

http://topology.auburn.edu/tp/

SPACES WITH $\sigma\text{-}\mathrm{MINIMAL}$ BASES

by

H. R. BENNETT AND E. S. BERNEY

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

SPACES WITH σ -MINIMAL BASES

H. R. Bennett and E. S. Berney

In [1] C. E. Aull observed that every quasi-developable space has a σ -minimal base and in [2] he asked if each space with a σ -minimal base was also a quasi-developable space. In this note examples are given which show that spaces with σ -minimal bases need not be quasi-developable. A structural condition is given which forces a space with a σ -minimal base to be a quasi-developable space.

Let N, Q, and R denote the natural numbers, the rational numbers and the real numbers respectively. Also let all spaces be regular T_1 -spaces.

Definition 1. A collection (of sets is said to be minimal if whenever $\partial \subset ($ then $\bigcup \partial = \bigcup \{ D \in \partial \}$ is a proper subset of $\bigcup ($.

In [6] minimal collections are called irreducible collections.

In [1] Aull gave the following definition.

Definition 2. A base β for a topological space X is a σ -minimal base if $\beta = \bigcup \{\beta_n : n \in \mathbb{N}\}$ and each β_n is a minimal collection.

Definition 3. A topological space X is a quasidevelopable space if there is a base β such that $\beta = \bigcup \{\beta_n : n \in N\}$ and if $x \in X$ and 0 is an open set containing x, then there is a natural number n such that $x \in st(x, \beta_n) = \bigcup \{B \in \beta_n : x \in B\} \subseteq 0$. If, for each natural number n, β_n is a cover of X, then X is said to be a developable space (or a Moore Space if X is T_2).

Quasi-developable spaces have been studied extensively in [3], [4], and [5].

The following theorem illustrates some conditions under which spaces with a σ -minimal base are metrizable spaces. Notice that the same conditions force quasidevelopable spaces to be metrizable spaces [3].

Theorem 1. (Aull [1]) Let X be a space with a σ -minimal base. If X is hereditarily separable or hereditarily Lindelöf or hereditarily \aleph_1 -compact, then X is a second countable space.

Recall that the Sorgenfrey Line is the real line with a topology generated by the collection $\{[a,b): a,b \in R, a < b\}$ where $[a,b) = \{x \in R: a < x < b\}$.

Example 1. There is a hereditarily paracompact space X with a σ -minimal base that has a closed subset that is homeomorphic to the Sorgenfrey Line. Thus X is not a quasi-developable space and the property of having a σ -minimal base is not a hereditary property.

Let $X = \{(x,y) \in \mathbb{R}^2 : y \ge 0\}$ and let the topology for X be generated by a base β described as follows:

(i) if $(x,y) \in X$ and y > 0, then let $\{(x,y)\} \in \beta$, and

(ii) if $(x,0) \in X$ and $n \in N$, then let $B(x,n) \in \beta$ where $B(x,n) = \{(a,b): 0 < a - x < \frac{1}{n} \text{ and } b(a - x)^{-1} < \frac{1}{n}\} \cup \{(x,0)\}.$ Let $C(x,n) = B(x,n) \cup \{(x + \frac{1}{n}, \frac{1}{n^2})\}.$ If $C_1 = \{\{(x,y)\}: (x,y) \in X, y > 0\}$ and if, for each natural number n > 1, $C_n = \{C(x,n): x \in R\}$, then $C = \bigcup\{C_n: n \in N\}$ is a σ -minimal base for X. This easily follows since C(x,n)is the only member of C_n that contains $(x + \frac{1}{n}, \frac{1}{n^2})$. Notice that $Y = \{(x,0) \in X: x \in R\}$ with the relative topology is homeomorphic to the Sorgenfrey Line. Since the Sorgenfrey Line is a non-second countable hereditarily separable space, Y does not have a σ -minimal base. Since quasi-developability is a hereditary property [3] and Y is not quasi-developable, X is not a quasi-developable space.

Recall that a perfect (= closed sets are G_{δ}) quasidevelopable space is developable [3]. Since semi-metric spaces are perfect, the next example illustrates how far removed a space with a σ -minimal base is from a quasidevelopable space.

Example 2. There is a hereditarily paracompact semimetric space X with a σ -minimal base that is not a quasidevelopable space.

Let $X = R^2$ and let the topology for X be generated by a base B consisting of sets of the following form:

(i) $\{(x,y)\} \in \beta$ if $(x,y) \in X$ and $y \neq 0$, and

(ii) $B(x,n) \in \beta$ if $(x,0) \in X$ where, for each $n \in N$, $B(x,n) = \{(a,b) \in X: |a - x| < \frac{1}{n} \text{ and } |b(x - a)^{-1}| < \frac{1}{n}\}.$ With this topology X is the well known "bow-tie" space and is known to be a hereditarily paracompact semi-metric space.

If $(x,0) \in X$ and $n \in N$, let $C(x,n) = B(x,n) \cup \{(x + \frac{1}{n}, \frac{1}{n^2})\}$. Let $C_1 = \{\{(x,y)\} \in X: y \neq 0\}$ and if $n \in N$ and $n \geq 2$, let $C_n = \{C(x,n): x \in R\}$. It easily follows that

 $\int = \bigcup \{ \int_n : n \in \mathbb{N} \}$ is a σ -minimal base for X. Since X is a perfect, non-developable space it cannot be quasi-developable.

Example 3. There is a hereditarily paracompact space X with a σ -minimal base that does not satisfy the first axiom of countability.

Let X be the space in Example 2. If the compact subset $A = \{(x,0) \in X: 0 \le x \le 1\}$ is identified to a point, the resulting quotient space X/A is a hereditarily paracompact semi-stratifiable space that does not have a countable local base at A. To see that X/A has a σ -minimal base it is sufficient to find a collection (of open subsets of X such that

(i) each member of (contains A,

(ii) (is a σ -minimal collection, and

(ii) whenever θ is an open subset of X that contains A, then there is some C \in (such that A \subset C \subseteq θ .

To find such a collection $\int \det \overline{J}$ be the collection of all finite open covers of A such that if $F \in \overline{J}$, then the members of F are basic open sets of the form B(x,n) where $(x,0) \in A$ and n is an arbitrary natural number. It follows that the cardinality of \overline{J} is $c = 2^{\omega}$. If $F_{\alpha} = \{B(x(i), n(i)):$ $i \in A_{\alpha}\}$, then let $T_{\alpha} = \{x(i): i \in A_{\alpha}\}$. For each $F_{\alpha} \in \overline{J}$ choose some real number $x_{\alpha} \in [0,1]$ such that $x_{\alpha} \notin T_{\alpha}$ and, if $\alpha \neq \rho$, then $x_{\alpha} \neq x_{\rho}$. Let y_{α} be a positive real number such that (x_{α}, y_{α}) is a boundary point of $\cup F_{\alpha} \cap \{(x, y) \in \mathbb{R}^2: y > 0\}$ considered as a subset of \mathbb{R}^2 with the usual Euclidean topology. For each $n \in N$, let H_n denote the collection of all the y_{α} 's such that $\frac{1}{n+1} < y_{\alpha} \leq \frac{1}{n}$. If $y_{\alpha} \in H_n$, let $C_{\alpha} = (\cup F_{\alpha} \cap \{(x, y) \in \mathbb{R}^2: y < \frac{1}{n+1}\}) \cup \{(x_{\alpha}, y_{\alpha})\}$. Let $\int_n = \{C_{\alpha}: y_{\alpha} \in H_n\}$ and let $\int = \bigcup \{ \int_n : n \in \mathbb{N} \}$. It is clear that \int is the needed collection since if $y_\alpha \in H_n$, then C_α is the only member of \int_n that contains (x_α, y_α) . Thus X/A has a σ -minimal base, but is not a first-countable space.

If $\beta = \bigcup \{\beta_n : n \in \mathbb{N}\}$ is a σ -minimal base for a space X and if A is any subset of X, let $\beta | A = \bigcup \{\beta_n | A : n \in \mathbb{N}\}$ where $\beta_n | A = \{B \cap A : B \in \beta_n\}.$

The following theorem gives a structural condition for a space with a σ -minimal base to be a quasi-developable space.

Theorem 2. Let β be a σ -minimal base for a space X. If, for each subset A of X, $\beta | A$ is a σ -minimal base for the subspace A with the relative topology, then β is a σ -disjoint base for X.

Proof. Let n be arbitrary and let B_1 and B_2 be members of β_n . Since β_n is a minimal collection, B_1 is not contained in B_2 and B_2 is not contained in B_1 . If $B_1 \cap B_2 \neq \phi$, let $y \in B_1 \cap B_2$ and let $x \in B_1$ such that $x \notin B_2$. Let $A = \{x, y\}$. Then $B_n | A$ is not minimal since $B_1 \cap A$ contains $B_2 \cap A$. From this contradiction it follows that $B_1 \cap B_2 = \phi$. Thus β is a σ -disjoint base for X.

It might be conjectured at this point that if each subspace of a space X has a σ -minimal base, then X is a quasidevelopable space. The following example shows that this conjecture is false.

Example 4. There is a hereditarily paracompact semimetric space X which is not a quasi-developable space but every subspace of X has a σ -minimal base.

Let D be subset of R of cardinality \aleph_1 . Let X = D ×

{t: t = 0 or $t \in \{\frac{1}{n}: n \in N\}$ } and let the topology for X be generated by a base β described as follows:

(i) if $(x,y) \in X$ and $y \neq 0$, then $\{(x,y)\} \in \beta$,

(ii) if $(x,0) \in X$ and $n \in N$, then $B(x,n) \in \beta$ where $B(x,n) = \{(x,0)\} \cup \{(a,b) \in X: a \neq x \text{ and max } \{|a - x|, |b|\} < \frac{1}{n}\}.$

It is readily seen that X is a hereditarily paracompact semi-metric space. Thus, if X was a quasi-developable space, it would be a paracompact Moore Space and thus metrizable. If X was metrizable it would have a σ -discrete base $\mathcal{U} = \bigcup \{\mathcal{U}_n \mid n \in N\}$. For each $n \in N$, there could be at most countably many members of \mathcal{U}_n intersecting $D \times \{0\}$ since $D \times \{0\}$ is a hereditarily Lindelöf space in the relative topology. Thus there would be a countable subcollection of \mathcal{U} which serves as a base for the points of $D \times \{0\}$ in the space X. It is easily seen that no countable subcollection of \mathcal{U} can act as a base for the points of this subset of X. Thus X is not metrizable and, hence, not quasi-developable.

To see that each subspace of X has a σ -minimal base let A be a non-empty subset of X and consider A with the relative topology. Let

$$\begin{split} A_{1} &= \{ (x,y) \in A: y \neq 0 \}, \\ A_{2} &= \{ (x,0) \in A: B(x,n) \cap A_{1} \text{ is uncountable for } \\ &= ach n \in N \}, \\ A(2,n,k) &= \{ (x,0) \in A_{2}: B(x,n) \cap A_{1} \cap \{ (a,b): \\ &= b = (n + k + 1)^{-1} \} \text{ is uncountable }, and \\ A_{3} &= A - (A_{1} \cup A_{2}) \\ Let \beta_{1} &= \{ \{ (x,y) \}: (x,y) \in A_{1} \} \end{split}$$

For each pair of natural numbers (n,k) let $f_{(n,k)}$ be a one-to-one map from A(2,n,k) into $\{(a,b) \in A_1: b = (n+k+1)^{-1}\}$

such that if $(x,0) \in A(2,n,k)$, then

 $0 < |f_{(n,k)}(x,0) - (x,(n+k+1)^{-1})| < \frac{1}{n}$

Let $C(x,n,k) = \{(x,0)\} \cup \{f_{(n,k)}(x,0)\} \cup (B(x,n + k + 2) \cap A), \text{ if } (x,0) \in A(2,n,k).$ Let $\beta(n,k) = \{C(x,n,k): (x,0) \in A(2,n,k)\}$ and let $\beta_2 = \cup \{\beta(n,k): (n,k) \in N^2\}.$

For each $(\mathbf{x}, 0) \in A_3$, there is an open set $\theta_{\mathbf{x}}$ containing $(\mathbf{x}, 0)$ such that $\theta_{\mathbf{x}} \cap A_1$ is at most a countable set. Since A_3 is a Lindelöf space in the relative topology, the existence of the $\theta_{\mathbf{x}}$'s allows the construction of an open set θ such that A_3 is contained in θ and $\theta \cap A$, is a countable set. If r and s are rational numbers, $(t,v) \in \theta \cap A_1$ and $n \in N$, let $B(r,s,n,t) = \{(a,b) \in A: r < a < s, |b| < \frac{1}{n}\} - \{(t,b) \in A: b > 0\}$. Note that if r < x < s and $(x,0) \in A_3$, then B(r,s,n,t) is an open set (in the subspace A) containing (x,0). It follows that $\beta_3 = \{B(r,s,n,t): r,s \in Q, n \in N, (t,v) \in \theta \cap A_1$, and $B(r,s,n,t) \subset \theta\}$ is a countable collection of sets. It follows that $\beta = \beta_1 \cup \beta_2 \cup \beta_3$ is a σ -minimal base for the subspace A and, hence, each subspace of X has a σ -minimal base.

It follows from Example 3 that Theorem 2 cannot be simplified to state that if each subspace of X has a σ -minimal base, then X is a quasi-developable space.

In most classes of spaces that generalize metric spaces compactness is enough to force metrizability. For example, a compact quasi-developable space is metrizable. The following example shows that this is not the case with spaces with σ -minimal bases even in the class of LOTS (= linearly ordered topological spaces). This example further distinguishes a space with a σ -minimal base from a quasi-developable space. *Example* 5. There is a compact, connected LOTS with a σ -minimal base that is not quasi-developable.

Let X be the unit square with the topology induced by the lexicographic ordering [7]. It is clear that X is a compact, connected LOTS that is not metrizable and, thus, not quasi-developable.

Since the elements of X are ordered pairs (a,b) of real numbers, let open intervals in X be denoted by](a,b), (c,d) [where (a,b) precedes (c,d) in the lexicographic ordering of X.

Let $X = A_1 \cup A_2 \cup A_3 \cup A_4$ where $A_1 = \{(x,0) \in X: 0 < x < 1\},$ $A_2 = \{(x,1) \in X: 0 < x < 1\},$ $A_3 = \{(x,y) \in X: 0 < x < 1, 0 < y < 1\},$ and $A_4 = \{(0,0), (0,1), (1,0), (1,1)\}.$

For each $n \in \{1,2,3,4\}$, a σ -minimal collection β_n of open subsets of X will be constructed such that β_n will be a base for the points of A_n .

Let $T = \{(a,b,c,d) \in Q^4: 0 < a < b < c < d < 1\}$. Since T is countable, $T = \{(a_n,b_n,c_n,d_n) \in Q^4: 0 < a_n < b_n < c_n < d_n < 1, n \in N\}$.

For each $i \in N$, let g_i be a one-to-one mapping of $\{x \in R: a_i < x < b_i\}$ onto $\{x \in R: c_i < x < d_i\}$. If $n \in N$, $(x,0) \in A_1$ and $c_i < x < d_i$, then let B(x,i,n) = $](g_i^{-1}(x), \frac{1}{n+1}), (g_i^{-1}(x), \frac{1}{n})[\cup](c_i, 1 - \frac{1}{n}), (x, \frac{1}{n})[$. If $n \in N$, $(x,1) \in A_2$ and $a_i < x < b_i$, then let C(x,i,n) = $](x, 1 - \frac{1}{n}), (b_i, \frac{1}{n})[\cup](g_i(x), \frac{1}{n+1}), (g_i(x), \frac{1}{n})[$. Notice that both B(x,i,n) and C(x,i,n) are open sets in X. Let $\beta(i,n) = \{B(x,i,n): \int_i \langle x \langle d_i \} \text{ and let } \int_i (i,n) = \{C(x,i,n): a_i \langle x \langle b_i \} \text{ and observe that each of these collections is a minimal collection. Let } \beta_1 = \beta\{U(i,n): (i,n) \in \mathbb{N}^2\}$ and $\beta_2 = \cup\{\int_i (i,n): (i,n) \in \mathbb{N}^2\}$.

Let $\{O_1, O_2, \dots\}$ be a countable base for the Euclidean topology on $\{x \in \mathbb{R}: 0 < x < 1\}$. For each $x \in \{x \in \mathbb{R}:$ $0 < x < 1\}$ let $D(x,n) = \{x\} \times O_n$. Then $\partial_n = \{D(x,n):$ $x \in \mathbb{R}, 0 < x < 1\}$ is a pairwise disjoint collection of open subsets of X. Let $\beta_3 = \bigcup \{\partial_n: n \in \mathbb{N}\}$.

Since X is a first-countable space, let β_4 be a countable collection of open sets such that β_4 contains a local base for each of the points of A_4 .

Then ${\beta_1} ~\cup~ {\beta_2} ~\cup~ {\beta_3} ~\cup~ {\beta_4}$ is the desired $\sigma\text{-minimal}$ base for x.

Recall that a perfect Lindelöf space is a hereditarily Lindelöf space. Thus if the space of Example 5 were perfect, it would be a hereditarily Lindelöf space and, hence, metrizable. Since it is not metrizable, it cannot be perfect.

References

- C. E. Aull, Quasi-developments and δθ-bases, J. London Math. Soc. (2), 9 (1974), 197-204.
- 2. ____, Some properties involving base axioms and metrizability, TOPO 72--Gen. Top. and Its Appl. 41-46.
- 3. H. R. Bennett, On quasi-developable spaces, Gen. Top. and Its Appl., 1 (1971), 253-262.
- 4. H. R. Bennett and E. S. Berney, On certain generalizations of developable spaces, Gen. Top. and Its Appl.,
 4 (1974), 43-50.
- 5. H. R. Bennett and D. J. Lutzer, A note on weak

 θ -refinability, Gen. Top. and Its Appl., 2 (1974), 49-54.

Texas Tech University Lubbock, TX 79409

Idaho State University Pocatello, Idaho 83209