A SURVEY OF k_ω-SPACES

by

STANLEY P. FRANKLIN AND BARBARA V. SMITH THOMAS
A SURVEY OF k_ω-SPACES

Stanley P. Franklin and Barbara V. Smith Thomas

The k_ω-spaces, a natural generalization of countable CW-complexes, have appeared recently in papers on topological groups and topological semigroups. They seem destined to play an important role in that study. Here we survey the purely topological behavior of such spaces. Being unusually well endowed k-spaces they behave very nicely indeed. In particular, they possess excellent separation properties, a nice external characterization, and a very interesting metrization theorem.

Writing $\mathbb{R} = \bigcup_{n=1}^{\infty} [-n,n]$ expresses the real line as the union of an increasing sequence of compact Hausdorff subsets, with \mathbb{R} having the weak topology with respect to the $[-n,n]$ (i.e., F is closed in \mathbb{R} iff $F \cap [-n,n]$ is closed in $[-n,n]$ for each n). Such a decomposition of a space (i.e., $X = \bigcup_{n=1}^{\infty} X_n$ with the X_n compact Hausdorff and increasing, and X having their weak topology) is called a k_ω-decomposition. A space possessing a k_ω-decomposition is called a k_ω-space. Hence \mathbb{R} is a k_ω-space.

Caution: If we enumerate the rationals $\mathbb{Q} = \{q_1, q_2, q_3, \ldots, q_n, \ldots\}$ and write $\mathbb{Q}_n = \{q_1, q_2, \ldots, q_n\}$ then we may express $\mathbb{Q} = \bigcup_{n=1}^{\infty} \mathbb{Q}_n$ as the union of an increasing sequence of compact Hausdorff subspaces but not produce a k_ω-decomposition. The weak topology arising from this sequence is discrete. We shall see later that \mathbb{Q} with its usual topology admits no k_ω-decomposition.
Worse yet can happen. The space S_2 (the prototype of sequential but not Fréchet spaces, see [1]) admits two decompositions into the union of an increasing sequence of compact Hausdorff subsets, one of them a k_ω-decomposition, the other not.

The terminology "k_ω-spaces" seems to be due to E. Michael [8]; Graev discussed such spaces with reference to topological groups in 1948 [5], and Morita introduced them under the name \mathcal{G}' in 1956 [10]. The related notion of hemicompactness was introduced by Arens in 1946 [2]. A space, X, is said to be hemicompact if it can be written as the union of countably many compact subspaces, K_n, with the property that each compact subset of X is contained in a finite union of the K_n's.

Some applications of k_ω-spaces are:

A. If $X = \bigcup_{n=1}^{\infty} X_n$ is a k_ω-space then so is the Graev free group over X, with k_ω-decomposition $F_G(X,p) = \bigcup_{n=1}^{\infty} (F_G(X_n,p_n))_n$ (words of reduced length $\leq n$ and letters from X_n) (Ordman [12]).

B. If G and H are topological groups which are k_ω-spaces so also is $G \sqcup H$ (Katz [6], Ordman [13]).

These results are interesting in that they describe the topological structure of the free group, respectively coproduct, a problem which is unsolved in general.

C. X is k_ω if and only if $C(X)$ with its compact open topology is completely metrizable (putting together results of Warner [15] and Mosiman and Wheeler [11]).

Ordman (in [12]) has collected some known facts about k_ω-spaces. We state them here, without proof, for the convenience of the reader.
1) (Graev) Every k_ω-space is a Hausdorff k-space.

2) If $X = \bigcup X_n$ is a k_ω-decomposition and $f: X \to Y$ is continuous on each X_n, then f is continuous on X.

3) (Steenrod) If $X = \bigcup X_n$ is a k_ω-decomposition, then each compact subset of X is contained in some X_n. That is, X is hemicompact with respect to its k_ω-decomposition.

4) (Milnor) If $X = \bigcup X_n$ and $Y = \bigcup Y_n$ are k_ω-decompositions, so is $X \times Y = \bigcup (X_n \times Y_n)$.

Thus k_ω-spaces are finitely productive.

The crux of 3) is that if $A \subset X$ meets every $X \setminus X_n$ and if we let $x_n \in A \cap (X \setminus X_n)$ then $U_m = X \setminus \{x_n | n \geq m\}$ is an open cover of A with no finite subcover. Number 4) is really a theorem about countable CW-complexes, but the same ideas and techniques work for k_ω-spaces.

There's another known and useful fact about k_ω-spaces due to Ordman [13].

5) In a k_ω-space, a point without a compact neighborhood cannot support a countable neighborhood base.

k_ω-spaces can, in fact, boast of much better separation properties than 1) indicates. If $X = \bigcup X_n$ is a k_ω-decomposition, and E and F are disjoint closed subsets of X, then $E \cap X_1$ and $F \cap X_1$ have X_1 neighborhoods U_1 and V_1 whose closures are disjoint. Let $E_1 = E \cup \text{cl}U_1$ and $F_1 = F \cup \text{cl}V_1$. Then $E_1 \cap X_2$ and $F_1 \cap X_2$ have X_2 neighborhoods U_2 and V_2 whose closures are disjoint. Continuing, we produce disjoint neighborhoods $U = \bigcup U_n$ and $V = \bigcup V_n$ of E and F. Hence X is normal.
In particular we have,

6) (Morita) Each k_ω-space, being σ-compact and regular, is Lindelöf, paracompact, etc.

We conclude immediately that a k_ω-space with any of several weaker compactness properties (pseudo-compact, countably compact) is already compact. k_ω-spaces are very nice indeed.

Fact 3) above (each compact set contained in some member of a k_ω-decomposition) is not only true of k_ω-decompositions, but actually characterizes them for k-spaces. Suppose $X = \bigcup X_n$ where X is a k-space and the X_n form an increasing sequence of compact Hausdorff subspaces of X such that each compact subspace of X is contained in one of the X_n's. Suppose also that F meets each X_n in a closed set. Let $K \subseteq X$ be compact. Then $K X_n$ for some n and $F \cap K = (F \cap X_n) \cap K$ is closed, and thus F is closed. Stated formally, we have

7) An increasing sequence of compact Hausdorff subsets covering a k-space X is a k_ω-decomposition iff each compact subset of X is contained in one of them.

An immediate consequence is that

7') The k_ω-spaces are precisely the hemicompact k-spaces.

In 7) we must assume X to be a k-space. Consider $\mathbb{N} \cup \{p\} \subseteq \beta \mathbb{N}$. Let $K_n = \{p, 1, 2, \ldots, n\}$; every compact subset of $\mathbb{N} \cup \{p\}$ is contained in some K_n. Thus $\mathbb{N} \cup \{p\}$ is hemicompact but fails to be k_ω.

Here's another useful fact about k_ω-decompositions.
8) Suppose \(X = \bigcup X_n \) is a \(k_\omega \)-decomposition and \(X = \bigcup X'_m \) is another increasing cover by compact subsets. If each \(X_n \) is contained in some \(X'_m \), then the \(X'_m \) also form a \(k_\omega \)-decomposition, and conversely.

To see this, suppose \(F \) meets each \(X'_m \) in a closed set. Given \(n \), choose \(m \) so that \(X_n \subseteq X'_m \). \(F \cap X_n = (F \cap X'_m) \cap X_n \) is closed, and hence \(F \) is closed. The converse is immediate from 3).

It follows from 8) that

9) Any subsequence of a \(k_\omega \)-decomposition is again a \(k_\omega \)-decomposition.

Now that we have gained some familiarity with the workings of \(k_\omega \)-spaces it's only natural to ask "what are they?". The obvious conjecture is easily shot down: \(\mathbb{Q} \) is a \(\sigma \)-compact \(k \)-space which isn't \(k_\omega \) as we'll show below. "But \(\mathbb{Q} \) isn't locally compact," you say. Any discrete space of cardinality \(> \aleph_0 \) is locally compact but not \(k_\omega \). "What if we require both?" Now we're getting somewhere.

10) A locally compact Hausdorff space is \(k_\omega \) iff it is \(\sigma \)-compact.

Suppose \(X \) is both \(\sigma \)-compact and locally compact, and let \(X = \bigcup Y_n \) with each \(Y_n \) compact. We'll now define a \(k_\omega \)-decomposition by recursion. Let \(X_1 = Y_1 \). Cover each point of \(X_1 \) with a compact neighborhood. Reduce to a finite cover. Union these together and add \(Y_2 \) to form \(X_2 \). Thus \(X_1 \subseteq X'_2 \), \(Y_2 \subseteq X'_2 \), and each point of \(X_1 \) has a compact neighborhood in \(X'_2 \). Continuing in this way we define the subsequent \(X_n \). Now to show
they form a k_ω-decomposition: suppose F meets each X_n in a closed set and that $x \notin F$. This x belongs to some X_n and hence to $\text{int } X_{n+1}$. Since $F \cap X_{n+1}$ is compact, there is an open U containing x and missing $F \cap X_{n+1}$. $U \cap \text{int } X_{n+1}$ is then a neighborhood of x missing F, and F is therefore closed.

The proof of 10) yields yet another sufficient description of a k_ω-decomposition as an increasing sequence of compact Hausdorff subsets each contained in the interior of a subsequent one.

One might hope to extend the equivalence of σ-compact and k_ω for locally compact spaces to the larger class of k-spaces locally compact on a dense subset. (In the presence of σ-compactness, these are precisely the Baire spaces.) Unfortunately \mathbb{Q}, with the dyadic rationals made discrete, provides the counter example (apply 14).

On the other hand a k_ω-space need not be a Baire space. The space $S_\omega ([1])$, being σ-compact and nowhere locally compact, isn't Baire. However, it is the quotient of a countable disjoint sum of convergent sequences (and their limits) and is thus a k_ω-space by 13).

Note that there are k_ω-spaces (like S_2) which aren't locally compact, so we haven't yet found them all. But we're close—just two easy lemmas.

Although continuous images of k_ω-spaces need not be k_ω (map \mathbb{Q} with the discrete topology onto \mathbb{Q} with its usual topology), quotients must be

11) (Morita) If $X = \bigcup X_n$ is a k_ω-decomposition and $q : X \rightarrow Y$
is a quotient map onto a Hausdorff Y, then the sets $q(X_n)$ form a k_ω-decomposition for Y.

The proof is straightforward and will be omitted.

12) (Morita) The disjoint topological sum (coproduct) of countably many k_ω-spaces is again a k_ω-space.

Let $X_j = \bigcup X^j_n$ be a k_ω-decomposition for each j. Then $\bigoplus_j X_j^j = \bigcup_{m=1}^\infty \left(\bigcup_{n+j=m} X^j_n \right)$ is a k_ω-decomposition of the coproduct.

Now given a k_ω-space $X = \bigcup X_n$ we take the coproduct $\bigoplus X_n$ of its pieces. The map $i: \bigoplus X_n \to X$ generated by the inclusions $X_n \to X$ is a quotient map since X has the weak topology of the X_n. Thus an arbitrary k_ω-space can be represented as the quotient of a countable coproduct of compact Hausdorff spaces. By 11) and 12) all such quotients of countable coproducts are k_ω-spaces. Thus we have our desired external characterization. Remembering that the k-spaces are precisely the quotient of locally compact spaces, and keeping 10), 11), 12) in mind, we may write,

13) The k_ω-spaces are precisely the quotients of σ-compact locally compact spaces.

Or as Morita stated it

13') The k_ω-spaces are precisely the quotients of locally compact Lindelöf spaces.

Now, given the compact Hausdorff spaces, we can construct all k_ω-spaces. Nice, but that still leaves us a lot to know about how they behave. Let's first note some hereditary, and map preservation properties and then go on to look more closely at products.
14) A closed subspace Y of a k_ω-space $X = \bigcup X_n$ has a k_ω-decomposition $Y = \bigcup (X_n \cap Y)$. The proof is easy. Clearly being a k_ω-space is not arbitrarily hereditary since $Q \subseteq R$.

For inverse preservation by mappings we need to go to k-mappings, i.e., maps with the property that inverse images of compact subsets are compact.

15) If $Y = \bigcup Y_n$ is a k_ω-decomposition, X is Hausdorff, and $p: X \to Y$ is an onto k-map, then the sets $p^{-1}(Y_n)$ form a k_ω-decomposition for X.

Since Y is a k-space, p is a closed map (and hence perfect). Suppose F meets every $p^{-1}(Y_n)$ in a closed set. Then $p(F) \cap Y_n = p(F \cap p^{-1}(Y_n))$ is closed for each n so that $p(F)$ is closed. Thus $\text{cl}F \subseteq p^{-1}p(F)$. If $x \in \text{cl}F \cap F$, then x is not in the compact set $p^{-1}(p(x)) \cap F$. Thus we may separate these two by disjoint open neighborhoods U and V, i.e., $x \in U$, $p^{-1}(p(x)) \cap F \subseteq V$. Since $x \in \text{cl}F$, U meets F. Thus $x \in \text{cl}F \cap W$. If we now start the argument anew with $F \cap V$ instead of F we find that $p^{-1}(p(x))$ must meet $F \cap V$ which is absurd. Thus F is closed and we are done.

On to products. We have seen in 4) that finite products work. One would immediately suppose that uncountable products won't. What about countable products? Assume that $X_1 \subseteq X_2 \subseteq \cdots$ is a sequence of compact subsets of \mathbb{R}^N. Then each X_i is contained in some compact box $\Pi_j [-n_i^j, n_i^j]$. But then the compact box $\Pi_j [-n_i^j, n_i^j + 1]$ is contained in no X_i contradicting 3). Thus \mathbb{R}^N is not a k_ω-space. So, not all countable
products work. Which ones do? Answer: None (except trivial cases).

16) The product of countably many non-compact \(k_\omega \)-spaces is never \(\sigma \)-compact.

Write the spaces as \(X^i = \cup X^i_n \) and let \(\{K^i_j\} \) be any countable collection of compact subsets of \(\Pi X^i \). Clearly each \(K^i_j \) is contained in some \(\Pi_{j \in J} X^i_{n_j} \). Choose some \(p \in \Pi X^i \) so that for each \(i \), \(p_i \notin X^i_{n_i} \). Then \(p \) doesn't belong to any \(K^i_j \).

Now for a surprising consequence. In Tychonoff spaces, a non-compact, \(\sigma \)-compact space isn't pseudocompact and thus contains a closed copy of \(N \). Hence a countable product of such spaces contains a closed copy of \(N^N \) which fails to be \(\sigma \)-compact by 16). Thus

17) The product of countably many non-compact, \(\sigma \)-compact, regular spaces is never \(\sigma \)-compact.

Historically this investigation began with a question about weak topologies in the product of two spaces one of which was \(k_\omega \). Specifically, if we cross the rationals with the free group over a compact Hausdorff space does the product have the weak topology of \(Q \times (\mathbb{F}_G(K,p))_n \)? In general, if \(Y \) is some space and \(X = \cup X_n \) is a \(k_\omega \)-space, need \(Y \times X \) have the weak topology of the \(Y \times X_n \)? The answer is no, even if \(Y \) is very nice, say the rationals. To see this think of \(S_2 \) as consisting of a sequence \(\{s_i\} \) converging to a point \(s_o \) with a sequence of isolated points \(\{s_j, 1\} \) converging to each \(s_j \). For each \(j \), let \(\{q_j, i\} \) be a sequence in \(Q \) converging to \(\pi/n \). Let \(F = \{(q_j, i, s_j, 1)\} \) as \(j \) and \(i \) both vary. Let
$X_n = \{s_0\} \cup \{s_j \mid j \in \mathbb{N}\} \cup \{s_{j,i} \mid j < n\}$. The X_n thus defined form a k_ω-decomposition of S_2. Now for each n, $F \cap (Q \times X_n)$ is closed in $Q \times S_2$, but F itself isn't closed since it doesn't contain its limit point $(0,s_0)$. Thus the weak topology from the $Q \times X_n$ isn't the product topology.

We're now in a position to produce the oft promised demonstration that Q is not a k_ω-space. Suppose $Q = \bigcup Y_n$ were a k_ω-decompositon and further suppose that $F \subseteq Q \times S_2$ met each $Q \times X_n$ in a closed set. Then for each n, $F \cap (Y_n \times X_n) = [F \cap (Q \times X_n)] \cap (Y_n \times X_n)$ must also be closed. Thus F would be closed and the weak topology of the $Q \times X_n$ would coincide with the product topology, a contradiction.

Of course, what keeps the $Q \times X_n$ from generating the product topology on $Q \times S_2$ is Q's lack of local compactness.

18) When Y is a locally compact Hausdorff space and $X = \bigcup Y_n$ is a k_ω-decomposition, the weak topology of the sets $Y \times X_n$ coincides with the product topology on $Y \times X$.

For the proof we exploit the fact that βY, being compact, is a k_ω-space with trivial k_ω-decomposition. Since Y is locally compact, it is an open subset of βY and thus each $Y \times X_n$ is open in $\beta Y \times X_n$. Suppose $U \subseteq Y \times X$ meets each $Y \times X_n$ in an open set. Then for each n, $U \cap (\beta Y \times X_n)$ is open in $\beta Y \times X_n$ and thus U is open in $\beta Y \times X$. But then U must also be open in $Y \times X$ and 18) is proved.

The local-compactness condition in 18), while sufficient, is by no means necessary. For an example, take the product of any non-locally compact k_ω-space (say S_2) and itself.
It's well known that the product of two k-spaces need not be again a k-space although local-compactness of one factor is sufficient. One might hope that one factor being a k_ω-space might also suffice. Unfortunately $\mathbb{Q} \times S_2$ is again a counter example. Take F as above. Since each compact subset of $\mathbb{Q} \times S_2$ is contained in some $\mathbb{Q} \times X^n$, F meets each compact subset in a closed set but is not itself closed. Thus $\mathbb{Q} \times S_2$ is not a k-space.

Finally we devote ourselves to the questions of the metrizability and first countability of k_ω-spaces. Clearly a metrizable k_ω-space, being Lindelöf (by 6)), is separable and second countable. Conversely, a k_ω-space is regular, so second countability suffices.

19) A k_ω-space is metrizable iff it is second countable.

First countability is not enough. Any compact first countable but not metrizable space, e.g., the unit square with the lexicographic order, is an example.

The close relationship among k_ω-spaces between first countability and local compactness will yield further information about metrizability. From 5) we immediately get

20) Every first countable k_ω-space is locally compact.

Whence

21) A metrizable k_ω-space is locally compact and hence completely metrizable.

In particular, we see again that \mathbb{Q} cannot be a k_ω-space. Since k_ω-spaces are composed of compact "pieces" it is
natural to ask if the metrizability of the pieces will yield that of the space. In general, the answer is no. For example, the k_ω-decomposition of S_2 described in the paragraph following 17) is composed of metrizable pieces while S_2 isn't metrizable (in fact isn't first countable or even Fréchet).

For a somewhat simpler example take a sequential fan, i.e., the union of a countable family of convergent sequences with their limit points identified. The pieces are metrizable; the fan is a k_ω-space by 13); however, the fan is not first countable and hence not metrizable.

How about other examples (first countable ones, for instance)? There are none. No essentially different ones at any rate.

22) (Franklin, Thomas [4]) If $X = \bigcup X_n$ is a k_ω-decomposition with each X_n metrizable, then X is metrizable iff it contains no copy of S_2 and no sequential fan.

The proof consists of showing that the hypotheses imply first countability and that first countability implies metrizability. These facts are stated explicitly in the following

23) If $X = \bigcup X_n$ is a k_ω-decomposition with each X_n metrizable, then X is metrizable iff it is first countable.

The second, more delicate, lemma is the first countable version of 22) expanded a little.

24) Suppose $X = \bigcup X_n$ is a k_ω-decomposition with each X_n first countable and that X is not first countable.

If X is Fréchet it contains a sequential fan. If X is not Fréchet, it contains a copy of S_2.
We conclude with an observation and a question concerning $\beta X \backslash X$. An easy corollary of a result due to Fine and Gillman [3] is that the growth of each k^ω-space contains a dense subset which is the union of copies of $\beta N \backslash N$. Is it possible that the growth of every k^ω-space (i.e., $\beta X \backslash X$) is an F-space?

Bibliography

12. E. T. Ordman, *Free k-groups and free topological groups,*
124

Franklin and Thomas

Memphis State University

Memphis, Tennessee 38152