TOPOLOGY PROCEEDINGS Volume 1, 1976 Pages 187–189

http://topology.auburn.edu/tp/

WHITNEY CONTINUUM IN HYPERSPACE

by

A.Y. W. LAU

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOONT	0140 4104

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

WHITNEY CONTINUUM IN HYPERSPACE

A. Y. W. Lau

A continuum means a compact connected metrizable space and C(X) is the hyperspace of subcontinua of X with the Vietoris topology. A continuous function $\mu:C(X) \rightarrow [0,1]$ is a Whitney function if $\mu(X) = 1$, $\mu(\{p\}) = 0$ for each $p \in X$ and $\mu(A) < \mu(B)$ if A is a proper subset of B (see [2] and [3]). Let \hat{X} be the set of singletons of X and $D(X) = C(X)/\hat{X}$ (i.e., decomposition of C(X) into elements and \hat{X}). The reduced Alexander cohomology H^{P} is employed (see [7]) and X is acyclic if $H^{P}(X) = 0$ for each p. If A \subseteq B and $e \in H^{P}(B)$, then $e|A = i^{*}(e)$ where i is the inclusion map.

Define $H \leq K$ in D(X) if $H \subseteq K$ or $H = \hat{X}$. If $\Sigma \subseteq D(X)$, then $L(\Sigma)(M(\Sigma))$ is the set of all $K \in D(X)$ such that $K \leq A$ for some $A \in \Sigma$ ($K \geq A$ for some $A \in \Sigma$). If $0 < t \leq 1$, then $L(t) = L(\mu^{-1}(t))$ and $M(t) = M(\mu^{-1}(t))$.

Theorem 1. If X is a continuum, then $H^{p}(X) \cong H^{p+1}(D(X))$ for each p = 0, 1, ...

Proof. Consider the exact sequence:

 $H^{p}(C(X)) \rightarrow H^{p}(\hat{X}) \rightarrow H^{p+1}(C(X), \hat{X}) \rightarrow H^{p+1}(C(X)).$

Since $H^{p}(C(X)) = 0 = H^{p+1}(C(X))$ by [4], then $H^{p}(X) \cong H^{p}(\hat{X}) \cong H^{p+1}(C(X), \hat{X})$. But $D(X) = C(X)/\hat{X}$ and the Map Excision Theorem yields $H^{p+1}(D(X)) \cong H^{p+1}(C(X), \hat{X})$.

Theorem 2. If X is a continuum and Σ is a closed subset of D(X), then $H^{1}(L(\Sigma)) = 0$.

Proof. The proof is reminiscent of Wallace's Acyclicity Theorem [8]. Suppose $0 \neq e \in H^1(L(\Sigma))$. Use Zorn's Lemma and the Reduction Theorem in cohomology to get a minimal closed Σ such that $e|L(\Sigma) \neq 0$. Since for each $K \in C(X)$, L(K) is $0 = H^{0}(L(S) \cap L(T)) \rightarrow H^{1}(L(\Sigma)) \rightarrow H^{1}(L(S)) \times H^{1}(L(T)).$ Then e|L(S) = 0 and e|L(T) = 0 contradict the last homeomorphism being one-to-one.

Theorem 3. If X is a continuum and $0 < t \leq 1$ and for each $K \in \mu^{-1}(t)$, $H^{1}(K) = 0$, then $H^{2}(L(\Sigma)) = 0$ for each closed set Σ in $\mu^{-1}(t)$.

Proof. The proof is similar to that of Theorem 2 and uses the fact that $H^{1}(L(\Sigma)) = 0$ for each closed Σ in D(X).

Theorem 4. Let X be a continuum. Then (a) there is a 1-1 homomorphism $H^{1}(\mu^{-1}(t)) \rightarrow H^{1}(X)$ (b) if for each $K \in \mu^{-1}(t)$, $H^{1}(K) = 0$, then $H^{1}(\mu^{-1}(t)) \cong H^{1}(X)$.

Then \triangle is always 1-1. Since M(t) is acyclic and the hypothesis in (b) and Theorem 3 imply $H^2(L(t)) = 0$, then \triangle is onto.

There are many applications of Theorem 4 which Rogers stated in [5]. The next theorem shows that for certain X, those Whitney continua close to the base have the same cohomology.

Theorem 5. If X is a 1-dimensional continuum and $H^{\perp}(X)$ is finitely generated over a ring R (e.g., cohomology over the integers), then there exists 0 < t < 1 such that $H^{\perp}(X) \cong H^{\perp}(\mu^{-1}(s))$ for each $s \leq t$.

Proof. Let G be a finite set of generators for $H^1(X)$ as an R-module. For each $g \in G$, $g | \{x\} = 0$. By the Reduction Theorem, there exists an open set U_x containing x such that $g|U_x = 0$. Let L be a Lebesgue number for $\{U_x | x \in X\}$. Then g|M = 0 for each M with diameter < L. Choose L to work for all $g \in G$. Since each element of $H^1(X)$ is a linear combination of elements in G, then e|M = 0 for each $e \in H^1(X)$ and diam M < L.

Choose 0 < t < 1 such that if $\mu(K) \leq t$, then diam $K \leq L$. Let $e \in H^{1}(K)$ where $\mu(K) \leq t$. Then there exists $f \in H^{1}(X)$ such that $f \mid K = e$ since X is 1-dimensional. Then $f \mid K = 0$ since diam K < L. Hence $H^{1}(K) = 0$. By Theorem 4, $H^{1}(\mu^{-1}(s)) \cong H^{1}(X)$.

References

- H. Cohen, A cohomological definition for locally compact Hausdorff spaces, Duke Math. J. 21 (1954), 209-224.
- [2] J. Krasinkiewicz, On the hyperspaces of snake-like and circle-like continua, Fund. Math. LXXXIII 91974), 155-164.
- [3] _____ and S. Nadler, Whitney properties, to appear Fund. Math.
- [4] A. Y. W. Lau, Acyclicity and dimension of hyperspace of subcontinua, Bull. Pol. Acad. Sci. XXII, #11 (1974), 1139-1141.
- [5] J. T. Rogers, Jr., Whitney continua in the hyperspace C(X), Pac. J. Math. 58, #2 (1975), 569-584.
- [6] _____, Applications of a Vietoris-Begle theorem for multi-valued maps to the cohomology of hyperspaces, to appear Michigan J. Math.
- [7] E. Spanier, Algebraic Topology, McGraw-Hill Books, 1966.
- [8] A. D. Wallace, A theorem on acyclicity, Bull. Amer. Math. Soc. 67 (1961), 123-124.

North Texas State University

Denton, Texas 76203