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SOME RESULTS ON SPACES HAVING AN

ORTHO-BASE OR A BASE OF
SUBINFINITE RANK

Gary Gruenhage

Introduction

Let B be a base for a topological space X. B8 is said
to be an ortho-base if whenever B’ = B and p € NA’, then
either NB’' is open, or B’ contains a local base at p. A is
said to have subinfinite rank (rank n) if whenever B8’ < 8,
nB’ # g, and B’ is infinite (B’ has cardinality n + 1), then
at least two elements of B’ are related by set inclusion.
Spaces having an ortho-base, and spaces having a base of sub-
infinite rank both generalize two more familiar classes of
spaces, namely the non-archimedean spaces, and the spaces
having a uniform base. These concepts were introduced by
P. J. Nyikos [6], and studied in depth by W. F. Lindgren and
Nyikos [5]. The spaces having a base of subinfinite rank
were also studied by Nyikos and the author in [3].

It is the purpose of this paper to answer a number of
questions of Nyikos concerning these two classes of spaces.
Among other results, we prove that countably compact spaces
with a base of either type are compact, separable spaces with
a base of subinfinite rank are hereditarily Lindel&f, separable
spaces with a base of point-finite rank are metrizable, and

monotonically normal spaces with an ortho-base are paracompact.

Main Results
Our first few results lead up to the proof that countably
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compact spaces with an ortho-base or a base of subinfinite
rank are compact, but some are also interesting by them-
selves. The first two lemmas reduce the problem to the
separable case, and then the first two theorems finish it

off. Lemma 1 was proved independently by Dennis Burke.

Lemma 1. Let X be countably compact but not compact.
Suppose every separable closed subspace of X is compact.
Then X contains a perfect pre-image of Wy -

Proof. X is not Lindeldf, so there exists an open cover
{/ of X with no countable subcover. Let l@ = {g}. Pick

U, € (/and x, € U,. Let 0& = {UO}. Suppose x, and 0& have

0 0 0

been chosen for all a < B < wy - Let XB = 1xaFa<B’

g+ Pick xg € X - u{uUa|a < B}.
Clearly, {x8}8<w1' is a discrete set of points.

For each limit ordinal B < Wy let ZB be the set of

and let

Oé c l/ be a finite cover of X

which are not limit points of {x }

limit points of {xa}a<8 a’ o<y

if y < B. Clearly ZB is closed, compact, and non-empty.

For n € w, let Z_ = {xn}. For w < & < w,, @ not a limit

ordinal, let 2z = {xa-l}' Let Z = Ua<wl z,- Define

£f: z -~ wy by f£(z) = o if and only if z € Za'

Clearly f_l(a) is compact for all & < w,. Also,

£, B1) = U Z. - U

Y<B "y Y<o

f is continuous.

ZY’ which is clopen in Z. Thus

It remains to prove that f is closed. Let A be a closed
subset of Z, and suppose f(A) is not closed in wl' Let

B € £(A) - f(A). There exist a, > B in w, such that

1

o, € f(A) for all n € w. Let a_ € Z N A. The set
n n On

{ao,al,az,---} must have a cluster point z € X. It is easy
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to see that z € Z, hence z € A and f(z) = B ¢ f£(A), contra-

diction.

Lemma 2. No perfect pre-image of w, has a base of sub-

1

infinite rank or an ortho-base.

Proof. Let f: X + w, be a perfect map and let B be a

base for X. We shall show that 8 is not an ortho-base and

does not have subinfinite rank. For each limit ordinal

1

o < w;, let B8(0,0) be a finite minimal cover of f ~ (o) by

1!
elements of B, such that (uB8(o,0)) n f_l((a,ml)) = g. Let
B(a,0) be the least ordinal y such that f—l((y,a]) c yB(a,0),
and let 8'(a,0) be the least ordinal & such that £ -([0,5]) n
B # § whenever B € $(a,0) and B ¢ f_l(a).

The functions o + B(0,0) and o +» B'(a,0) are regressive,

so there exists an uncountable subset A, of w, and o € w

T
0 1 0’ % 1
such that B(a,0) = ao and B'(a,0) = aé for all o € AO. Sup-

pose o.,a!, and A, have been defined for all i < n, where
ir7i i

n € w. Define an,aﬂ, and An similar to the case n = 0, but
if « > 8 = max{a__ ,0! _;}, let B € B(a,n) imply B = £ 1((B+1,
al). Let § = sup{an|n € w}. Note that § = Sup{aﬂ]n € w}

also. Let {Yn} be an increasing sequence of ordinals

ne€w
larger than § such that Yo € An. Let x be a point of the

1

boundary of f ~(8). We see from the definition of oy that

there exists B € B(ann), for each n € w. Let 8’ = {BO,

B,,***}. It is easy to see from the relations f_l(yi) n

l’
-1 -1 _

B, # 4, £ "([0,0;]) nB; #9, £ "(vy;,4) nB; =f and

f_l([O,ai_l]) n By = # that (i) no two elements of B’ are

-1

related, and (ii) nB’ = £ ~(8). Property (i) says that 8

does not have subinfinite rank and (ii) says that 8 is not
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an ortho-base.

Theorem 1. Every separable space with an ortho-base
has a Gd—diagonal.
Proof. Let Q = {ql,qz,'--} be a countable dense subset

of a space X with ortho-base 8. For each n € N, let

n B -
{Bn,i}i=l < b be such that qj € Bn,i Uj#i Bn,j' If x € X,
and x # q; if i < n, let Cx,n € B be such that x € Cx,n and

. — n -
Cyon N {qy,e+iqyt = 0. Let U =1{B .} .U {cx,n|x € X

{ag, = +qy )}

n,i

Pick y € X, and suppose z €r§=l(y,un), z # y. Then

there exists u, € Un such that {y,z} < U,- Thus U = N1 Yn

is open, and so there exists qk € QN U. Therefore, if n >k,

then Un = Bn,k' But (nn=k Bn,k) neog-s= {qk}, contradicting the
fact that nm_ B is a non-degenerate open set. Thus
n=k "n,k

ﬂ:=l st(y,Un) = {y} for every y ¢ X, and so X has a Gd-diagonal.

In our next theorem, we use the following notation:
d(X) is the density of X, hd(X) is the hereditary density
(i.e., the supremum of the densities of the subspaces of X),
hL(X) is the hereditary Lindel&f degree, and s(X) is the spread
(i.e., the supremum of the cardinalities of the discrete sub-
spaces of X). We also use the following theorem of partition
calculus, denoted by a > (u,w)z: If the unordered pairs of
a set A of cardinality a« are put into two sets, set I and
set II, then either there exists an infinite subset of A all
of whose pairs belong to set II, or there exists a subset of

A of cardinality o, all of whose pairs belong to set I.

Theorem 2. Let X be a regular space with a base of
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subinfinite rank. Then d(X) = hd(X) > hL(X) = s(X). Thus a

regular separable space with a base of subinfinite rank is
hereditarily separable and hereditarily Lindeldf.
Proof. We first prove that d(X) = hd(X). Let 1 = d(X),

and suppose hd(X) > t. Then there exists a sequence {XG}G<T+

such that Xg 4 1xaF whenever B < T+. Let B be a base of

o<B

subinfinite rank, and for each B < r+, let U, € B be such that

8
€ T = ; = i
Xg UB and UB n {xa}a<8 @. Since d(X) 7, there is a
fixed subcollection A of {Ua|a < 1%} such that |a] =17,

Applying A (T+,w)2, there exists a subset A' of A of

cardinality 1% such that C = {Ua|Ua € A'}l is a chain. Note

€ C, then Ua o Ua‘ and Xa € Ua - U ,.

that if o < o' and U _,U
o o

o’
For o < T+, let & = min{y|y > o and UY € C}. Then

{Ua - ﬁg|Ua € ¢} is a disjoint collection of cardinality

T+ of open subsets of X, contradiction.

To prove the remaining parts of the theorem, we shall
use the following: (*) if {/ is a collection of open subsets
of X of subinfinite rank, then for each x ¢ X there exists
a subcollection ¢’ = ¢ such that |{’| < c(X) and st(x,{) <
{Oju e U'}.

Assuming (*) holds, it is easy to see that d(X) > hL(X) .
To see that (*) implies s(X) > hL(X), and thus s(X) = hL(X),
let Y be any open subset of X and / an open cover of Y.

Let { be a cover of Y of subinfinite rank such that U ¢ U
implies U « V for some V € /. Pick Yq € Y. If y has been

chosen for all a < B, pick yB €Y -y st(ya,d). Then the

a<B
yu's are discrete, thus there are no more than s(X) of them.
Applying (*), we get a subcover of Y of cardinality not

greater than s(X), hence hL(X) < s(X).
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It remains to prove that (*) holds. Let { be a collec-
tion of open subsets of X of subinfinite rank, and let x € X.

Let x € U, € U. 1f U, has been chosen for all a < B, let

0

UB € U be such that x € UB and whenever o < B, U & ﬁ;, pro-
viding such a set exists. Suppose we have chosen such Ua

for all a < c(X)+. Since c(X)+ > (c(X)+,w), there exists a
1

chain {Uu5|d < c{X) . We can assume § < §' implies a

§ < G-

Then {Ua5 - Ua6|6 < c(X)+} is a disjoint collection of open

+1

sets of cardinality c(X)+

, contradiction. Therefore (*)

holds.

Theorem 3. If X is a regular countably compact space
with an ortho-base, or a base of subinfinite rank, then X is
compact.,

Remark. Nyikos [6] has shown that a compact space with
an ortho-base is metrizable.

Proof. Let X satisfy the hypothesis of the theorem.

If X is also separable, then it is compact by Theorem 2 if it
has a base of subinfinite rank, and by Theorem 1 and a theorem
of Chaber [2] if it has an ortho-base. If X is not compact,
then, X satisfies the hypothesis of Lemma 1. Therefore X
contains a perfect pre-image of Wy, but this is impossible

by Lemma 2. Thus X is compact.

A base B for a space X is said to have point-finite rank
if for each x € X, the set B(x) of all members of B containing
X has rank n for some positive integer n. We denote by r B
the least positive integer n such that B(x) has rank n. Our

next theorem answers a question of Nyikos asked in [3].
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Theorem 4. A regular hereditarily Lindeldf space with
a base of point-finite rank has a point-countable base.

Proof. Let X be hereditarily Lindeldf with a base 8 of
point-finite rank. For each n € N, let X, = {x ¢ X|rXB < n}.
Note that Xn is a closed subset of X.

We follow the proof of [3, Theorem 5.6] to obtain a base
Un for the points of X, such that if x € X then x is in at
most countably many elements of Un. Since the proof is
essentially the same, we shall not include it, except to note
the following differences:

(i) replace U by bg = {U ¢ AQ|U nX ##}, and

(ii) replace M, by M! = {x € Xn| every neighborhood of

¢ B

X contains an element of U ur.
a<f o

UB<w1 8 and that UB<w1 VB is a

base for Xn’ point-countable with respect to the points of

UB<w1 VB'

Since X is hereditarily Lindeldf, for each U € b; there

Then the proofs that Xn = M

X, are almost exactly the same. We let Un =

exists a countable set BU = B8 such that U = UBU and B c U
for each B ¢ BU. Let Bn = {B ¢ BU: Uel,BnX #g}.

Then Bn is a base in X for the points of X,. Suppose there
is a point of X in uncountably many elements of Bn. Then
applying a - (a,w)z, there is an uncountable chain C c Bn'
Let {Ca}a<8 be a well-ordered decreasing cofinal subset of
minimum cardinality. Then.B is not countable, for otherwise
there would exist some Ca contained in uncountably many ele-
_ments of C, contradicting the point-countability of bh on X .
Since Xn is hereditarily Lindeldf, there is a countable sub-

cover of {XE\EE: o < B8}. Thus there is some 8 < B with

u{xn\ca: a < B} = X\NCg. If x € X nCg, then x € Nu<g Co
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But each E& is contained in some U with Ca € B so again

Ul
this contradicts the point-countability of 0; on X . Thus
Bn is point-countable in X, and so U:=1 Bn is a point-countable

base for X.

In [3], it is proved that a regular separable space with
a base of finite rank is metrizable. The following corollary
extends this result to the case of a base of point-finite

rank.

Corollary. A regular separable space with a base of
point-finite rank is metrizable.

Proof. Let X satisfy the hypotheses. Then X is
hereditarily Lindeldf by Theorem 2. Thus, by Theorem 4, X
has a point-countable base, and by the separability this base

is countable.

A space is proto-metrizable if it is paracompact and
has an ortho-base. Proto-metrizable spaces are monotonically
normal [6], and this fact leads to the question asked by
Nyikos whether monotonically normal spaces with an ortho-
base are paracompact (or, equivalently, proto-metrizable).
Here we present an easy solution to this gquestion with the
help of a characterization of proto-metrizable spaces due to
Gruenhage and Zenor [4]. According to this characterization,
a space is proto-metrizable if and only if it has a rank 1
pair-base, i.e., a pair-base 8 = {B = (Bl,B2)|B € B} such that
whenever B,B' € 8 and B, 1 Bi # @, then either B, < Bé or

1 1

B]'_ < B2.

Theorem 5. A space 1s proto-metrizable if and only 1f
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it is monotonically normal and has an ortho-base.

Proof. We have already noted that a proto-metrizable
space has an ortho-base and is monotonically normal. Suppose
X is a monotonically normal space with an ortho-base f. By
a characterization of monotone normality due to Borges [l],
for each open set U and x € U, there exists an open set Ux
such that Uy n Vy # ¢ implies x € Vor y € U. Let Ui =
n{B € B|x € B and B ¢ U}. Let up = U, N U, and let
P = {(U;,U)|U € B}. sSuppose Uy N V; # ¢, where U,V € 8,
Without loss of generality, we may assume X € V, If V < U,
then so is V;. If Vv ¢ U, then U; < V, and hence U; < V.
Thus P is a rank 1 pair-base for X, and so X is proto-

metrizable.
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