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LUZIN SPACES 1 

Kenneth Kunen 2 

o. Introduction 

Recall that a subset N of a topological space Y is called 

nowhere dense (n.w.d.) iff the closure of N has empty interior. 

A Luzin set in Y is an uncountable X C Y such that X n N is 

countable for all n.w.d. N C Y. Luzin [L] showed that the Con­

tinuum Hypothesis (CH) implies that there is a Luzin set in the 

real line,~. More recently, van Douwen, Tall, and Weiss 

[vDTW] have produced, under CH, Luzin sets in a wide variety 

of spaces. In this paper we show that, assuming Martin's axiom 

(MA) plus ---, CH, there are no interesting examples of Luzin sets

in any space (see Rudin [R] for an introduction to the use of 

MA in topology). 

We must first dispense with one triviality. Suppose that 

Y had an uncountable set, X, of isolated points. Then X n N 

is empty for all n.w.d. N ~ Y, so X is a Luzin set in Y. How­

ever, 

0.0. Theorem (MA + -. CH). If Y is T
2 

and has at most 

countably many isolated points~ then there are no Luzin sets 

in Y. 

The restriction to T spaces is necessary, since any set2 

Y with the cofinite topology is T and a Luzin subset of itself.
I 

From now on, all spaces are assumed to be T2 . 

In the case Y =~, Theorem 0.0 is an easy consequence of 

the fact that (under MA + ~ CH), all subsets of ~ of cardinality

lResearch supported by N.S.F. Grant GP-43882X. 

2The author is grateful to the referee for a number of helptul 
comments. 
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~l are of first category, but, as we point out in §3, that 

fact, or any of the other standard MA consequences about E, is 

insufficient to imply 0.0 for general Y. 0.0 is proved in §2. 

§l collects some preliminary remarks. 

1. Background 

We review here some known results. 

1.0. Lemma. If Y has at most countably many isolated 

points and X is a Luzin set in Y~ then X has no uncountable 

discrete subsets. 

Proof. A discrete set of non-isolated points is n.w.d. 

In other words, X has spread ~O' or every subspace of X 

has the countable chain condition (c.c.c.). 

It is useful to rephrase the question of the existence of 

Luzin sets in terms of intrinsic properties of the set itself. 

We shall call a Luzin space a T space X such that2 

a) Every n.w.d. set in X is countable (i.e., X is a Luzin 

set in X) • 

b) X has at most countably many isolated points. 

c) X is uncountable. 

If X is a Luzin set in Y and Y has at most countably many 

isolated points, then X is a Luzin space, since (b) follows by 

Lemma 1.0 and (a) follows from the fact that every n.w.d. set 

in X is n.w.d. in Y. Thus, Theorem 0.0 is equivalent to the 

statement that there are no Luzin spaces. A similar argument 

also shows 

1.1. Lemma. If X is a Luzin space~ so is every uncountable 

subspace. 

Luzin spaces not only have spread ~O; they have height 

~Oi i.e., 
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1.2. Lemma. If X is a Luzin space 3 X is hereditapily 

LindeZof (HL). 

Proof. By 1.1, we need only show that X in Lindelof. Let 

u be an open cover of X. Since X has c.c.c., there is a counta­

ble v C u with U v dense in X. Then X\ U v is n.w.d. and 

hence countable, so there is a countable Vi C u with 

(U v)U (Uv l 
) =X. 

Of course, a Luzin subspace of E is hereditarily separable 

(HS) as well, but Luzin spaces in general are often not. In 

fact, van Douwen, Tall, and vleiss [vDTW] show that under CH the 

method of Luzin spaces is a very useful one for constructing 

various types of L-spaces (HL spaces which are not HS). 0.0 

shows that this method is closed to us under MA + ~ CH. By a 

different argument (Hajnal-Juhasz [HJ]), there is always a T2 

L-space regardless of the axioms of set theory. It is unknown 

whether MA + --, CH implies that there are no T L-spaces.3 

The next lemma shows that, in refuting Luzin spaces, we 

need only consider ones with no isolated points at all. Call 

X everywhere uncountable iff every non-empty open set in X is 

uncountable. Then 

1.3. Lemma. If X is a Luzin space 3 there is a Z C X with 

X\Z countable and Z everywherg uncountable. 

Proof. Let W = U {V : V is open in X and Ivi < ~O}. 

Since X is HL, Iwl ~ KO• Let Z = X\w. 

We recall here the standard construction of a Suslin tree 

from a Suslin line. Let Y be a Suslin line (a linear c.c.c. 

connected non-separable space). By passing to a suitable in­

terval, we may assume that Y is everywhere Suslin--i.e., all 

countable sets are n.w.d. Then define a tree T = U{T : a<w l },a 

where T is the set of elements on level a. T , defined bya a 
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induction on a, will be a maximal collection of non-empty open 

intervals. T is ordered by reverse inclusion. TO = {Y}. Given 

To.' T +l is chosen so that every interval in T + is properlya a l 

contained in some interval of T. If Y is a limit, T is de-
a y 

fined to be the set of non-empty intervals of the form 

int( n {J~ : ~ < y}), where each J~ E T~. To show that T is 
y 

maximal (i.e., U Ty is dense), we use the fact that the set of 

endpoints of the intervals in U {T ~ : ~ < y} is countable and 

hence n.w.d. Once we have T, the fact that T is Suslin follows 

immediately from the fact that Y is c.c.c. 

A curious sidelight to the construction is that, although 

in most spaces one needs CH to construct a Luzin set, Suslin 

lines are an exception: 

1.4. Lemma. If Y is a Suslin line~ then there is a Luzin 

set in Y. 

Proof. Let Va = U To.. Then the Va are decreasing and 

n {V : a < WI} = O. In a Suslin line, n.w.d. sets are separable;
a 

it follows that for every dense open W ~ Y, 3a(V
a 

c: W)
-

. So pick 

x a E V a and let X = {x
a a < WI }. 

A Luzin space need not be T since one can always tack on
3

, 

a countable T non-T space to a given Luzin space. However,2 , 
3 

1.5. Lemma. If X is a T Luzin space~ then X is a-dimen­
3 

sional (i.e.~ the clopen sets form a basis). 

Proof. Let x E X and let U be a neighborhood of x. We 

find a clopen B with x E B c: U. Since X is T and Lindelof, X3 

is normal. Let f : X ~ [0,1] with f(x) = ° and f equal to 1 

outside U. If f is not onto, fix r 4 range (f), and let B 

f-l[O,r) = f-l[O,r]. However, if f were onto, let K (a <wI)
a 

be disjoint perfect subsets of [0,1]. Then each f-IK is un­
a 

countable ancl closed, so int(f-lK ) # 0, so {int(f-IK ) ~ _<_wl~ a a 
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would contradict c.c.c. 

Remapk. For a less trivial example of a non-T Luzin3 

space: assume CH, let X C E be an everywhere uncountable Luzin 

set, and then refine the topology of X as per [HJ] to make X 

into a left-separated T L-space. With this topology, X is2 

still an everywhere uncountable Luzin space, and no uncountable 

subspace of X is T •
3 

2. Proof of Theorem 0.0 

We shall actually apply MA + -. CH twice. Our plan is to 

mimic the construction of a Suslin tree from a Suslin line, and 

produce a Suslin tree from a Luzin space, contradicting 

MA + -. CH (see [R], §5). However, since it is consisted to 

have CH (and hence Luzin spaces) but no Suslin trees, we cannot 

expect this construction to work too trivially. We must in a 

first application of MA + -. CH, prove enough about Luzin 

spaces to insure that the tree construction works; this is done 

in Lemma 2.3, which says that the regular open sets of a Luzin 

space behave sufficiently like the open intervals of a Sus lin 

line. 2.3 will be an easy consequence of the following fact 

wabout the Cantor space, 2 : 

w
2.0. Lemma (MA + -., CH). Suppose Z ~ 2 and IZ I ~ ~ 1. 

Then thepe is a family {K : a < wI} of disjoint closed subsets 
a 

of 2
w 

such that IK n z I 2:. ~ 1 for each a. a 

Proof. Let Za (a < WI) be disjoint subsets of Z of cardi­

nality ~ 1·. Now, by MA + --, CH, we know that each Za is of 

first category (see [R], §14), so there are closed n.w.d. 

K (n <w) with Za ~ U nKan. We shall show that we can forcean 

K to be disjoint from K for all n, m and all a ~ S. We may
an sm 

then simply let K be one of the K which covers ~ 1 pointsa an 

of Z . a 
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Let P be the set of pairs (p,a) such that
 

a) p and a are functions wi th domain UJ. x w.
 

b) For all a and n, p(a,n) is a clopen subset of 2 w, a(a,n)
 

is a finite subset of Za' and a(a,n) ~ p(a,n). 

c) For all but finitely many (a,n), p(a,n) = 2 w and 

a(a,n) = o. 

Define (p' ,a') 2(p,a) iff Vcm[p' (a,n) ~ P(a,n) and 

a'(a,n) ;?a(a,n)]. 

(c) insures that the conditions (p,a) are essentially
 

finitary. The standard ~-system argument shows that P has the
 

c.c.c. (See [R], §§16, 17 for other such arguments). 

Intuitively, (p,a) says, "For all a and n, 

a(a.,n) ~ K 5 p(a,n)"i the presence of the a part of our con­an
 

di tions enables us to force Z to be a subset of UK. More
 a n an
 

formally, if G is a filter in F, define K n {p (a,n)

an
 

3a(p,a) E G)}. So K is closed. To make Z C U K
 
an a n an 

insure that G intersects the dense set {(p,a) : 3n[z E a(a,n)]} 

for each z E Za. To make K n K = 0, make sure that G inter­an sm 

sects {(p,a) p(a,n) n p(S,m) = O}, which is dense whenever 

a ~ S since Za n Zs = O. This proves 2.0. If we want also 

K to be n.w.d., make G intersect the sets {(p,a) : F ~ P(a,n)}an
 

for each clopen F and each a,n.
 

2~1. Lemma (MA + -. CH). If X is a Luzin space and 

f X ~ 2
w is continuous, then the range of f is countable. 

Proof· Let Z = ran f. If IZ I ~ ~ l' let Ka be as in 2.0. 

Then as in the proof of 1.5, {int(f-IK ) a < wI} would contra-a 

dict c.c.c. 

2.2. Lemma (MA + -, CH). Let X be a Luzin space and 

F (n E w) clopen sets in X. Define x - y iff n 

Vn[x E F <=> y E F ]. Then there are only countably manyn n 

equivalence classes under ­
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Proof. Let X be the characteristic function of F .
F	 n 

n 
Define f : X + by (f(x» (n) = XF (x), and apply 2.1.2w 

n 

2.3. Lemma (MA + -, CH). Let X be an everywhere uncounta­

ble Luzin space. Let U~ (n,k E w) be regular open sets in X 

such that for each n~ 

a) The Un (k E w) are disjoint and
k 

b) U k U~ is dense. 

Then 

U{int( nn U~(n» : h E ww} 

is dense in X (ww is the set of functions from w to w). 

Proof· Suppose not. For h E wW, let Eh n n U~ (n). Let 

W be a non-empty open subset of X disjoint from each int(E ).
h 

Let 

Since X is a Luzin space, A is countable, and since X is every­

where uncountable W\A is uncountable and hence a Luzin space by 

1.1. For each n, Uk (U~ n (W\A» = W\A, and each Un	 n (W\A)k 

is clopen in W\A. Applying 2.2 to W\A and the U~ n (W\A), 

E n (W\A) = o for all but countably many h, so some E n, (W\A)h h 

is uncountable, so E n W is uncountable. Let V be a non-empty
h 

open subset of W with V C cl Eh . Then cl(V) ~ cl(E ) Ch
 

nn cl U~(n). Since U~(n) is regular open, int cl(V) C
 

On U~(n) = Eh , contradicting that W n int(Eh ) = o.
 

We now prove 0.0. Suppose there is a Luzin space, X. By 

1.3, we may assume X is everywhere uncountable. Define T verba­

tim as in the paragraph following 1.3, except that we replace 

1I 0pen interval ll by "regular open set. II When y is a limit, we 

use 2.3 (which holds by MA + --, CH) to check that UT	 y 
is dense:

ni.e. , we let y = {a. n E w}, and, for each n, let Uk (k E w)n 

be a 1 - 1 enumeration of T , and apply 2.3 to these un 
 k n 
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(technical point: if Ta. is finite, let U~ (k < j) enumerate
 
n n
 

Ta. and Uk = 0 for k.:. j). So, the construction works to give
 
n
 

a Suslin tree, which, by MA + ~ CH, is a contradiction.
 

Perhaps a slicker proof would be to simply remark that 2.3 

says that the regular open algebra is a Suslin algebra (i.e., a 

complete, non-atomic, c.c.c., (w,w)-distributive Boolean algebra), 

since this is known to yield a Suslin tree (by the same construc­

tion as in the above paragraph). 

3. Conclusion 

We may examine more closely our double use of MA + -. CH. 

The proofs above show that 

MA + -, CH => Lemma 2.0, and 

Lemma 2.0 => (There exists a Luzin space <=> 

There exists a Suslin tree). 

One then quotes the known result that under MA + -, CH, there 

are no Suslin trees. 

2.0 itself is quite strong, eliminating most examples of 

Luzin spaces. 2.0 implies (via 2.3) that no Luzin space can 

have a dense subspace with a coarser second countable T topology.
l 

In particular, under 2.0, there are no separable Luzin spaces, 

and there are no Sierpinski sets of reals (which would be Luzin 

sets in the density topology--see Tall [T]). 

However, 2.0 alone does not imply that there are no Luzin 

spaces at all. To see this, recall that a partial order P is 

said to have property K (for Knaster) iff every uncountable sub­

set of P has an uncountable subset which is pairwise compatible. 

An example of such is theP used in proving 2.0 (in fact, this 

P has wI as a precaliber). Let MA be Martin's axiom restrictedK 

to partial orders with property K; so MAK + ~CH => 2.0. Since 

it is consistent with MA + ~ CH to have a Suslin tree (seeK
 

[KT]), it is consistent with 2.0 to have a Luzin space.
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Finally, it is pointed out in [KT] that MA + -, CHK 

implies all the standard MA consequences regarding measure and 

category in~. Thus, as we remarked at the end of §O, these 

facts alone are insufficient to imply Theorem 0.0. 

References 

[vDTW]	 E. K. van Douwen, F. D. Tall, and W. A. R. Weiss, Non­

metrizable hereditarily Lindelof spaces with point­

countable bases from CH, to appear. 

[HJ]	 A. Hajnal and I. Juhasz, On hereditarily a-Lindelof and 

ex-separable spaces, Ann. Univ. Sci. Budapest 11 (1968), 

115-124. 

[KT]	 K. Kunen and F. D. Tall, Between Martin's axiom and 

Souslin's hypothesis, Fund. Math. F to appear. 

[L]	 N. Lusin, Sur un probleme de M. Baire, Comptes Rendus 

(Paris) 158 (19l4), 1258-1261. 

[R]	 M. E. Rudin, Martin's axiom, to appear in Handbook of 

Mathematical Logic, North Holland, 1977. 

[T]	 F. D. Tall, The density topology, Pacific J. Math., 

62 (1976) 275-284. 

University of Wisconsin 

Madison, Wisconsin 53706 


	c0.pdf



