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EC + HOMEOMORPHISMS OF EUCLIDEAN SPACES 

R. Daniel Mauldin and Beverly Brechner 

I. Introduction 

In [10], [8], and [9], Kerekjarto, Homma and Kinoshita, 

and Husch have given topological characterizations for the 

standard contraction (also called dilation) x ~ x/2. In par­

ticular, h: Sn ----» sn, n t 4,5, with h(oo) = 00, is topologi­

cally equivalent to the above standard contraction iff {hn}oo_
n--oo 

is an equicontinuous family at all points x except x = 0,00. 

In this paper, we characterize certain homeomorphisms of 

En, n t 4,5, whose families of non-negative iterates form a 

pointwise equicontinuous collection, while the full family is 

not pointwise equicontinuous. We note that if hi denotes h 

extended to Sn, and if hi fails to have equicontinuous powers at 

{o,oo} exactly, then our results coincide with the above quoted 

theorem. 

Our techniques are completely elementary, except for the 

use of prime ends in Secti~n 6, to study the action of h on a 

certain subcontinuum. 

Part I of this paper studies the problem fpr the plane, 

and Part II considers the problem for higher dimensional 

Euclidean spaces. 

The present report outlines the results and techniques, 

but does not include full proofs. Details will appear elsewhere. 

Definitions and Notations. A homeomorphism h of En onto 

itself is called EC+ (uniformly EC+) iff its family {hn }n> 0 of 

non-negative iterates forms a pointwise (uniformly) equicontinuous 

collection. It is called EC (uniformly EC) iff the family of 

all its iterates {hn}nEI has this property. 

If h is a map from a set X to itself, B C X is called 
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inva~iant iff h(B) c B. If h(B) B, B is called fully invari­

ant. 

A double arrow (----») denotes an onto function. The 

norbit of x = {h (x) In an integer}, and is denoted by 0 (x) . 

0+ (x) = {hn (x) In 2:. O}. "Orientation preserving" will be denoted 

by	 "o.p." and "orientation reversing" will be denoted by "o.r." 

Continuum means compact, connected set. The set of fixed and 

periodic points of the homeomorphism h is denoted by A. Thus 

A =	 {xlhn(x) = x, for some integer n2:.l}. 

Standing Assumption. Unless otherwise stated, in Part I, 

2h will be an EC+ homeomorphism of E onto itself, for which 

there exists a point X such that o+(x ) is bounded. In Part o o
 

II, h has the same properties on En.
 

Part I: THE PLANE 

2.	 Equicontinuity, e-sequential growths, and invariant disks 

The main theorem of this section is Theorem 2.4, which 

states that the plane can be filled up with an increasing 

sequence of invariant disks {D }oo 1 such that 
n n= 

(1) D ~ Int D C;; D ~ Int D ~ ••• and
1 2 2 3 

(2)	 h(On) ~ On ~ Int h(On+l)· Note that h(On) is not 

necessarily a subset of Int On. 

In order to prove this theorem we use an €-sequential 

growth process, together with equicontinuity, to obtain the 

invariant disks. The authors earlier used similar methods 

to obtain invariant disks in [2] and [3]. 

2
2.1. TheoY'em. [3,1]. A homeomorphism h, of E onto it­

self, with a fixed point, is pointwise EC iff it is a rotation 

or reflection. 

2.2. Theorem. The positive semi-orbits of bounded sets 
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are bounded. 

2.3. Theorem. Suppose M is a continuum~ h{M)cM~ and W is 

a bounded simply connected domain containing M such that M C 

heW) C W. Then there is a disk D such that M C Int h{D) cDc: W. 

2.4. Theorem. There is a sequence of disks {Dn}~=l such 

that 

(l) D contains a fixed point of hl 

(2)	 h{D ) ~ D ~ Int h{D + 1 ), for each n, andn n n 

(3) U 00 D = E2 .
n=l n 

2.5. Remark. It follows from 2.4 (l) that h has a fixed 

point. 

3.	 The nucleus of h 

In	 this section we define the nucleus of h, a certain sub­

2set of E , and we study the nature of this set and its rela­

tionship to the set A of fixed and periodic points of h. 

Let D be a disk such that h{D) ~ D. Then n ;=lhP{D) is 

called the nucleus of D under h. From Section 2, Theorem 2.4, 

2 U 00 Dwe	 may assume that E n=l n' where h{D ) ~ D ~ Int h{D + l )·n n n

Let M = n;=lhP{D ) = the nucleus of D , and let M = U ~=lMn.n n	 n 
2Then M is called the nucleus of E under h, or the nucleus of 

h. 

3.1. Theorem. The nucleus M of h is well-defined and 

fully invariant. 

3.2. Theorem. If the nucleus M is bounded~ then it is 

a locally connected~ non-separating subcontinuum of E2 . If M 

is unbounded~ it is the countable increasing union of locally 

connected~ fully invariant continua~ none of which separate E ~ 

and is itself locally connected~ connected~ and closed in E2 . 

2 
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3.3. Remark and Example. We note that the nucleus of
 

2
E under h is neither the smallest nor largest, closed con­

nected fully invariant set. For	 example, if h is a homeomorphism 

which is the identity on the unit disk, and elsewhere, a contrac­

tion along rays emanating from the origin, toward the unit 

circle, then any disk of radius r, a < r < 1 is fully invariant, 

as is any ray emanating from the	 origin, and unions of such 

sets. However the nucleus of this homeomorphism is the closed 

unit disk. 

3.4. Theorem. [7] h is EC on	 M. 

3.5. Theorem. M {xIO(x) is bounded} and M ~ A. 

3.6. Theorem. M is bounded iff A is bounded iff there
 

exists a disk D such that h(D) ~ Int D.
 

4. Topological contractions and imbeddings in flows 

In this section we first study the behavior of h on E2/M 

in case M is bounded, where h denotes the map induced by h on 

the quotient space.
 

We next obtain a generalization of a theorem of Foland.
 

Foland [6] has proved that any o.p. contracting homeomorphism
 

2
of E onto itself can be imbedded in a flow. We obtain a gen­

eralization of this theorem to En, for n ~ 4,5. 

2 24.1. Theorem. Let h:E ----» E be an o.p. EC+ homeo­


morphism, whose set A of fixed and periodic points is bounded
 

and ~~. Then M is a locally connected continuum which doesn't
 

2	 2 2separate E , and the induced map	 h:E /M ----» E /M is conjugate 

2to the contraction r:x ~ x/2 on E , and thus h is o.p. and im­

beddable in a flOW.
 

2If h is o.r., then h has the above property. 

24.2. Corollary. If h is o.p. on E with A bounded and 
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t ~~ then h is EC+ iff there exists a locally connected non-

separating continuum M such that 

(1) hIM is EC~ and 

(2) h:E 2/M ----» E2/M (~E2) is conjugate to a contraction. 

4.3. Theorem. Let h:En ---» En, n :I 4,5~ be a contract·­

ing~ o.p. homeomorphism. Then h is conjugate to a standard 

contraction~ and thus imbeddable in a flow. 

(Note: h is contracting means there exists a < 1 such that 

d(h(x) ,h(y)) < ad(x,y), for all x,y E En.) 

5. The action of h on the nucleus M 

In this section we study the action of h on M. The main 

results are Theorems 5.1 and 5.2, which answer the following 

two questions. 

Question 1. Can an	 arbitrary locally connected, non­

2separating continuum in E be the nucleus of some EC+ homeo­

2morphism of E ? 

The answer is yes, and is given in Theorem 5.1.
 

Question 2. What is the action of h on M?
 

It turns out that hIM is periodic or M is a disk and hiM 

is a rotation, and this is given by Theorem 5.2. We discuss 

the idea of the proof of this theorem, below. 

Both of these results are proved using prime end theory 

on See [4,5,11,12] for definitions and a discussion of 

prime ends. 

5.1. Theorem. Any	 locally connected~ non-separating con­

2tinuum M in E can be the nucleus of some EC+ homeomorphism h 

of E
2 

onto itself~ in such a way that hiM is the identity. 

5.2. Theorem. hIM is periodic if M is not a disk. 

Otherwise M is a rotation. 
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Discussion of Proof· We use prime end theory by approaching 

2M from the exterior. Let B be the closed unit disk in E , and 

let <t>:Int B --» U = S2 - M be a 1-1 "C-transformation"; that 

is, <t>-l takes crosscuts to crosscuts, and the endpoints of such 

crosscuts are dense on the unit circle. Since M is locally 

connected, we are able to show that <t> can be extended to a con­

tinuous function ¢:B ~ U. We think of h as being defined on S2, 

h(oo) = 00 Let ~ = <t>-lh<t> , and ~:Int B ----» Int B can be ex­

tended to a homeomorphism ~:B --» B, by the prime end theory, 

since h is a homeomorphism of U onto itself. 

We then play back and forth between ~IBd B and hiM. The 

equicontinuity on M forces ~IBd B to be periodic, and this in 

turn forces hlBd M to-be periodic, and this forces hiM to be 

periodic, if M is not a disk. Otherwise ~IBd B is a rotation, 

a~d it follows that hlBd M is a rotation, as is hiM. 

6. Some examples 

6.1. ExampZe. Let f be the example of 3.3, and let g be 

a rotation. Then h = fg is EC+ but not EC, and the nucleus of 

h is the unit disk. 

6.2. Example. M will again be the unit disk B. hlB will 

be an irrational rotation a. Outside B, fill up the plane with 

a continuous collection of spirals closing down on Bd B. If 

x E E2-B, x is on some spiral. Then hex) is obtained by moving 

along that same spiral in a counter-clockwise direction, thru 

a rotation a. 

PART II: HIGHER DIMENSIONAL EUCLIDEAN SPACES 

11.1. Introduction 

In this part we study the EC+, but not EC, homeomorphisms 

of En onto itself, and build up a theory nearly parallel to that 

2for E . There are, however, some differences, and we must make 
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some additional assumptions. We beg~n with the following	 two 

standing assumptions: 

(1) h:En --» En is a homeomorphism which is EC+. 

(2) There exists a point x in En such that O+(x ) is 
o 0 

bounded. 

Below we define the nucleus M of En under h, and we make 

a third basic assumption. 

(3) M is bounded. 

This is necessary since, for higher dimensional spaces, it 

is not true that the nucleus is Qounded iff the set A of fixed 

and periodic points is bounded. An example is given below to 

show this. 

11.2. Invariant continua 

He again use [-sequential growths and equicontinuity to 

obtain the theorems of this section. 

11.2.1. Theorem. There exists a sequence of invariant 

locally	 connected~ non-separating continua Yi~ and cells B of 
ni 

radius ni~ such that 

11.3. The nucleus M of h 

Let {Yi}i>l be the sequence of Theorem 11.2.1. Let 

Mi = n;lhP(yi ) and let M = U ~=lMi. Mi is called the nucleus 

of Yi and M is the nucleus of En under h or nucleus of h. 

As is the case for E it can be shown that M is well ­2 , 

defined, fully invariant, and locally connected, and h is EC 

on M. Also M contains A. 

11.3.1.	 Example. In this example A is bounded but M is 

3 3unbounded. Let h:E ----» E be cor, where r is a fixed 

irrational rotation on each plane parallel to the yz-plane, 

with each origin fixed, and c is a contraction toward the 
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yz-plane, along lines parallel to the x-axis. In this case, A 

is the origin, and therefore bounded, while M is the yz-plane, 

and	 thus A is bounded, while M is unbounded. 

11.3.2. Theorem. The nucleus M is bounded iff there 

exists a tame cell D such that h(D) ~ 1nt D. 

11.4. Topological contractions and flows 

11.4.1. Theorem. Let h:En ----» En be an o.p.~ EC+ homeo­

morphism3 n F 4 3 5 3 such that for some tame cell D~ h(D) ~ 1nt D. 

Then there exists a cellular continuum M such that 

En(1)	 En/M ~ 3 and 

(2)	 h:En/M ----» En/M is conjugate to a standard contrac­

tion 3 and thus imbeddable in a flow.
 

If h is o.r. then h2 has the above properties.
3 

11.4.2. Theorem. Let h:En ----» En~ n I 4~5 be an 

O.P.3 EC+ homeomorphism 3 whose nucleus M is bounded. Then 

h:En/M ----» En/M (~En) is a topological standard contraction. 

11.5. Open question 

What is the action of h on the nuclei 3 when 

h:En ----» En, n > 2? 
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