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WEAKLY COLLECTIONWtS,E HAUSDORFF SPACES 

Franklin D. Tall 1 

The Normal Moore Space Conjecture, namely that normal 

Moore spaces are collectionwise normal and hence metrizable, is 

perhaps the outstanding open problem in set-theoretic topology. 

Partial results obtained by the author [T ] and W. Fleissnerl 

[F ] use non-elementary set-theoretic methods to achieve thel 

consistency of e.g. normal Moore spaces being collect~ionwise 

Hausdorff. For a long time it was open whether the generalized 

continuum hypothesis (GCH) sufficed to achieve that result, but 

K. Devlin [D] has just proved that it does not. We shall show 

however that GCH does yield a wea~ variant. 

Definition. Let ~ be a cardinal. A space is (weakly) 

~-collectionwise Hausdorff if for every closed discrete subspace 

of cardinality ~, there exist mutually disjoint open sets about 

(~ of) the points of the subspace. A space is (weakly) collec­

tionwise Hausdorff if it is (weakly) ~-collectionwise Hausdorff 

for every ~. 

Theorem 1. GCH implies every normal Moore space is weakly 

collectionwise Hausdorff. 

Corollary 2. It is consistent with the usual axioms of 

set theory that every normal Moore space is weakly collection-

wise Hausdorff~ but that there is a normal Moore spac~e that is 

not collectionwise Hausdorff. 

As will be seen in the proof of Theorem 1, the failure of 

weak ~-collectionwise Hausdorffness functions as a weakening of 

the ~-chain condition (every collection of disjoint open sets 

lThe author acknowledges support from Grant A-7354 of the 
National Research Council of Canada. 
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has cardinality <A) which is yet sufficient for some of the 

purposes for which that condition is used. Indeed, our results 

and proofs are best viewed as generalizations of Jones [J] and 

Sapirovskii [8]. 

Recall the character of a space is the supremum of minimal 

cardinalities of local neighborhood bases for points in the 

space. Fleissner actually proved that Cadel's Axiom of Con­

~o
structibility implies every normal space of character <2 is
 

cOllectionwise Hausdorff. (Moore spaces have character ~~O).
 

We shall prove
 

Theorem 3. GCH implies every normal space of character
 

<2 
~ 

0 is weakly collectionwise Hausdorff.
 

The proof divides into a large number of cases, depending
 

on what kind of cardinal A is. We state the specifics in the
 

following theorem from which Theorem 3 follows immediately.
 

Theorem 4. a) If A ~ ~ 0 and X is regu lar or normal, X is 

A-collectionwise Hausdorff. 

A
2Kb) If A = K+ and < 2 , and if X is normal 

and has character ~2K, then X is weakly A-collectionwise Haus­

dorff·
 

c) If A is a regular limit cardinal such that
 

A
26 < 2 , and if X is normal and has character ~26, then X is 

w'eakly A-collectionwise Hausdorff. 

d) If A is a singular cardinal with countable 

cofinality and X is normal and weakly K-collectionwise Hausdorff 

for all K < A then X is weakly A-collectionwise Hausdorff. 

e) If A is a singular cardinal with uncountable 

cofinality and for every K < A, 2 
K = K+, then if X is normal, 

has character less than A, a'nd is weakly K-collectionwise Haus­

dorff for all K < A, then X is weakly A-collectionwise Hausdorff. 

The proof of a) is easy and well-known so is left to the 
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reader. 

Proof of b). Assume on the contrary that X is a normal 

space of character <2 K and that Y is a closed discrete subspace 

of X of cardinality A. such that "separated" subsets of Y have 

cardinality ~K. Let Y = {Ya}a<A.. Fix for each a a neighbour­

hood base t8 for y , I ffi I < 2 K. By normali ty, for each Z c Y a a a 

there is an open Uz ~ Z, U n (Y - ~) =~. For each Z pick az 
maximal disjoint collection a5 Z of elements of ffi Ct' s, a E Z. 

Then Z1 ~ Z2 impl ies a5 Z1 ~ a5 Z2 so the map Z -+ a5 Z establ ishes 

that 21.. ~ (2 K • A.) K and hence 21.. = 2 K. 

The proof of case c) is like that of b) and is therefore 

omitted. Recall that v 6 = I v K. 
K<A. 

To prove d), partition A. into countably many pieces of 

smaller cardinality and use normality to separate them. 

The proof of e) is a minor modification of Fleissner's 

proof [F l ] of the corresponding result for collectionwise 

Hausdorffness. We indicate the necessary change. Fleissner 

divides his closed discrete subspace Y into cofinality of A. 

disjoint equivalence classes, each of cardinality less than A.. 

By hypothesis each equivalence class is separated. Y is also 

divided into countably many disjoint pieces {Yi}i<w. These 

can be separated from each other by normality. Fleissner then 

proves that the traces of the equivalence classes on any Y cani 

be separated from each other. By intersecting all these separa­

tions suitably, a separation of Y is obtained. We proceed in 

the same way save that given an equivalence class of cardinality 

K, we separate K of the points and "throwaway" the rest. Since 

the equivalence classes cover Y, when we are through we have 

separated A. points. 

Thanks to Fleissner [F ] one expects cardinality arguments
3

concerning closed discrete subspaces to work with minor changes 
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when normality is replaced by countable paracompactness. We 

do not as yet have the best possible results, but by modifying 

Fleissner's arguments we get 

Theorem 5. Assume Then every countably 

paracompact space of character <2 6 is weakly A-collectionwise 

Hausdorff· 

Proof· Let Y and ffi be as in the proof of Theorem 4. Let 
a
 

{ S a < A} index the countable sequences of disjoint collec­

a 

tions of elements of the ffi 's. This can be done since 
a
 

( (A • 2 6) 6) ~ 0 ( A6) ~ 0 = A. Let S { § : 0 < n < w}.
 
a o"n 

Partition Y into {Yn}n<w as follows. If for each n >0 

y E ~ , then y E YO. Otherwise y E Y , where n is least a o"n a a n 

such that y ~ ~ . Let V = X - (Y - Y ). If X is counta­a a,n n n 

bly paracompact, there is a locally finite open refinement lD 

of {Vn}n<w. Without loss of generality assume lD = {Wn}n<w and 

N c V. For each n > 0 pick a maximal disjoint collection ~ n - n n 

of members of 93 's included in ~'l. Note by maximali ty that a n 

U § :::> w n Y = Y. There is an a such tha t {~n: 0 < n < w} = S f'J n - n n • 

u. 

Consider yo,. If yo, E YO' then {Wn}n<w is not locally finite, so 

neither is 'lc}. If Yo, E Y ' n > 0, then Yo, <i u ~ n' contradiction.n 

Eric van Douwen has disposed of A'S with countable co­

finality and has kindly' permitted us to include his result: 

Theorem 6. If X is countably paracompact~ it is weakly 

~O-collectionwise Hausdorff. If A is a cardinal of countable 

cofinality and X is also weakly K-collectionwise Hausdorff for 

all K < A~ then X is weakly A-collectionwise Hausdorff. 

Proof. Let X be countably paracompact. Let A be an in­

finite cardinal of countable cofinality. If A is uncountable, 

assume X is weakly K-collectionwise Hausdorff for all K < A. 

Let Y be a closed discrete subspace of X of cardinality A. Let 
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{y be a partition of Y such thatn}n <w
 

1) if A IY I = 1 for all n,
~ 0' n 

2) if A > ~O' IY I is a regular cardinal and IYn I < IYn + l In
 

for all n.
 

By hypothesis, for each n there is Zn ~ Y ' IZnl = IYnl,n 

and open sets {V(x): x E Zn}' such that x E V(x) and for dis­

tinct x,y E Zn' V(x) n V(y) S. Let Z U Zn. Let {Un: n < w} 
n<w 

be a precise locally finite open refinement of {(X - (Z - Zn): 

n < w}. For each x E Zn choose a neighbourhood N(x) S:~ V(x) n Un 

which intersects only fini tely many Uk's. For n, k < (jJ define 

Z = {x E Z : for all m >k, N(x) n Urn = S}.n,k n
 
w
Since IZ I is regular, there is an f E w such that 

n !Zn,f(n) 
wIZ I· Define g E w by g (0) = 0, g(n + 1) f(g (n)) Let n 

II 

F = Z Let F Then IFI A and N (x) n N (y) = ~ n n, f(n)· U Fg(n)"
n<w 

for any two distinct x,y E F. 

Corollary 7. GCH implies every countably paracompact space 
~o 

of character ~2 is weakly A-collectionwise Hausdorff for 

every regular A and every singular A with countable cofinality. 

We conjecture that the Corollary is true for all cardinals. 

It is possible to formulate versions of our results without re­

course to cardinal arithmetic hypotheses but by no means without 

cardinal arithmetic. We give an example and leave its proof and 

generalizations to the reader. 

Theorem 8. Suppose X is normal or countably paracompact and 
~O 

has character <2 Then if Y is a closed discrete subspace of 
~o 

X of cardinality 2 ~ there exist mutually disjoint open sets 

about ~ 1 points of Y. 

Applications of collectionwise Hausdorffness are rare; it 

is therefore to be expected that applications of the weak vari ­

ant are rarer. We do have one however, and another one appears 
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in [GW]. We state the simplest case, which strengthens results 

of sapirovskii [8]. 

Definition. A space satisfies the discrete countable chain 

condition [W] if every discrete collection of open sets is 

countable. A space is ~ I-compact if every closed discrete sub­

space is countable. 

~o ~ 1. .
Theorem 9. 2 < 2 1-mpl1-es every normal space of 

character 22 
~O 

satisfying the discrete countable chain condi­

tion is ~ I-compact. 

Proof. If such a space had an uncountable closed discrete 

subspace, by Theorem 4b) there would exist pairwise disjoint 

open sets about uncountably many of the points. By normality 

these open sets could be shrunk to a discrete collection. 

Aside from the singular cardinal of uncountable cofinality 

case for countable paracompactness which we cannot settle, there 

are several other problems. Can normality be replaced by 

countable paracompactness in the consistency results alluded to 

on page I? Can "weakly collectionwise Hausdorff" be improved to 

"weakly collectionwise normal"? 

We next turn our attention to examples. 

Example 1. Bing's Example H [B ] is perfectly normal (hencel 
~l 

countably paracompact), has character 2 and is not weakly 

~ l-collectionwise Hausdorff. 

Example 2. Assuming Martin's Axiom plus 2 
~ 

0 > ~l' there 

is a separable normal non-metrizable Moore space [T ]. Such al 

space is normal, countably paracompact, and not weakly ~ 1­

collectionwise Hausdorff. 

Example 3. X is a special Aronszajn tree with the induced 

tree topology. In [F 2 ] or [R] the space is defined, shown to be 
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a non-collectionwise Hausdorff Moore space, and proved to be 

normal or not, depending upon what set-theoretic axioms are 

assumed. Devlin [0] has recently shown GCH to be consistent 

with the normality of some X. We shall prove outright that X 

is weakly collectionwise Hausdorff. Indeed let T be any tree of 

height wI with countable levels. For t E T let h(t) be the 

ordertype of the set of predecessors of t. Let {t} be 
a cx<wl 

distinct elements of T. Define {sS}S<Wl by letting Ss be the 

first to. such that h(t ) > suP{h(sy): y < S}. Define q( S) = a 

sup {h (s y): y < S}. Let r S be that predecessor of s S of height 

g(S). Let Us = {t E T: ss~t >r }· Then {US}S<Wl is a dis­S

joint collection of open sets about {sS}S . Thus T is weakly
<wI 

cOllectionwise Hausdorff. 

Alster and Pol [AP] prove ~hat collectionwise Hausdorff 

locally separable Moore spaces are metrizab~e. Since wI-trees 

are locally separable, weakly collectionwise Hausdorff will not 

suffice. 

Fleissner--to whom I am grateful for many helpful comments-­

points out that Example 3 can be generalized. Let A be a cardi­

nal; for every a < A of countable cofinality, let sa be a sequence 

cofinal in Cl.. Let the points of X be the sa's and the initial 

segments of the sa's. Let X be endowed with the tree topology. 

Then for all K~ A, X is weakly K-collectionwise Hausdorff but 

not K-collectionwise Hausdorff. 

As noted in [B ] and [T ], the question of whether normal2 2 

first countable spaces are collectionwise Hausdorff has an at­

tractive set-theoretic translation. The same technique trans­

lates questions involving weakly collectionwise Hau:sdorffness. 

We shall translate some of the results we have proved here; that 

these are in fact translations will be evident to the reader of 
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wI 
Definition. Let w be the set of functions from wI to w· 

wI 
Let Gc w. Let Yc G is doubly superior on Y ifwI·
 

(V f E 
wI

w) ( 3 g E G) ( 3 a O' a l 
E Y) (g (a ) > f (a ) , g(al) > f (al» ·
O O


G is doubly superior if Y = wI. Let p S wI x 2 be a function,
 

domain p ~ wI' range p ~ 2. P splits G if
 

(Yf E w1w)(:!g E G)(:!o.O,o.l E domain p, p(o.O) 'I P(o.l)) (g(o.O) > 

f (a )' g (a ) > f (a ) ) . O l l
 

G splits if there is a p which splits it ..
 

~ 0 ~ 1 
Theorem 10. aJ if 2 < 2 and G is doubly superior on 

every uncountable set~ then G splits~ 

bJ there is a G which is doubly superior but
 

is not doubly superior on every uncountable set~ and such that
 

it is independent of the usual axioms of set theory with or
 

without GCH whether or not G splits~
 

~o
 
c) Martin's Axiom plus 2 > ~ 1 implies there 

is a G which is doubly superior on every uncountable set but 

does not split. 

Added in proof. s. Shelah has pointed out that better 

results may be obtained at singular cardinals by more careful 

calculation of cardinalitites, and has kindly suggested I include 

his improvements. 

Theorem 11. Suppose A is singular and x6 < 2 A• Then if 

x is a normal space of character ~ X which is weakly K-collection­

wise Hausdorff for each K < A, X is weakly A-collectionwise 

Hausdorff· 

Proof. Let Z, Uz be as in the proof of Theorem 4. Let 

A = L{A S: A < cf(A)}. Take AO disjoint basic open sets included 

in Uz about a's in A
O 

n z. Enlarge the collection to get Al 

disjoint basic open sets about a'S in Al n Z. Keep enlarging 

the disjoint collection, skipping some AS'S if necessary. 
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Either we get permanently stuck at some S < cf(A) or we are done. 

Assume the former happens for all Z. There are X~ such finished 

collections ~ Z. There exist 2 A subsets of A such that any two 

have a difference of power A. On this family, the ma.p Z ---+ ~ Z 

is one-one, assuming weak K-collectionwise Hausdorffness for 

all K < A. 

Corollary 12. Suppose for every A, 2 A < 2 A+. Then every 

normal space of character .2- 2 
~ 

0 is weakly collectionwi:se	 Hausdorff. 
A 

Proof. For A a limit cardinal, the cofinality of 2 U is A, 

hence by Konig's Lemma, 26 < 2 A. 

Theorem 13. Suppose (X~)~O = A. If X is a countably para-

compact space of character ~ X which is weakly K-colZectionwise 

Hausdorff for each K < A, then X is weakly A-collectionwise 

Hausdorff· 

Proof. We modify the proof of Theorem 5 using the ideas 

of the proof of Theorem 11. By the cardinality hypothesis we 

may enumerate in a sequence of type A all countable sequences 

of disjoint collections constructed as in the proof of Theorem 

11, so that each such countable sequence appears A times. Choose 

Yn , Vn , W as in the proof of Theorem 5, and then construct ~ nn 

as in the proof of Theorem 11, with Yn and Wn playing the role 

of Z and Uz. Since cf(A) > ~O' there is a K < A such that 

K > sup{S: ys E ~n for some n}. For no n does Y - U ~n includen 

a separated subset of power K. By induction hypothesis then 

IY -~ I < K for all n. But proceeding as in the proof of n n 

Theorem 5, we get A a'S in Y -U~n' contradiction. n 

Corollary 14. GCH implies every countably paracompact space 

of character < 2~O is weakly collectionwise Hausdorff. 

Added in Proof: Devlin has withdrawn his claim that GCH is 

consistant with the existance of a normal Aronszajn tree. 
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Instead, he now claims that 2 0 ~ 2 1 implies that an Aronszajn 

tree is normal iffand only if it is Souslin. However, Shelah 

claims that GCH is consistant with the existance of a normal, 

nonmetrizable Moore space. His space is a modification of a 

special Aronszajn tree. 
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