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THE STRUCTURE OF SMALL NORMAL F-SPACES 

R. Grant Woods 1, 2 

1.	 Introduction 

The principal purpose of this paper is to prove the follow

ing theorem about the structure of small normal F-spaces, and to 

derive some corollaries of it. (We call a space X "small" if 

Ic*(x) I = 2 w; explanations of other terminology and notation 

appear below.) 

1.1 Theorem. Assume the continuum hypothesis. Let X be 

a	 normal F-spaoe suoh that Ic*(X) I = 2 
w

• Then: 

(aJ If X is oountably compact then X is compact. 

(bJ If X is locally compact then X is a-compact. 

All hypothesized topological spaces are assumed to be 

completely regular and Hausdorff. Throughout this paper we shall 

use the notation and terminology of the Gillman-Jerison text 

[4] without further comment. We shall however remind the reader 

of the definition of a few of the concepts that appear below. 

A topological space is called an F-space if its cozero-sets 

are C*-embedded. A space is extremally disoonnected if each of 

its open sets has an open closure. Each extremally disconnected 

space is an F-space; see l4N.4 of [4]. A space X is called 

weakly Lindelof if given an open cover GlL of X, there is a countable 

subcollectionGlL' ofGlL such that U{U: U E GU'} is dense in X. The 

Stone-Cech compactification of X is denoted by 8Xi the Hewitt 

realcompactification is denoted by ux. The cardinality of a set 

S is' denoted by Is I. The countable discrete space is denoted by 
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N. The set of bounded real-valued continuous functions on a 

space X is denoted by C*(X). If we use the continuum hypothesis 
w 

(2 =	 wI) in the proof of a theorem we indicate this by writing 

"[CH]" before the statement of the theorem. 

The following two theorems will be used in the sequel. The 

first	 appears as part of Theorem 4.6 of [2]. 

1.2 Theorem [CH]. Let Y be a locally compact a-compact 

non-compact space such that /C*(Y) I 2
W

. Then BY - Y contains 

no proper dense C*-embedded subspace~ and an open subspace of 

BY - Y is C*-embedded in BY - Y iff it is a cozero-set of BY - Y. 

The following appears as the non-trivial part of Theorem 

2.2 of [13]. 

1.3	 Theorem [CH]. Let K be a compact F-space such that 

w
IC*(K) I = 2 . If X is a C*-embedded subspace of K then X is 

weakly Lindelof. 

2. Proof of Theorem 1.1 and Its Corollaries 

Proof of Theorem 1.1. As X is an F-space, so is BX (see 

14.25 of [4]). Since X is C*-embeddedin BX, by 1.3 X is weakly 

Lindelof. 

To prove l.l(a), suppose X is not compact. Choose 

P E BX - X and write BX - {p} as a union of cozero-sets of BX. 

As X is weakly Lindelof there are countably many of these 

cozero-sets whose union, when intersected with X, yields a 

dense subspace of X. Let V denote this union. Then V is a 

dense	 cozero-set of BX not containing p. As V is C*-embedded 

in the F-space BX, it follows that BX = BV. As V satisfies the 

hypotheses imposed on Y in 1.2, by 1.2 BX - V has no proper 

dense	 C*-embedded subset. We now show that X - V is a proper 

dense	 C*-embedded subset of BX - V, thus obtaining a contradic

tion 
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The closed subspace X - V of the normal space X is C*-em

bedded in X, and hence in SX, and hence in BX - V. Furthermore 

p E (SX - V) - (X - V). To show that X - V is dense in SX - V, 

let A be an open subset of SX meeting BX - V. Since V is a 

cozero-set of Sx it is an Fa-set, so A - V is a non-empty G8

set of SX. As X is countably compact, (A - V) n X 1 ~ (see 

8A.4 and 8.8 of [4]): thus X - V is dense in SX - V. This con

tradiction shows that BX - X could not have been non-empty, so 

X is compact. 

To prove l.l(b) first note that X is open in BX since X 

is locally compact (see 3.l5(d) of [4]). Write X as a union of 

cozero-sets of BXi since X is weakly Lindelof there is a countable 

subfamily of these cozero-sets whose union U is a dense cozero

set of SX and is thus C*-embedded in SX. Thus U c X c BX = BU, 

and U satisfies the hypotheses imposed on Y in 1.2. Thus by 1.2 

any open C*-embedded subspace of BX - U is a cozero-set of SX - U, 

and hence is a-compact (as SX - U is compact). But X - U is 

open in Bx - U as X is open in SX, and X - U is C*-embedded in 

Sx - U since X is normal and its closed subspace X - U is there

fore C*-embedded in X. Thus X is the union of two a-compact 

spaces and hence it is a-compact. 

We next derive some corollaries to Theorem 1.1. There has 

been some interest in determining whether a product of normal 

countably compact spaces need to be countably compact: see for 

example Problem B15 of [9]. Corollary 2.2 gives an affirmative 

answer for a special case. Recall that a space is w-bounded 

if its countable subsets are relatively compact. 

2.1 Corollary [CH]. A normal countably compact F-space 

is w-bounded. Hence a product of arbitrarily many normal countably 

compact F-spaces is countably compact. 

Proof. Let S be a countable subset of the normal countably 



176 Woods 

compact F-space X. Then c~XS is separable, normal and countably 

compact; as it is C*-embedded in X, by 14.26 of [4] it is an 

wF-space. Obviously Ic*(c~xS) I 2 so by l.l(a) c~XS is compact. 

The remainder of the corollary follows from the fact that products 

of w-bounded spaces are w-bounded, and w-bounded spaces are 

countably compact. 

We next use l.l(a) to prove a generalization of l.l(a). 

2.2 Corollary [CH]. Let X be a normal F-space such that 

/C* (X) / 2
w. Then uX is not locally compact at any point of 

uX - X. 

Proof. Suppose that p E uX - X, V is open in uX, p E V, 

and c~UxV is compact. By 4.1 of [1] X n c~UXV is pseudocompact. 

It is also normal so by 3D.2 of [4] it is countably compact. 

As X n c~UxV is C*-embedded in X, it is an F-space by 14.25 of 

[4] and /C*(X n c~UXV) / = 2w
. Hence by 1.1 X n c~uxV is compact. 

But c~UxV = c~UX(X n c~UXV) and p E c~UxV - X. From this contra

diction the corollary follows. 

Recall that the absolute E(X) of a space X is (the unique) 

extremally disconnected space that can be mapped onto X by a 

map that is perfect and irreducible (i.e. the map takes proper 

closed subsets of E(X) to proper closed subsets of X). See 

[10] and [12] for details. The proof of the following well-

known "folk lemma" is straightforward and is not included. 

2.3 Lemma. If P is countable compactness, or w-boundedness, 

or separability, or local compactness, then a space X has pro

perty P iff E(X) has P. 

There has recently been some interest in determining condi

tions under which E(X) is normal. Hence the following corollary 

is of interest. 
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2.4 Corollary [CH]. Assume that E{X) is normal. 

(aJ If X is countably compact then X is w-bounded. 

(bJ If X is separable and locally compact then X is 0

compact. 

(cJ If X is separable and uX is locally compact then X is 

a-compact. 

(dJ If X is separable and countably compact then X is com

pact. 

Proof. (a) this follows immediately from 2.1 and 2.3. 

(b) This follows from l.l(b) and 2.3. 

(c) As UX is locally compact, by [8], page 237, or [12], 

Theorem 2.10, E(uX) = UE(X). Hence by 2.3 UE(X) is locally 

compact. By 2.3 E(X) is separable and so IC*(E(X» I = 2w. 

Thus by 2.2 it follows that UE(X) = E(X). Thus E(uX) = E(X) 

so ux = X, i.e. X is locally compact. The result now follows 

from (b) .. 

(d) This follows immediately from (a) or (c). 

Conditions on X equivalent to the local compactness of uX 

may be found in Harris [5]. 

3. Examples and Questions 

The following examples are designed to show that most of 

the hypotheses of Theorem 1.1 and its corollaries are necessary 

to their proofs. 

3.1 Examples. The space of countable ordinals (with the 

order topology) is a non-compact space satisfying all the hy

potheses of 1.1 except that it is not an F-space. Under assump

tion of the continuum hypothesis, the space y~- {WI} constructed 

by Franklin and Rajogapalan in [3] is a separable non-compact 

space satisfying all the hypotheses of 1.1 except that it is 

not an F-space. 
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3.2 Example [CH]. Let p E S~ -~. Then 8~ - {p} is a 

separable non-compact space satisfying all the hypotheses of 1.1 

except that it is not normal. 

3.3 Example. Examples abound of normal non-compact F

w 
spaces X such that Ic*{x) I 2 i a non-compact cozero set of 

SN - N is such a space. 

3.4 Example. Using the set-theoretic hypothesis ~, which 

is known to be consistent with the continuum hypothesis (see 

page 32 of [9]), M. Wage has recently constructed a separable 

normal extremally disconnected space that is not realcompact 

(see [11]). This shows that the hypotheses on X in 2.2 do not 

imply that X must be realcompact. It also shows that local 

compactness cannot be dropped from the hypothesis of l.l{b), 

since a-compact spaces are realcompact. 

3.5 Example. Kunen and Parsons [7] have recently shown 

that if ~ is a weakly compact cardinal, and if E denotes the 

subspace of B~ (where ~ is given the discrete topology) con

sisting of those ultrafilters that contain a set of cardinality 

less than ~, then E is a normal, coun tably compact, non-compact 

extremally disconnected space. Hence the assumption that 

Ic*{X) I = 2w cannot be dropped from Theorem 1.1. We do not know 

whether it can be replaced by some significantly weaker assump

tion. 

We conclude with two open questions. 

3.6 Question. Is [CH] necessary to prove l.l? Does Theorem 

1.1 hold without any special set-theoretic assumptions? 

3.7 Question. Is there a "real" example of an extremally 

disconnected locally compact normal space that is not paracompact? 

Theorem 1.1 (b) says that if X is such a space then IC* (X) I > 2w • 
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Example 3.5 says that if one assumes the existence of weakly 

compact cardinals then such spaces exist. Kunen [6] has recently 

constructed a "real" normal extremally disconnected subspace of 

SW I	 (where wI has the discrete topology) that is not collection

wise	 Hausdorff, and thus not paracompact; however, his example 

is not locally compact. (By "real" we mean that no special set-

theoretic hypotheses are used in the construction.)
 
w
 

If 2w = 2 1 then the discrete space of cardinality wI be

comes a counterexample to l.l(b). Hence the assumption of the 

continuum hypothesis cannot be dropped from l.l(b). I do not 

know	 if it can be replaced by the assumption that 2 w < 2
Wl 

. 
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