then "iJ- l (t) = t 
-1 -1

~l (t) U ~2 (t) U Kt · 

For any continuum M with finitely many arc components, let 

n(M) be the number of arc components of M. 

We now examine n(~-l(t)) for t E [O,~(X)]. For t = 0, 

--1 --1 
~ (t) = X and n(~ (t)) = n(x ) + n(X2 ) - 1 = 2 n(Y) - 1 = l 

2 n(~-l(t)) - 1. For t > 0, we have that K is arc-connectedt 
-1 -1

[8] and ~i (t) n K = {K E ~i (t) Ip E K} is arc-connected fort 
-1 -1 -1i = 1,2 [8]. Also ~l (t) n ~2 (t) =~. So since ~ (t) = 

-1 -1 --1 -1 -1
~l (t) U ~2 (t) U Kt , we have n(~ ttl) n(~l (t)) + n(~2 (t)) 

- 1 = 2 n(~-l(t)) - 1. 

By Corollary 3, the function n restricted to the set 

{~-l(t) It E [O,~(Y)]} is a decreasing, positive integer-valued 
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function of t.	 The continuum ~-l(to) mayor may not be arc­

-1	 -1
connected. If n(~ (to)) ~ 1, let no = n(~ (to)). Otherwise, 

-1 Ilet no = min{n(~ (t)) t E [O,t )}. Note that no ~2. Now foro 
--1	 --1 o ~t <to' n(~ (t)) ~2no - 1; for t = to' n(~ (t)) = 1 or
 

-1 --1

2n - 1; for t >to'~ (t) is arc-connected, so n(~ (t))o
 

2(1) - 1 = 1.
 

Define a Whitney	 map D on C(X) by D(A) = ~l(A n Xl)
 

-1 -1 -1 1
 
+ 2~2(A n X2 )·	 Then D (t) ~1 (t) U ~2 (2t ) U At where 

-1
At = {A E D (t) Ip E A}. If 0 2. t 2. ~1 (X), then as in the case of 

- -1 -1 -1 1 
~ above, we get	 n(D (t)) n(~l (t)) + n(~2 (2t)) 1. If
 

-1 -1 -1 1
 
t > ~1 (X), then ~1 (t) = ~, so D (t) ~2 (2t ) U At· But At 

, d d -1(1) n' d (1S arc-connecte	 an ~2 2 t At 1S arc-connecte as argued 

-1
previously for K and ~2 (t) n K ), so for t > ~'1 (Xl)' we havet	 t 

-1 -1 1	 
n (D (t)) = n ( ~ 2	 (2t ) ) · 

Suppose s E (t ,2t ]. Then ~~l(S) is either empty or an o o 
1 1

arc-connected continuum. Since 2 t o < 2 s 2. to' s can be chosen 

-1 1 -1 1 
so that n(~2 (2s )) = n(~ (2s )) = no· Let So be such a value
 

-1 -1 -1 1

of s. If So2.~1(X1)' then n(D (so)) = n(~l (so)) + n(~2 (2s o)) 

-1 
- 1 = 1 + n - 1	 = no. If so>~1(X1)' then n(D (so))o 

-1 1 
n(~2 (2s o)) = no· Since no~2, we have no ~ 1 and 2no - 1 >no ' 

so D- 1 (so) cannot be homeomorphic to ~-l(t) for any t. Therefore, 

X admits essentially different Whitney maps. 

Lemma 31. Let X be a one-dimensional polyhedron~ B E C(X)~ 

and p E B such that the order of p is greater than or equal to 

3. Let ~ (B) = t	 where 0 < t < ~ (X). Then the order of B in 

~-l(t) is greater than or equal to 3. 

Proof. We consider 2 cases. 

Case I: Suppose	 X is a tree. Then X can be expressed as 

a union of continua U ~ 1A. with A, n A. {p} if i ~ J'. For1= 1 1 J r 

i = 1, 2, 3 there exists a segment ~i: I ~ C(X) from {p} to Ai 

containing the point B n Ai. Using these segments it is easy to 
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construct three arcs in ~-l(t) such that the intersection of any 

two of them is the point B. Hence B is of order 3 or more in 

~-1 (t) . 

Case II: Suppose X is not a tree. Then there exists a 

tree Y and a finite collection {(Pi,pi)} of pairs of endpoints 

of Y such that if each Pi is identified with pi then the re­

sulting space is homeomorphic to X. Let f: Y ~ X be this 

identifi.cation map. Assume also that the pairs of points 

(Pi,pi) are chosen so that f-l(B) is a continuum. 

By Proposition 2.1 of [8], f induces a map f: C(Y) ~ C(X) 

such that f embeds C(Y)\Y into C(X)\x and ~o f is a Whitney map 

0on C(Y). By Case I, f-l(B) is of order 3 or	 more in (~ f) -1 (t) . 

-1
Hence B = f(f-l(B» has order at least 3 in ~ (t). 

Proposition 32. Let X be a one-dimensional polyhedron which 

is not an arc or a circle. Then X admits essentially different 

Whitney maps. 

Proof· We may express X as a union of continua 

k > 2 such that (1) each Ai is an arc or an arc wi th endpoints 

identified, (2) if i ~ j then A. n A. is contained in the set 
1 J 

of endpoints of Ai and A and (3) no endpoint has order 2.j , 

Note	 that each Ai has at least one endpoint of order 3 or more. 

Let ~ be a Whitney map on C(X). If for some i we have 

-1o <t < ~(Ai)' then C(Ai,t) is a free arc in ~ (t). Suppose 

~(Ai) <t<~(X). Then if B E ~-l(t) and B n Ai t-~, B must 

contain an endpoint of Ai having order at least 3. Thus, by 

Lemma 31, B is of order 3 or more in ~-l(t), so B cannot be in 

the interior of a free arc in ~-l(t). We use this information 

to construct essentially different Whitney maps on C(X). 

Let ~l be a Whitney map on C(X) such that ~l(Ai) = So for 

i 1,··· ,k-l, and ~l (Ak ) = sl where sl > so. Choose s so that 

-1
So < s	 < sl. By the argument above, ~l (s) contains exactly one 
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free	 arc. Let ~2 be a Whitney map on C(X) such that ~2(Ai) t 
a 

for	 i = 1,···,k. Then for t<t ' ~;l(t) contains exactly k o
 

free arcs and for t 2. to' ~2 
-1 

(t) contains no free arcs. Hence
 

-1 -1
 
no ~2 (t) is homeomorphic to ~1 (s). 
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