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SUBCONTINUA OF FINITE UNIONS OF DENI)RITES 

w. S. Mahavier 

1. Introduction 

By a compactum we mean a compact subset of a metric space 

and by a continuum we mean a connected compactum. A dendrite i~: 

a locally connected continuum which contains no simple closed 

curve and a dendroid is a continuum which is arcwise connected 

and hereditarily unicoherent. If a is an ordinal and p is a 

point of a compactum X, then X is said to have rim type <a at 

p provided that for each E > 0, there is an open subse"t 0 of X 

such that p E 0, diam(O) < E, and the ath derivative of the 

boundary of 0 in X is empty. X is said to have rim type a if 

a is the least ordinal such that X has rim type <a at each of 

its points. The results of this paper were motivated by A. LelE~k 

who asked the author if every continuum (or every dendroid) of 

rim type 2 could be embedded in a finite union of dendrites. It. 

follows from a theorem of Reschovsky [3] that the union of n 

dendrites has rim type <n. We show that the Sierpinski triangu-' 

lar curve [1], which has rim type 1, is not embeddabll= in any 

finite union of dendrites and we construct a dendroid of rim 

type 2 which is not embeddable in a finite union of dl=ndrites. 

A dendroid of rim type 1 is a regular curve and a dendrite [2]. 

Examples are given, for each n, of a continuum of rim type n 

which is embeddable in the union of 2n dendrites. Steenrod in 

[4] shows that a compact subset of En is a subset of "the union 

of two arcs if and only if it contains no continuum of condensa-' 

tion. We introduce an extension of the concept of continuum 

of convergence in an attempt to characterize those dendroids 

which are embeddable in finite unions of dendrites. 
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2. Continua of Convergence and Embeddings in Dendrites 

By a continuum of convergence of a compactum M is meant a 

nondegenerate continuum K lying in M which is the sequential 

limiting set of a sequence of mutually disjoint continua, each 

lying in M and none intersecting K. If G is a collection of 

continua in M, then L(G) denotes the collection of all nondegen­

erate continua K in M which are sequential limiting sets of 

sequences of mutua.lly disjoint members of G, none intersecting 

K. Thus if SO(M) denotes the collection of all continua in M, 

then L[SO(M)] denotes the collection of all continua of conver­

gence of M. We define inductively two sequences of 

collections of continua: Cl(M), C2(M), ... , and Sl(M), S2(M) , ..•. 

Let Cl(M) = L[SO(M)], and let Sl(M) denote the collection to 

which K belongs if and only if K is a nondegenerate continuum in 

M which is the closure of the union of the members of a subcol­

lection of Cl(M). For each positive integer n, let Cn+l(M) 

L[Sn(M)], and let Sn+l(M) denote the collection to which K 

belongs if and only if K is a nondegenerate continuum in M which 

is the closure of the union of the members of a subcollection of 

Cn+l(M). By an nth order convergence continuum of M we mean a 

member of Cn(M). We conjecture that if M is a dendroid and for 

some n, Cn(M) = ~, then M is embeddable in a finite union of den­

drites, and we establish the following theorem. 

Theorem. If M is a compactum in a metric space S, n is a 

positive integer, and M has an nth order convergence continuum, 

then M is not a subset of the union of n dendrites in S. 

We actually prove the following theorem for which the 

theorem stated above is a special case. 

Theorem. If M is a compact subset of the metric space S, 

n is a positive integer, L E Cn(M) and a is an open set 
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intersecting L~ then 0 n M is not a subset of the union of n 

dendri te s in S. 

We first consider the case n = 1. Let p and q denote two 

points of L, with P E O. Let D denote an open set such that 

p E D, q f 5, and D C O. Let M ,M
2

, ••• denote a sequence of
l 

mutually disjoint continua in M, none intersecting L, with 

L = lim Mi. With the aid of Theorems 52 and 59 of Chapter I 

of [2], it can be seen that there is an increasing sequence 

n l ,n2 ,··· of positive integers, a sequence Pl,P2'··· of points 

and a sequence C ,C 2 ,··· of continua such that (1) the sequence
l 

PI' P2' ... converges to p, (2) for each positive integer i, 

Pi E M . n D, (3) for each i, C is the closure of the componentn i 
1 

of M . n D which contains Pi' and (4) Cl ,C 2 ,··· has a sequentialn 
1 

limiting set L' which is a subset of L and contains a point b 

of the boundary of D. Assume now that 0 n M is a subset of a 

dendrite K. Then p and b are in K and since each two points of 

a dendrite are separated by some point of that dendrite (see 

Theorem 74, p. 129 of [2]), there is a point x in K such that 

K - {x} is the union of the two separated sets U and V with p E U 

and b E V. L' C K and contains both p and b and is connected 

so x E L'. For each positive integer i, C is a connected sub­
i 

set of K - {x}, so there is a subsequence C ,C , ••• of 
ffi l ffi 2 

Cl ,C2 ,··· such that for each i, Cm. S U or for each i, Cm. C V. 
_ 1 _ 1 

But this implies that L' c J or L' ~ V, whence b E ij n V or 

p E U nV. This contradiction completes the argument for the 

case n = 1. We establish the theorem by induction on the intege r 

n. Assume that the theorem holds for each integer j, 1 ~ j 2. n, 

that l'-1 is a compactum, that L E C +l (M), that 0 is an open set n 

intersecting L, and that 0 n M is a subset of the union of the 

n+l dendrites Kl ,K 2 , ... ,K +l . Let Ml , M2 , ... denote a sequencen 

of mutually exclusive continua in Sn(M) with sequential limiting 
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set L and such that none of them intersect L. We shall show
 

that ( U M.) n 0 c K Assume there is, for some i, a point
l . 
i=l 1
 

P E (M
i 

n 0) - K Then there is an open set D containing p

l

.
 

but no point of K and thus D n M is a subset of the union of
l ,
 

the n dendrites K2 ,K3 , ···,K +l . Since M E Sn(M), there is a
 n i
 

subcollection H of Cn(M) such that M = H*. Since D is an open
i
 

set containing the point p in M D must intersect some member
i ,
 

h of H. But h E Cn(M) and D is an open set intersecting h, so
 

by our inductive hypothesis D n M is not a subset of the union
 

of n dendrites. It follows that ( U M.) n 0 ~ Kl . Now let
 
i=l 1
 

J = L U U M.. Then J is a compactum, L E C (J) and 0 is an
li=l 1
 

open set intersecting L, so by our inductive hypothesis, J n 0
 

is not a subset of a dendrite. But J n 0 ~ K This completesl .
 

our argument.
 

It would be interesting to know if it is true that if M is 

a dendroid and n is a positive integer so that M contains no 

nth order convergence continuum, then M has rim type ~n. If so, 

then this, together with the theorem above would provide another 

proof of Reschovsky's result for those subcontinua of finite 

unions of dendrites which are dendroids. On the other hand, our 

example in section 3 below shows that the converse is false 

since our example is a dendroid of rim type 2 and, for each n, 

it contains an nth order convergence continuum. 

3. An Example With Rim Type 2 

In this section we construct a dendroid of rim type 2 which 

is not embeddable in any finite union of dendrites. We note that 

a dendroid of rim type 1 is a regular curve and thus a dendrite 

(see [1], p. 283). On the other hand, the Sierpinski triangular 

curve ([1], p. 276) has rim type 1 and is not embeddable in a 

finite union of dendrites. This can be seen by an argument 

similar to that given below for our example. 
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2In our description, if x and yare two points in E , then 

[x,y] denotes the closed interval from x to y and Ix - yl denotes 

the Euclidean distance from x to y. By a wedge we mean a sector 

2
of a semicircle in E . More accurately, W is a wedgE! if and only 

2if there are three non-collinear points a, band c in E with 

2
Ib - al = Ic - al such that W is the convex 2-cell in. E whose 

boundary is the union of [a,b] , [a,c] , and the short arc from b 

to c on the circle with center a and radius Ib - al. The point3 

a, band c are called vertices of W, a is called its apex, and 

the intervals [a,b] and [a,c] are called its sides. One of the 

sides of W, called its base, can be taken onto the other side 

by a counterclockwise rotation	 of the plane of less than TI 

2
radians. For each wedge W in E , we describe a collection 

Q(W) of wedges lying in W. Let [a,b] denote the base of Wand 

let [a,b ] denote its other side. Let b ,b2 ,··· denote a se­O l 

quence of points on the circular arc in the boundary of W which 

converge to b and where Ib - bn-ll = 21 b - b I for each posi tiv(~ n 

integer n. For each positive integer n, partition the interval 

[a,b ] into 2n non-overlapping	 subintervals each of length
n
 

Ib - al/2n . Let p(n,O),p(n,l) , ••• ,p(n,2n ) denote the endpoints
 

of the intervals in this partition, the notation chosen so that 

for 1~m~2n, Ip(n,m) - al = mlb - al/2n . Thus p(n,O) = a and 

p(n,2n ) = b. For each positive integer n and each positiven 

integer m~2n, let W(n,m) denote the wedge having p(n,m - 1) as 

its apex, the interval [p(n,m - 1) ,p(n,m)] as its base and whose 

apex angle is half that of the wedge with vertices a, b and n 

b - Finally we let Q(W) denote the collection of all wedgesl . 

W(n,m)	 for all positive integers nand m with m < Zn. 

To describe our example we let M denote a wedge of base 

n 

O 

length l/Z, and define inductively a sequence Ql,Q2'··· of 

collections of wedges such that Q Q(M ) and, for each posi­
l O

tive integer n, Qn+l = U Q(W). Then for each n, let M = Q* 
WEQn 

n n 
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and let M = U M . 
n=l n 

For each n, M is a compact continuum which does not 
n
 

2
separate E , so M is a compact, non-separating plane continuum. 

Each member of Q is of diameter not more than 1/2n and each n 

point of M is either in the interior of a wedge in Q or is a 
n n 

2boundary point of M in E . It follows that M contains no n n 

2-cell of diameter more than 1/2n , and thus M contains no 2-cell. 

2To see that no subcontinuum of M separates E , let K denote a 

subcontinuum of M and assume that E2 - K is the union of two 

separated sets U and V. If n is a positive integer, M does n 
2

not separate E so one of U or V is a subset of M . This implies
n 

that one of U or V contains no 2-cell but each is open in E2 . 

Thus K is unicoherent and M is hereditarily unicoherent. To 

establish that M is arcwise connected, we shall indicate a con­

struction of an arc from the apex PO of MO to an arbitrary point 

x E M - {PO}. Assume that there is a positive integer n such 

that x E M - Q*. Since for n > 1, M - Q* is the union of the n n n nn-l 
bases of all wedges in {M } U U Q., it is easily seen thatO i=l 1 

there is an arc in M - Q* which is the union of at most n - 1 n n 

straight line intervals. Next assume that for each positive 

integer n, x is in the interior of some wedge in Qn· If Pn 

denotes the apex of the wedge in Q which contains x, then the 
n 00 

sequence Pl,P2' ... converges to x and ( U [po ,P'+l]) U {x} is an 
i=O 1 1 

arc from PO to x. We next show that M has rim type 2. Let 

x E M and first assume that for each positive integer n, x 

is in the interior of some wedge W in Qn. If a and b denote the 

endpoints of the base of W, then (W - {a,b}) n M is open in M, 

contains x, is of diameter not more than l/2n , and has a boundary 

in M which consists of only the two points a and b. So M has 

rim type 1 at x. If x is not, for each n, in the interior of a 

wedge in Q , then there exists an integer n such that x is on n 

the base of a wedge W in Qn. First assume that x is not an 
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endpoint of the base of W. In this case x is in the interior 

with respect to M of W, and W n M is homeomorphic to M so it 

suffices to consider the case where x is on the base of M but
O 

is not an endpoint of the base of MO. Let each of nand k 

denote a positive integer with k..:5..2n, let C(n,k) denote the 

circle with center PO and radius k/2 n and let W denote the n 

wedge with the same base as M
O 

and whose apex angle i.s e/2n 

where e is the apex angle of It can be seen from the con-MO· 

struction of M that C(n,k) n W n M is a convergent sequencen 

of points whose limit is on the base of MO. For each positive 

integer n, there is a nonnegative integer m such that 

n n
(m/2 ) < Ix - Po I < (m + 2) /2 . Let On denote the set of all 

points of W n M which are interior to C(n,m) and exterior to n 

C(n,m + 2). Then On is an open subset of M containing x whose 

boundary in M consists of at most two convergent sequences of 

points, and, since diam(On) + 0 as n + 00, we have that M has 

rim type 2 at x. Note that the same argument applies in case 

x is the endpoint of the base of M different from PO. We nextO 

consider the special case x PO. For each positive integer 

n, let C denote the circle with center Po and radius 1/2
n 

,n 

and let V denote the wedge in Q having apex Po and of diamete:~ n I 

1/2n . We shall show inductively that C n M has only finitelyn 

many limit points, the number of limit points increasing with 

n. First note that C n M = C n M and has only one limitI I I 

point. For each positive integer n, there is a homeomorphism 

h : V n M onto M such that for each x in V n M, Ihn(x) - POl n n n 
n

2 lx - pol. Consider now C n M. We have that C2 n M n VI is2 

homeomorphic to C n M and thus has only one limit point. And,
I 

from the construction it follows that C n (MI-V )2 I 

and is convergent sequence of points. Continuing we see that 

if n is a positive integer and j is a positive integer, j <n, 

then C n v. n M is homeomorphic to C . n M and thus 
n J n-J 
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n-l 
C n M n ( U V.) has only finitely many limit points. Further n i=l 1 

n-l n-l 
U V.) C n (M - l - U V.) and is a convergent se-

i=l 1 n n i=l 1 

quence of points. The only remaining case to consider is that 

in which x is a common vertex of two wedges in Q for some n. 
n 

It can be shown that M has rim type 2 at such points by combining 

the methods used earlier for the case x = PO and the case where 

x is the other endpoint of the base MO. 

We next show that if M denotes the example described above 

or the Sierpinski triangular curve then M is not embeddable in 

a finite union of dendrites. Assume the contrary and let n 

denote the least positive integer such that M is embeddable in 

n dendrites. Let K ,K ,···,K denote n dendrites and let hl 2 n n 

denote a homeomorphism from Minto S UK .. Clearly n ~ 1, 
i=l 1 

so there is a point p of M not in K and an open set 0 in S con­l 

taining p but no point of K Since each open subset of Ml . 

contains a homeomorphic image of M, then a n h(M) must contain 

a homeomorphic image of M which is embedded in the union of the 

4. Examples of Higher Rim Types 

In this section we briefly describe, for each positive 

integer n, a continuum K having rim type n + 1 and which is the n 

union of dendrites. We let K denote the continuum described2n 
l 

in [1], p. 268, and let F l and F denote the dendrites also2 

described in [1] whose union is K We assume that F containsl . 
l 

2the interval in E from the point (0,0) to (0,1). For each 

2rectangular disc R = [a,b] x [c,d] in E we let Kl(R) denote 

the image of K under the natural linear homeomorphism h ofl 

[0,1] x [0,1] onto R given by h(x,y) = (a(l - x) + bx, 

c(l - x) + dx). Similarly we define Fi(R) = h(Fi)for 1.::i.::2. 

For each integer n > 0, and each integer m, 0.:: m < 2n , let 

R(n,m) = [m/2 n , (m + 1)/2n ] x [1/2n - l ,3/2n ]. Next define 
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U Kl [R(n,m)] · K has rim type 3 and is the union2n>O
 
0<m<2 n
 

of the 4 dendrites given by: 

U F, [R (n,m) ] . 
n>O ~2 

0<m<2 n 

We proceed inductively to define a sequence K ,K ,K ,··· ofl 2 3 

continua such that for each n, K has rim type n + 1. For each n 

positive integer j, let K, [R(n,m)] denote the image of K, under 
J J 

the natural linear homeomorphism of [0,1] x [0,3/2] onto R(n,m) , 

and let Kj +l = Kl U U K, [R(n,m)]. We also define inductively, 
n>O J 

0<m<2n 

2nfor	 each positive integer n, a collection of dendrites whose 

union is K . For each n-term sequence iI' i 2 , • • • , in each term 0:: n 

which is 1 or 2, we set 

U 
n>O 

0<m<2 n 

where F , ••• l' [R(n,m)] is the image of F. . under the 
1 2' , n	 12 ,···,ln 

natural linear homeomorphism of [0,1] x [0,3/2] onto R(n,m). 

It is easily established inductively that K is the union of thE! 
n 

2n dendrites {Fa} for all n-term sequences a, each term of 

which is 1 or 2. 

References 

1.	 K. Kuratowski, Topology, vol. II, Academic Press, New York, 

1968. 

2.	 R. L. Moore, Foundations of point set theory, Amer. Math. 

Soc. Colloq. Pub1., XIII, 1962. 

3.	 H. Reschovsky, Uber rationale Kurven, Fundamenta Mathematicae, 

15 (1930), 18-37. 

4.	 N. E. Steenrod, Finite arc sums, 23 (1934), 38-58. 

Emory University 

Atlanta, Georgia 30322 


	d3.pdf



