TOPOLOGY PROCEEDINGS

Volume 1, 1976
Pages 209-219
http://topology.auburn.edu/tp/

SOME PROPERTIES OF WHITNEY CONTINUA IN THE HYPERSPACE $C(X)$

by
C. Bruce Hughes

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

SOME PROPERTIES OF WHITNEY CONTINUA IN THE HYPERSPACE C (X)

C. Bruce Hughes

1. Introduction

Let X denote a continuum (i.e., a compact, connected, nonvoid, metric space). The hyperspace of subcontinua of x, denoted $C(X)$, is the space of all subcontinua of X endowed with the Hausdorff metric (e.g., [4]). A Whitney map on $\mathrm{C}(\mathrm{X})$ is a continuous function $\mu: C(X) \rightarrow[0,1]$ satisfying the following properties:
(i) $\mu(\{x\})=0$ for each $x \in X$,
(ii) $\mu(X)=1$, and
(iii) if $A \subseteq B$ and $A \neq B$, then $\mu(A)<\mu(B)$.

Whitney [13] has shown that such functions always exist. Throughout this paper, μ will stand for an arbitrary Whitney map on $C(X)$. It is known [2] that μ is monotone; that is, $\mu^{-1}(t)$ is a subcontinuum of $C(X)$ for each t. The continua $\mu^{-1}(t)$ are called the Whitney continua of x .

In Section 2 we characterize the separating points of $\mu^{-1}(t)$ in terms of their separating properties as subcontinua of X . The rest of the paper contains applications of this result. In Section 3 we obtain some information about the Whitney continua of arc-like and circle-like continua. Section 4 establishes classes of continua which have the property that $\mu^{-1}(t)$ is an arc for t sufficiently close to 1 .

The author would like to express his appreciation to G. R. Gordh, Jr. for many lengthy discussions and helpful comments about the contents of this paper.

2. Separating points in $\boldsymbol{\mu}^{-1}(\mathbf{t})$

If $G_{1}, G_{2}, \ldots, G_{n}$ are open subsets of X, then $N\left(G_{1}, \ldots, G_{n}\right)$
denotes the set of all points A in $C(X)$ such that $A \subseteq U\left\{G_{i}:\right.$ $i=1,2, \ldots, n\}$ and $A \cap G_{i} \neq \phi$ for each $i \leq n$. Recall that the collection of all such subsets of $C(X)$ forms a basis for the Vietoris finite topology on $C(X)$. It is well known that the Hausdorff metric and the Vietoris finite topology agree on $C(X)$ (e.g., [81).

If $t \in\{0,1]$ and $x \in X$, then let $C_{x}^{t}=\left\{A \in \mu^{-l}(t): x \in A\right\}$. Rogers [10, Theorem 4.2] has shown that C_{x}^{t} is an arcwise connected subcontinuum of $C(X)$.

Theorem 2.1. Let A be an element of $C(X)$ with $\mu(A)=t$. Then A separates $\mu^{-1}(t)$ if and only if there exists a separation $X-A=X_{1} U X_{2}$ such that for any $B \in \mu^{-1}(t)$ either $B \subseteq X_{1} \cup A$ or $B \subseteq X_{2} \cup A$.

Proof. (only if) Let $\mu^{-1}(t)-\{A\}=\mathcal{S}_{1} U \mathfrak{S}_{2}$ be a separation. Let

$$
\begin{aligned}
& x_{1}=U\left\{B \in \mu^{-1}(t): B \in \delta_{1}\right\}-A \text { and } \\
& X_{2}=U\left\{B \in \mu^{-1}(t): B \in S_{2}\right\}-A .
\end{aligned}
$$

For each $p \in X$ there exists $p \in \mu^{-1}(t)$ with $p \in P$, thus $X-A=X_{1} U X_{2}$. To show $X_{1} \cap X_{2}=\phi$ suppose on the contrary that $x \in X_{1} \cap X_{2}$. Because $x \notin A$, it follows that $C_{x}^{t} \subseteq \mathcal{S}_{1} \cup \mathcal{S}_{2}$. Since $x \in X_{1} \cap X_{2}$, there exists $B_{1} \in \mathcal{S}_{1}$ and $B_{2} \in \mathcal{S}_{2}$ such that $x \in B_{1}$ and $x \in B_{2}$. The fact that B_{1} and B_{2} are in C_{x}^{t} implies $c_{x}^{t} \cap \mathcal{S}_{1} \neq \phi \neq C_{x}^{t} \cap \mathcal{S}_{2}$. This contradicts the fact that \mathcal{S}_{1} and δ_{2} are separated because C_{x}^{t} is a continuum. To show that X_{1} and X_{2} are separated, by symmetry it suffices to show that no convergent sequence of points in X_{1} converges to a point in X_{2}. To this end suppose $\left\{p_{n}\right\}$ is a sequence of points in X_{1} which converges to some $p \in X$. For each n, choose $P_{n} \in \mathcal{S}_{1}$ such that $P_{n} \in P_{n}$. If P denotes the limit of a convergent subsequence of $\left\{P_{n}\right\}$, then $p \in P$. Since $\mu^{-1}(t)$ is a subcontinuum of $C(X)$ and ${ }^{\wedge}{ }_{1}$ and $\stackrel{\wedge}{2}_{2}$ are separated, it follows that $P \in S_{1} U\{A\}$. Hence,
$\mathrm{p} \in \mathrm{P} \subseteq \mathrm{X}_{1} \cup \mathrm{~A}$ and $\mathrm{X}-\mathrm{A}=\mathrm{X}_{1} \cup \mathrm{X}_{2}$ is a separation. Finally, suppose $B \in \mu^{-1}(t)$ and that $B \in \mathfrak{S}_{1}$. Then $B \subseteq U\left\{M \in \mu^{-1}(t): M\right.$ $\left.\in \mathcal{S}_{1}\right\} \subseteq X_{1} \cup A$. Hence, for any $B \in \mu^{-1}(t)$ either $B \subseteq X_{1} \cup A$ or $\mathrm{B} \subseteq \mathrm{X}_{2} \cup \mathrm{~A}$.
(if) Let $\mathscr{T}_{1}=\left\{B \in \mu^{-1}(t): B \subseteq X_{1} \cup A, B \neq A\right\}$ and
$\mathscr{S}_{2}=\left\{B \in \mu^{-1}(t): B \subseteq X_{2} \cup A, B \neq A\right\}$
To see that $\mu^{-1}(t)-\{A\}=\mathscr{J}_{1} \cup \mathscr{T}_{2}$ is a separation, note that $N\left(X_{1}, X\right)$ and $N\left(X_{2}, X\right)$ are open subsets of $C(X)$ such that $\mathscr{S}_{1}=N\left(x_{1}, x\right) \cap \mu^{-1}(t)$ and $\mathscr{S}_{2}=N\left(x_{2}, x\right) \cap \mu^{-1}(t)$.

Using Theorem 2.1 we obtain a simple proof of the following well known result originally due to Krasinkiewicz [5] (see also [9], [10]).

Coroztary 2.2. If X is an are, then $\mu^{-1}(t)$ is an are for each $t<1$.

Proof. Let p and q be the non-separating points of X. If $t<1$, then it is easily seen that there exist exactly one subcontinuum P of X and one subcontinuum Q of X such that $p \in P$ and $q \in Q$ and $P, Q \in \mu^{-1}(t)$. If $A \in \mu^{-1}(t)$ such that $P \neq A \neq Q$, then A separates x in the way required by Theorem 2.1. Thus, A separates $\mu^{-1}(t)$ and $\mu^{-1}(t)$ has exactly two non-separating points. It follows that $\mu^{-1}(t)$ is an arc.

Example 2.3. Let X be a simple triod (i.e., a continuum homeomorphic to the capital letter T). Let Y be a proper subcontinuum of X which is also a simple triod and which separates X. Let $\mu(Y)=t$. Then Y does not separate X in the way required by Theorem 2.1 and thus Y तoes not separate $\mu^{-1}(t)$.

3. Whitney continua of arc-like and circle-like continua

In this section we give sufficient conditions on $\mu^{-1}(t)$ to insure that x be decomposable. Information about the Whitney continua of arc-like and circle-like continua is obtained in
the corollaries. Corollary 3.2 answers a question of J. T. Rogers, Jr. [l0]. The proofs of Corollaries 3.3 and 3.4 were pointed out to the author by G. R. Gordh, Jr.

Theorem 3.1. If $\mu^{-1}(t)$ is irreducible and decomposable for some $\mathrm{t}<1$, then X is decomposable.

Proof. Let A and B be points in $\mu^{-1}(t)$ such that $\mu^{-1}(t)$ is irreducible from A to B. Let \mathfrak{S} and \mathfrak{S} be proper subcontinua of $\mu^{-1}(t)$ with $A \in \mathscr{S}$ and $B \in \mathscr{T}$ such that $\mu^{-1}(t)=S \cup \mathscr{S}$. From [4, Lemma l.l] it follows that $\cup S$ and $\cup \mathscr{T}$ are subcontinua of X. It is clear that $x=(\cup \mathfrak{S}) \cup(\cup \mathfrak{T})$, so if $\cup \mathcal{S}$ and $\cup \mathscr{S}$ are proper subcontinua of X, then the theorem is proved. Assume for the purpose of this proof that $x=\cup \mathfrak{S}$. Then $A \subseteq \cup \mathfrak{J}$ so there exists $M \in \mathscr{T}$ such that $A \cap M \neq \phi$. This implies ([9] or [10]) that there is an arc \mathscr{G} in $\mu^{-1}(t)$ with endpoints A and M. By the irreducibility of $\mu^{-1}(t)$, we have $\mathfrak{S}-\mathscr{S} \subseteq \mathscr{G}$. It follows that a point N in $\mu^{-1}(t)$ can be choosen in $\mathscr{S}-\mathscr{S}$ such that N is different from A and N separates $\mu^{-1}(t)$. From Theorem 2.1, N is a subcontinuum of X which separates X and hence, X must be decomposable.

A continuum X is said to be aro-like if for each positive number ε, there is an ε-map (i.e., a map having point-inverses of diameter less than ε) of X onto an arc. Circle-like continua are defined in the same manner.

Corollary 3.2. If X is indecomposable and arc-like, then $\mu^{-1}(t)$ is indecomposable and arc-like for each $t<1$.

Proof. Krasinkiewicz [5] has shown that $\mu^{-1}(t)$ must be arc-like for each $t<1$. Since arc-like continua are unicoherent and are not triods, it follows from [ll] that $\mu^{-1}(t)$ is irreducible for each $t<1$. If $\mu^{-1}(t)$ were decomposable for some $t<1$, then by Theorem 3.1 X would be decomposable also. Thus, $\mu^{-1}(t)$
is indecomposable and arc-like for each $t<1$.

Corollary 3.3. Let X be arc-like and circle-iike. Then $\mu^{-1}(t)$ is arc-like and circle-like for each $t<1$ if and only if X is indecomposabてe.

Proof. (only if) Suppose X is arc-like, circle-like and decomposable. Rogers [10, Theorem 5.1] has shown that there exists $t<1$ such that $\mu^{-l}(t)$ is not circle-like. This is a contradiction.
(if) Since X is indecomposable and arc-like, it follows from Corollary 3.2 that $\mu^{-1}(t)$ is indecomposable and arc-like for each $t<1$. Burgess [1] has shown that such continua must also be circle-like.

Corolzary 3.4. Let X be circle-like. Then $\mu^{-1}(t)$ is circle-like for each $t<1$ if and only if X is indecomposable or X is not arc-like.

Proof. (only if) Suppose X is decomposable and arc-like. Since X is decomposable, arc-like, and circle-like, it follows from [10, Theorem 5.1] that $\mu^{-1}(t)$ is not circle-like for some $t<1$. This is a contradiction.
(if) If X is circle-like and not arc-like, then $\mu^{-1}(t)$ is circle-like for each $t<1$ by [10, Theorem 4.7]. If X is indecomposable and arc-like, then by Corollary $3.2 \mu^{-1}(t)$ is indecomposable and arc-like for each $t<1$. Burgess [1] proved that such continua are circle-like.

4. Whitney continua of certain irreducible continua

In this section we establish two classes of irreducible continua which have the property that $\mu^{-1}(t)$ is an arc for t sufficiently close to 1 . It is also shown that when $\mu^{-1}(t)$ is an arc, $\mu^{-1}([t, l])$ is actually homeomorphic to the cone over an arc.

Let X be irreducible between a pair of points a and b. A decomposition \mathscr{D} of X is said to be admissible if each element of \mathscr{D} is a nonvoid proper subcontinuum of x, and each element of \mathscr{D} which does not contain a or b separates x. It is known
[3] that X / \mathscr{D} is an arc whenever \mathscr{D} is an admissible decomposition of X .

X is of type A provided that X is irreducible and has an admissible decomposition; X is of type A^{\prime} if X is of type A and has an admissible decomposition each of whose elements has void interior. X is said to be hereditarily of type A^{\prime} if every nondegenerate subcontinuum of X is of type A^{\prime}. The reader is referred to [3] and [12] for general results concerning continua of type A. For example, an irreducible continuum X is of type A^{\prime} if and only if each subcontinuum of X with nonvoid interior is decomposable ([3, Theorem 2.7] or [12, Theorem 10, p. 15]). It is also known that X is hereditarily of type A^{\prime} if and only if X is arc-like and hereditarily decomposable [12, Theorem 13, pg. 50].

Theorem 4.1. If X is hereditarily of type A ', then there exists $t_{0}<1$ such that $\mu^{-1}(t)$ is an arc whenever $t_{0} \leq t<1$.

Proof. Let a and b be points in X such that X is irreducible between a and b , and let $\mathscr{D}=\{\mathrm{D}(\mathrm{x})\}$ be an admissible decomposition of x each of whose elements has void interior. Let $t_{o}=\operatorname{lub}\{\mu(D(x)): D(x) \in \mathscr{D}\}$. Clearly, $t_{o}<1$. It follows from [3, Theorem 2.5] that $D(a)=\{x \in X: X$ is irreducible between x and $b\}$ and $D(b)=\{x \in X: X$ is irreducible between a and $x\}$. If $t_{o} \leq t<1$, it will be shown that there exists a unique $A \in \mu^{-1}(t)$ such that $D(a) \cap A \neq \phi$. It is easy to see that there exists some $A \in \mu^{-1}(t)$ such that $D(a) \cap A \neq \phi$. To prove uniqueness, suppose there exists $P \in \mu^{-1}(t)$ with $D(a) \cap P \neq \phi$ and $A \neq P$. Since $D(a)=\{x \in X: X$ is irreducible between x and $b\}$,
it follows that $D(a) \subseteq A$ and $D(a) \subseteq P . \quad$ Since $A \neq P$, pick $x \in A-P$ and $y \in P-A$. It follows that $x, y \notin D(a)$. Thus, let A^{\prime} be a proper subcontinuum of X containing both x and b, and let P^{\prime} be a proper subcontinuum of X containing both y and b. Since $A^{\prime} U P^{\prime}$ is a subcontinuum of X containing x and y but not a, A contains a and x but not y, and P contains a and y but not x, it follows that a, x, y are three points no one of which cuts between the other two. This is a contradiction to [3, Theorem 5.3]. Hence, A is unique and in a similar way there exists a unique $B \in \mu^{-l}(t)$ such that $D(b) \cap B \neq \phi$.

It will now be shown that if $M \in \mu^{-1}(t)$ with $A \neq M \neq B$, then M separates $\mu^{-1}(t)$. To apply Theorem 2.1 we must first show that M separates X. To this end it will be shown that there exists $x_{0} \in X$ such that $D\left(x_{0}\right) \subseteq M$, and it will then follow that M separates X since $a, b \notin M$. Suppose on the contrary that for each $x \in X, D(x) \nsubseteq M$. Since $\mu(M) \geq t_{o}$, there exist $x_{1}, x_{2} \in M$ such that $D\left(x_{1}\right)$ and $D\left(x_{2}\right)$ are distinct elements of \mathfrak{D}. It now follows from [3, Theorem 2.3] that there exists $x_{0} \in M$ such that $D\left(x_{0}\right) \subseteq M$. Since M separates X, let $X-M=X_{1} \cup X_{2}$ be a separation and suppose there exists $N \in \mu^{-1}(t)$ such that $N \nsubseteq X_{1} \cup M$ and $N \nsubseteq X_{2} U M$. Pick $x \in X_{1} \cap N, y \in X_{2} \cap N$, and $z \in M-N$. It can be seen that no one of x, y, z cuts between the other two which contradicts [3, Theorem 5.3]. Therefore, M separates X in the way required by Theorem 2.1 and thus M separates $\mu^{-1}(t)$. It has been shown that $\mu^{-1}(t)$ contains at most two non-separating points A and B, and hence, $\mu^{-1}(t)$ is an arc.

Notation. Let X be a continuum of type A and let $\mathscr{D}=\{D(x)\}$ be an admissible decomposition of X. The following definitions of t_{0}, t_{1}, and t_{2} will be used in Theorem 4.2:

$$
t_{o}=\operatorname{lub}\{\mu(D(x)): D(x) \in \mathscr{D}\}
$$

$$
\begin{aligned}
& t_{1}=\operatorname{lub}\{\mu(Y): Y \in C(X) \text { and there exists } D(x) \in \mathscr{D} \text { such } \\
& \quad \text { that } D(x) \nsubseteq Y \text { and } Y \cap D(x) \neq \phi \neq Y \cap(X-D(x))\} ; \\
& \quad \text { and, } \\
& t_{2}=\max \left\{t_{0}, t_{1}\right\} .
\end{aligned}
$$

Note that t_{2} might not be less than 1 . The continuum pictured in Figure 1 is a continuum of type A^{\prime} such that t_{2} is not less than 1 . This continuum also has the property that for all t, $\mu^{-1}(t)$ is not an arc. If this continuum is modified in the obvious way so that it contains only finitely many circles, then it would be a continuum of type A^{\prime} such that $t_{2}<1$. Neither of these continua is hereditarily of type A^{\prime}. Another example of a continuum of type A^{\prime} such that $t_{2}<1$ is a simple triod with a half ray spiraling down on it.

Figure 1

Theorem 4.2. If X is a continuum of type A and $\mathrm{t}_{2}<\mathrm{t}<1$, then $\mu^{-l}(t)$ is an arc.

Proof. Let a and b be points in X such that X is irreducible between a and b, let $\mathscr{D}=\{D(x)\}$ be an admissible decomposition of x, and let t be such that $t_{2}<t<1$. It will first be shown that there exists a unique $A \in \mu^{-1}(t)$ such that $a \in A$. It is easy to see that there exists some $A \in \mu^{-1}(t)$ such that $a \in A$. To prove uniqueness, suppose there exists $P \in \mu^{-1}(t)$ with $a \in P$ and $A \neq P$. Since $A \nsubseteq P$ and $P \nsubseteq A$, there exist $x \in A-P$ and $y \in P-A$. Since $t_{2}<t, D(x) \subseteq A-P$. Let $X-D(x)=S U T$ be a separation and assume $P \subseteq S . \quad$ Since $a \in P, a \in S$ and $b \in T$. Because $D(x) \cup T$
is a continuum, so is $A \cup T$. But $a, b \in A \cup T$ and $y \in X-(A \cup T)$ which contradicts the fact that X is irreducible between a and b. Thus A is unique, and similarly there exists a unique $B \in \mu^{-1}(t)$ such that $b \in B$. It will now be shown that if $M \in \mu^{-1}(t)$ such that $A \neq M \neq B$, then M separates $\mu^{-1}(t)$. Pick $x \in M$. Then since $a, b \notin M, D(x) \subseteq M$, and $D(x)$ separates X, it follows that M separates X. Let $X-M=X_{1} \cup x_{2}$ be a separation with $a \in X_{1}$ and $b \in X_{2}$. To apply Theorem 2.1 we must show that if $N \in \mu^{-1}(t)$, then either $N \subseteq X_{1} U M$ or $N \subseteq X_{2} U M$. Suppose on the contrary that there exists $N \in \mu^{-1}(t)$ such that $N \nsubseteq x_{1} \cup M$ and $N \nsubseteq x_{2} \cup M$. It follows that $x_{1} \cap N \neq \phi \neq x_{2} \cap N$ and $M-\left(X_{1} \cup N U X_{2}\right) \neq \phi . \quad$ Pick $x_{1} \in X_{1} \cap N$ and $x_{2} \in X_{2} \cap N$ such that $D\left(x_{1}\right)$ and $D\left(x_{2}\right)$ separate x. Let $X-D\left(x_{1}\right)=S_{1} \cup T_{1}$ and $x-D\left(x_{2}\right)=S_{2} U T_{2}$ be separations with $a \in S_{1} \cap S_{2}$ and $b \in T_{1} \cap T_{2}$. It follows that $S_{1} \cup D\left(x_{1}\right) \cup N U D\left(x_{2}\right) \cup T_{2}$ is a proper subcontinuum of X containing a and b, which contradicts the fact that X is irreducible between a and b. It has been shown that $\mu^{-1}(t)$ contains at most two non-separating points A and B, and hence, $\mu^{-1}(t)$ is an arc.

In [4] Kelley defined the function $\sigma: C(C(X)) \rightarrow C(X)$ by $\sigma(\mathscr{M})=U(\mathscr{M})$ for each subcontinuum \mathfrak{M} of $C(X)$. He showed that σ is a continuous function. The restriction of σ to $C\left(\mu^{-1}(t)\right)$, is denoted σ_{t}. Krasinkiewicz [6] showed that σ_{t} is a function from $C\left(\mu^{-1}(t)\right)$ onto $\mu^{-1}([t, 1])$. In the next theorem it is shown that σ_{t} is also one-to-one whenever $\mu^{-1}(t)$ is an arc; hence in this case $\mu^{-1}([t, 1])$ is a two cell.

Theorem 4.3. If $\mu^{-1}(t)$ is an arc, then σ_{t} is one-to-one and hence, $\mu^{-1}([t, 1])$ is homeomorphic to the cone over an are. Proof. Let \mathcal{H} and \mathcal{K} be distinct subcontinua of $\mu^{-1}(t)$. Assume there exists $A \in \mathscr{H}-\mathbb{K}$. Then there exists a separating point M of $\mu^{-1}(t)$ such that $A \neq M$ and M separates A from \mathcal{K} in
$\mu^{-1}(t)$. Let $\mu^{-l}(t)-\{M\}=S_{1} \cup \mathcal{S}_{2}$ be a separation with $A \in \mathcal{S}_{1}$ and $\mathscr{K} \subseteq \mathcal{S}_{2} . \quad$ Let

$$
\begin{aligned}
& X_{1}=U\left\{N \in \mu^{-1}(t): N \in \mathcal{S}_{1}\right\}-M \text { and } \\
& X_{2}=U\left\{N \in \mu^{-1}(t): N \in \delta_{2}\right\}-M
\end{aligned}
$$

From the proof of Theorem 2.1, it follows that $X_{1} \cup X_{2}$ is a separation of $X-M$. Clearly, $U(\mathscr{K}) \subseteq X_{2} \cup M$ and $A \cap X_{1} \neq \phi$, so $\cup(\mathscr{H}) \neq U(\mathcal{K})$ and $\sigma(\mathscr{H}) \neq \sigma(\mathscr{K})$. Hence, σ_{t} is a homeomorphism of $C\left(\mu^{-1}(t)\right)$ onto $\mu^{-l}([t, l])$. Since $\mu^{-1}(t)$ is an arc, $C\left(\mu^{-1}(t)\right)$ is homeomorphic to the cone over an arc and thus, $\mu^{-l}([t, l])$ is homeomorphic to the cone over an arc.

Corollary 4.4. If X is are-like and hereditarily decomposable, then for some $t<1, \mu^{-1}([t, 1])$ is a two celz.

Remark. In a recent preprint [7] J. Krasinkiewicz and Sam B. Nadler, Jr. have proven Corollary 3.2 and have shown that if X is arc-like and decomposable, then there exists $t_{o}<l$ such that $\mu^{-1}(t)$ is an arc whenever $t_{o} \leq t<1$. Since continua hereditarily of type A^{\prime} are arc-like and hereditarily decomposable, Theorem 4.1 follows immediately from their results.

References

1. C. E. Burgess, Chainable continua and indecomposability, Pacific J. Math. 9 (1959), 653-659.
2. C. Eberhart, and S. B. Nadler, Jr., The dimension of certain hyperspaces, Bull. Polon. Acad. Sci. 19 (1971), 1027-1034.
3. G. R. Gordh, Jr., Monotone decompositions of irreducible Hausdorff continua, Pacific J. Math. 36 (1971), 647-658.
4. J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36.
5. J. Krasinkiewicz, On the hyperspaces of snake-like and cir-cle-like continua, Fund. Math. 83 (1974), 155-164.
6. \qquad , On the hyperspaces of hereditarily indecomposable continua, Fund. Math. 84 (1974), 175-186.
\qquad , and S. B. Nadler, Jr., Whitney properties, to appear in Fund. Math.
7. E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182.
8. S. B. Nadler, Jr., Some basic connectivity properties of Whitney map inverses in $\mathrm{C}(\mathrm{X})$, Studies in Topology, Acad. Press, New York-San Francisco-London, 1975, 393-410.
9. J. T. Rogers, Jr., Whitney continua in the hyperspace $\mathrm{C}(\mathrm{X})$, Pacific J. Math. 58 (1975), 569-584.
10. R. H. Sorgenfrey, Concerning triodic continua, Amer. J. Math. 66 (1944), 439-460.
11. E. S. Thomas, Jr., Monotone decompositions of irreducible continua, Rozprawy Matematyczne 50, Warszawa, 1966.
12. H. Whitney, Regular families of curves, I., Proc. Nat. Acad. Sci. USA 18 (1932), 275-278.

University of Kentucky
Lexington, Kentucky 40506.

