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A SURVEY OF kw-SPACES 

Stanley P. Franklin and Barbara V. Smith Thomas 

The kw-spaces, a natural generalization of countable 

CW-complexes, have appeared recently in papers on topologi

cal groups and topological semigroups. They seem destined 

to play an important role in that study. Here we survey 

the purely topological behavior of such spaces. Being unusu

ally well endowed k-spaces they behave very nicely indeed. 

In particular, they possess excellent separation properties, 

a nice external characterization, and a very interesting 

metrization theorem. 

Writing R = u:=l[-n,n] expresses the real line as the 

union of an increasing sequence of compact Hausdorff subsets, 

with R having the weak topology with respect to the [-n,n] 

(i.e., F is closed in Riff F n [-n,n] is closed in [-n,n] 

for each n). Such a decomposition of a space (i.e., X = 

U:=lX with the X compact Hausdorff and increasing, and X n n 

having their weak topology) is called a k -decomposition. A w 

space possessing a kw-decomposition is called a kw-spaae. 

Hence R is a k -space.
w

Caution: If we enumerate the rationals Q = {ql,q2' 

Q

express Q = U
OO 

Q as the union of an increasing sequence 

q 3 ' • • • ,qn' • • .} and wr i te n 

n=l n 

of compact Hausdorff subspaces but not produce a kw-decomposi

tion. The weak topology arising from this sequence is 

discrete. We shall see later that Q with its usual topology 

admits no kw-decomposition. 
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Worse yet can happen. The space 8 (the prototype of
2 

sequential but not Frechet spaces, see [1]) admits two de

compositions into the union of an increasing sequence of 

compact Hausdorff subsets, one of them a kw-decomposition, 

the other not. 

The terminology "kw-spaces" seems to be due to E. Michael 

[8]; Graev discussed such spaces with reference to topologi

cal groups in 1948 [5], and Morita introduced them under the 

name ~/ in 1956 [10]. The related notion of hemicompactness 

was introduced by Arens in 1946 [2]. A space, X, is said to 

be hemicompact if it can be written as the union of countably 

many compact subspaces, K , with the property that each comn 

pact subset of X is contained in a finite union of the Kn'S. 

Some applications of kw-spaces are: 

OO 

A. If X = U IX is a k -space then so is the Graev n= n w 

free group over X, with kw-decomposition FG(X,p) 

OO 

U l(FG(X )) (words of reduced length < nand n= n,p n
 

letters from X ) (Ordrnan [12]).
n 

B. If G and H are topological groups which are k w 

spaces so also is G il H (Katz [6], Ordman [13]). 

These results are interesting in that they describe 

the topological structure of the free group, respectively 

coproduct, a problem which is unsolved in general. 

c. X is k if and only if C(X) with its compact openw 

topology is completely metrizable (putting together 

results of Warner [15] and Mosiman and Wheeler [11]). 

Ordman (in [12]) has collected some known facts about 

kw-spaces. We state them here, without proof, for the con

venience of the reader. 
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1) (Graev) Every kw-space is a Hausdorff k-space. 

2) If X = UX is a kw-decomposition and f: X + Y is conn 

tinuous on each Xn~ then f is continuous on X. 

3) (Steenrod) If X UX is a k -decomposition~ then each n w 

compact subset of X is contained in some X . That is~ 
n 

X is hemicompact with respect to its kw-decomposition. 

4) (Milnor) If X = UX and Y = UY are kw-decompositions~ n n 

so	 is X x Y U(X x Y ).n n

Thus kw-spaces are finitely productive.
 

The crux of 3) is that if A c X meets every X\X and if
 
n 

we let x E A n (X'X ) then U X'{x In > m} is an open
n n m n

cover of A with no finite subcover. Number 4) is really a 

theorem about countable CW-complexes, but the same ideas and 

techniques work for kw-spaces. 

There's another known and useful fact about kw-spaces 

due to Ordman [13]. 

5)	 In a kw-space~ a point without a compact neighborhood 

cannot support a countable neighborhood base. 

kw-spaces can, in fact, boast of much better separation 

properties than 1) indicates. If X = UX is a kw-decomposin 

tion, and E and F are disjoint closed subsets of X, then 

E n Xl and F n Xl have Xl neighborhoods Ul and VI whose 

closures are disjoint. Let E = E U clU and F = F U clVl .l l l 

Then E n X and F n X have X neighborhoods U and V whose
l 2 l 2 2 2 2 

closures are disjoint. Continuing, we produce disjoint 

neighborhoods U = UU and V = UV of E and F. Hence X is 
n n 

normal. 
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In	 particular we have, 

6) (Morita) Each kw-space., being a-compact and regular., 

is Lindelof., paracompact., etc. 

We conclude immediately that a kw-space with any of 

several weaker compactness properties (pseudo-compact, 

countably compact) is already compact. kw-spaces are very 

nice indeed. 

Fact 3) above (each compact set contained in some member 

of a kw-decomposition) is not only true of kw-decompositions, 

but actually characterizes them for k-spaces. Suppose X = 

UX	 where X is a k-space and the X form an increasing sequence
n n 

of compact Hausdorff subspaces of X such that each compact 

subspace of X is contained in one of the Xn's. Suppose also 

that F meets each X in a closed set. Let K ~ X be compact.
n 

Then K ~ X for some nand F n K = (F n X ) n K is closed,
n n 

and thus F is closed. Stated formally, we have 

7)	 An increasing sequence of compact Hausdorff subsets 

covering a k-space X is a kw-decomposition iff each 

compact subset of X is contained in one of them. 

An	 immediate consequence is that 

7') The kw-spaces are precisely the hemicompact'k-spaces. 

In 7) we must assume X to be a k-space. Consider 

N U {p} ~ S N. Let K = {p, 1 , 2 , • • • ,n}; every compact sub-n 

set of N U {p} is contained in some K . Thus N U {p} is 
n 

hemicompact but fails to be k . w 

Here's another useful fact about kw-decompositions. 
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8) Suppose X = UX is a kw-decomposition and X = UX~n 

is another increasing cover by compact subsets. If 

each X is contained in some X~, then the X' n	 m 

also form a kw-decomposition, and conversely. 

To	 see this, suppose F meets each X~ in a closed set. Given 

n, choose m so that X ~ X~. F n X = (F n X~) n X is n n	 n 

closed, and hence F is closed. The converse is immediate 

from 3) • 

It	 follows from 8) that 

9)	 Any subsequence of a kw-decomposition is again a 

kw-decomposition. 

Now that we have gained some familiarity with the work

ings of kw-spaces it's only natural to ask "what are they?". 

The obvious conjecture is easily shot down: Q is a a-com

pact k-space which isn't k as we'll show below. "But Qw 

isn't locally compact," you say. Any discrete space of car

dinality > K is locally compact but not k . "What if we 
o w 

require both?" Now we're getting somewhere. 

10) A locally compact Hausdorff space is k iff it is w 

a-compact. 

Suppose X is both a-compact and locally compact, and let
 

X = UY with each Y compact. We'll now define a kw-decom
n n 

position by recursion. Let Xl = Y . Cover each point of Xl
l 

with a compact neighborhood. Reduce to a finite cover. Union 

these together and add Y2 to form X2 · Thus Xl ~ X2 ' Y2 ~ X2 ' 

and each point of Xl has a compact neighborhood in X Con2 . 

tinuing in this way we define the subsequent X . Now to show n 
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they form a kw-decomposition: suppose F meets each X in a 
n 

closed set and that x i F. This x belongs to some X and 
n 

hence to int X + . Since F n X + is compact, there is an n l n l 

open U containing x and missing F n X n +l . U n int X n +l is 

then a neighborhood of x missing F, and F is therefore 

closed. 

The proof of 10) yields yet another sufficient descrip

tion of a kw-decomposition as an increasing sequence of 

compact Hausdorff subsets each contained in the interior of 

a subsequent one. 

One might hope to extend the equivalence of a-compact and 

k for locally compact spaces to the larger class of k-spacesw 

locally compact on a dense subset. (In the presence of 

a-compactness, these are precisely the Baire spaces.) Un

fortunately Q, with the dyadic rationals made discrete, 

provides the counter example (apply 14) . 

On the other hand a kw-space need not be a Baire space. 

The space 5 ([l]), being a-compact and nowhere locally comw 

pact, isn't Baire. However, it is the quotient of a countable 

disjoint sum of convergent sequences (and their limits) and 

is thus a kw-space by 13) . 

Note that there are kw-spaces (~ike 52) which aren't 

locally comgact, so we haven't yet found them all. But we're 

close--just two easy lemmas. 

Although continuous images of kw-spaces need not be k w 

(map Q with the discrete topology onto Q with its usual 

topology), quotients must be 

11) (Morita) If X UX is a kw-deaomposition and q: X ~ Y n 
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is a quotient map onto a Hausdorff Y, then the sets 

q(X ) form a kw-decomposition for Y. n 

The proof is straightforward and will be omitted. 

12) (Morita) The disjoint topological sum (coproduct) 

of countably many kw-spaces is again a kw-space 

j	 j
Let	 x = ux~ be a kw-decomposition for each j. Then ~j x

OO 

U	 (U Xj ) is a k decomposition of the coproduct.m=l n+j=m n w-

Now given a kw-space X = UX we take the coproduct e X 
n n 

of its pieces. The map i: e X ~ X generated by the inclu
n 

sions X ~ X is a quotient map since X has the weak topology
n 

of the X . Thus an arbitrary kw-space can be represented as n 

the quotient of a countable coproduct of compact Hausdorff 

spaces. By 11) and 12) all such quotients of countable co

products are kw-spaces. Thus we have our desired external 

characterization. Remembering that the k-spaces are pre

cisely the quotient of locally compact spaces, and keeping 

10), 11), 12) in mind, we may write, 

13)	 The kw-spaces are precisely the quotients of a-com

pact locally compact spaces. 

Or as Morita stated it 

13')	 The kw-spaces are precisely the quotients of locally 

compact Lindelof spaces. 

Now, given the compact Hausdorff spaces, we can con

struct all kw-spaces. Nice, but that still leaves us a lot 

to know about how they behave. Let's first note some 

hereditary, and map preservation properties and then go on to 

look more closely at products. 
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14) A c~osed subspace Y of a kw-space X UX has a n 

kw-decomposition Y = U(X n Y).
n 

The proof is easy. Clearly being a kw-space is not 

arbitrarily hereditary since Q ~ R. 

For inverse preservation by mappings we need to go to 

k-mappings, i.e., maps with the property that inverse images 

of compact subsets are compact. 

15) If Y = UY is a kw-decomposition, X is Hausdorff,n 
-l(y )and p: X -+ Y is an onto k-map, then the sets P n 

form a kw-decomposition for x. 

Since Y is a k-space, p is a closed map (and hence perfect) . 

Suppose F meets every p-l(y ) in a closed set. Then 
n 

-1p(F) n Y = p(F n p (Y » is closed for each n so that 
n n 

p(F) is closed. Thus clF ~ p-lp(F). If x E clF'F, then x is 

not in the compact set p-l(p(x» n F. Thus we may separate 

these two by disjoint open neighborhoods U and V, i.e., x E U, 

p-l(p(x» n F ~V. Since xE clF, U meets F. Thus x E clF'\.V. 

If we now start the argument anew with F'V instead of F we 

find that p-l(p(x» must meet F'V which is absurd. Thus F 

is closed and we are done. 

On to products. We have seen in' 4') that finite products 

work. One would immediately suppose that uncountable products 

won't. What about countable products? Assume that Xl ~ 

X2 ~ ••• is a sequence of compact subsets of RN Then each 

X. is contained in some compact box IT. [-n~,n~]. But tben the 
1 J 1 1 

compact box IT. [-n~-l,n~+l] is contained in no X. contradict-
J J J 1 

ing 3). Thus RN is not a k -space. So, not all countable 
w 
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products work. Which ones do? Answer: None (except trivial 

cases) . 

16)	 The product of countably many non-compact kw-spaces 

is never a-compact. 

iWrite the spaces as xi = ux and let {K.} be any countable 
n J 

collection of compact subsets of ITX i . Clearly each K. is 
J 

icontained in some IT.x .. Choose some p E ITXi so that for
J nJ 

each i p i xi .. Then p doesn't belong to any K .• , i n1. J 

Now for a surprising consequence. In Tychonoff spaces, 

a non-compact, a-compact space isn't pseudocompact and thus 

contains a closed copy of N. Hence a countable product of 

N
such spaces contains a closed copy of N which fails to be 

a-compact by 16). Thus 

17)	 The product of countably many non-compact, a-compact, 

regular spaces is never a-compact. 

Historically this investigation began with a question 

about weak topologies in the product of two spaces one of 

which was k . Specifically, if we cross the rationals with w 

the free group over a compact Hausdorff space does the product 

have the weak topology of Q x (FG (K,p) ) n? In general, if Y 

is some space and X = uX is a kw-space, need Y x X have the n 

weak topology of the Y x X ? The answer is no, even if Y is n 

very nice, say the rationals. To see this think of S2 as con

sisting of a sequence is;} converging to a point So with 

a sequence of isolated points is .. } converging to eachJ,1. 
s.. For each j, let {q. .} be a sequence in Q converging

J J,1. 
to TI/n. Let F = {(q .. ,s .. )} as j and i both vary. LetJ,1. J,1. 
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x {s} U {s.lj E N} U {so . Ij < n}. The X thus defined 
n 0 J J,l - n 

form a kw-decomposition of S2. Now for each n, F n (n x X )n 

is closed in n x S2' but F itself isn't closed since it 

doesn't contain its limit point (O,so). Thus the weak topology 

from the n x X isn't the product topology.n 

We're now in a position to produce the oft promised 

demonstration that n is not a k -space. Suppose n UY 
w n 

were a kw-decompositon and further suppose that F ~ n x S2 

met each n x X in a closed set. Then for each n, F n n
 

(Y x X) [F n (n x X )] n (Y x X ) must also be closed.
 n n n n n 

Thus F would be closed and the weak topology of the n x X 
n 

would coincide with the product topology, a contradiction. 

Of course, what keeps the n x X from generating the n 

product topology on n x 8 2 is n' s lack of local compactness. 

18) When Y is a locally compact Hausdorff space and 

X = UY is a kw-decomposition~ the weak topology of n 

the sets Y x X coincides with the product topologyn 

on Y x X. 

For the proof we exploit the fact that SY, being compact, is 

a kw-space with trivial kw-decomposition. Since Y is locally 

compact, it is an open subset of SY and thus each Y x X is n 

open in SY x X . Suppose U ~ Y x X meets each Y x X in an n n 

open set. Then for each n, U n (SY x X ) is open in SY x X n n 

and thus U is open in SY x X. But then U must also be open 

in Y x X and 18) is proved. 

The local-compactness condition in 18), while sufficient, 

is by no means necessary. For an example, take the product 

of any non-locally compact kw-space (say S2) and itself. 
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It's well known that the product of two k-spaces need 

not be again a k-space although local-compactness of one factor 

is sufficient. One might hope that one factor being a kw-space 

might also suffice. Unfortunately n x S2 is again a counter 

example. Take F as above. Since each compact subset of Q x S2 

is contained in some Q x X , F meets each compact subset in 
n 

a closed set but is not itself closed. Thus Q x S2 is not 

a k-space. 

Finally we devote ourselves to the questions of the 

metrizability and first countability of kw-spaces. Clearly 

a metrizable kw-space, being Lindelof (by 6)), is separable 

and second countable. Conversely, a kw-space is regular, so 

second countability suffices. 

19) A kw-space is metrizable iff it is second countable. 

First countability is not enough. Any compact first 

countable but not metrizable space, e.g., the unit square 

with the lexicographic order, is an example. 

The close relationship among kw-spaces between first 

countability and local compactness will yield further in

formation about metrizability. From 5) we immediately get 

20) Every first countable kw-space is locally compact. 

Whence 

21)	 A metrizable kw-space is locally compact and hence 

complete~y metrizable. 

In particular, we see again tha t Q cannot be a k -space.w

Since kw-spaces are composed of compact "pieces" it is 
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natural to ask if the metrizability of the pieces will yield 

that of the space. In general, the answer is no. For example, 

the kw-decomposition of 52 described in the paragraph follow

ing 17) is composed of metrizable pieces while 52 isn't 

metrizable (in fact isn't first countable or even Frechet) . 

For a somewhat simpler example take a sequential fan, 

i.e., the union of a countable family of convergent sequences 

with their limit points identified. The pieces are metriza

ble; the fan is a kw-space by 13); however, the fan is not 

first countable and hence not metrizable. 

How about other examples (first countable ones, for in

stance)? There are none. No essentially different ones at 

any rate. 

22) (Franklin, Thomas [4]) If X = UX is a kw-decomposin 

tion with each X metrizable~ then X is metrizablen 

iff it contains no copy of 52 and no sequential fan. 

The proof consists of showing that the hypotheses imply first 

countability and that first countability implies metrizability. 

These facts are stated explicitly in the following 

23) If X = UX is a kw-decomposition with each X metrizan n 

ble~ then X is metrizable iff it is first countable. 

The second, more delicate, lemma is the first countable 

version of 22) expanded a little. 

24) Suppose X = UX is a kw-deocmposition with each X n n 

first countable and that X is not first countable. 

If X is Prechet it contains a sequential fan. If X 

is not Prechet~ it contains a copy of 52. 
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We conclude with an observation and a question concern

ing	 BX\X. An easy corollary of a result due to Fine and 

Gillman [3] is that the growth of each kw-space contains a 

dense subset which is the union of copies of BN\N. Is it 

possible that the growth of every kw-space (i.e., BX\X) is an 

F-space? 
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