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SOME RESULTS ON SPACES HAVING AN 

ORTHo-BASE OR A BASE OF 

SUBINFINITE RANK 

Gary Gruenhage 

Introduction 

Let B be a base for a topological space x. B is said 

to be an ortho-base if whenever B' c Band p E nB', then 

either nB' is open, or B' contains a local base at p. B is 

said to have subinfinite rank (rank n) if whenever B' c B, 

nB' F ~, and B' is infinite (B' has cardinality n + 1), then 

at least two elements of B' are related by set inclusion. 

Spaces having an ortho-base, and spaces having a base of sub­

infinite rank both generalize two more familiar classes of 

spaces, namely the non-archimedean spaces, and the spaces 

having a uniform base. These concepts were introduced by 

P. J. Nyikos [6], and studied in depth by W. F. Lindgren and 

Nyikos [5]. The spaces having a base of subinfinite rank 

were also studied by Nyikos and the author in [3]. 

It is the purpose of this paper to answer a number of 

questions of Nyikos concerning these two classes of spaces. 

Among other results, we prove that countably compact spaces 

with a base of either type are compact, separable spaces with 

a base of subinfinite rank are hereditarily Lindelof, separable 

spaces with a base of point-finite rank are metrizable, and 

monotonically normal spaces with an ortho-base are paracompact. 

Main Results 

Our first few results lead up to the proof that countably 



152 Gruenhage 

compact spaces with an ortho-base or a base of subinfinite 

rank are compact, but some are also interesting by them­

selves. The first two lemmas reduce the problem to the 

separable case, and then the first two theorems finish it 

off. Lemma 1 was proved independently by Dennis Burke. 

Lemma 1. Let X be countably compact but not compact. 

Suppose every separable closed subspace of X is compact. 

Then X contains a perfect pre-image of wl . 

Proof· X is not Lindelof, so there exists an open cover 

ti of X with no countable subcover. Let ' = {rJ}. PickUO 

V E tJ and X E V O· Let (j = {vOl. Suppose x and tJ haveo o 1 a a 

been chosen for all a < S < wl . Let X = ~a<a' and let s 

tiS c tJ be a finite cover of X . Pick X E X - u{utJala < a}.
S s 

Clearly, {xS}S<Wl' is a discrete set of points. 

For each limit ordinal S < w ' let Zs be the set ofl 

limit points of {xa}a<S which are not limit points Gf {xa}a<y 

if y < S. Clearly Zs is closed, compact, and non-empty. 

For nEw, let Zn {Xn }. For W < a < WI' a not a limit 

ordinal, let Za, {Xa,_l}· Let Z = Za· Defineua<Wl 

f: Z ~ w by f (z) a, if and only if z E Z 
a,~l 

Clearly f-l(a) is compact for all a < 
l Also,w · 

f-l«a"S]) = Z - which is clopen in Z. ThusuY~B y Uy~a, Zy' 

f is continuous. 

It remains to prove that f is closed. Let A be a closed 

subset of Z, and suppose f(A) is not closed in w Letl . 

S E f (A) - f (A) • There exist o:,! ~ S in w such thatl~ 
an E f (A) for all n E w. Let a i E Z n A. The set n an 

{aO,al ,a2 ,·· .} must have a clus~er point z E X. It is easy 
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to see that z E Z, hence z E A and f(z) S E f(A), contra­

diction. 

Lemma 2. No perfect pre-image of wI has a base of sub­

infinite rank or an ortho-base. 

Proof. Let f: X + wI be a perfect map and let B be a 

base for X. We shall show that B is not an ortho-base and 

does not have subinfinite rank. For each limit ordinal 

a < wI' let B(a,O) be a finite minimal cover of f-l(a) by 

-1
elements of B, such that (uB(a,O» n f ((a,wl » =~. Let 

S(a,O) be the least ordinal y such that f-l((y,a]) c uB(a,O), 

land let 8' (a,O) be the least ordinal 8 such that f- ([0,8]) n 

B ~ ~ whenever B E B (a, 0) and B ¢ f 
-1 

(a). 

The functions a + S(a,O) and a + S' (a,O) are regressive, 

so there exists an uncountable subset AO of wI and aO,aO E wI 

such that S(a,O) = a and S' (a,O) = a O for all a E Sup-
O AO· 

pose ai,ai' and Ai have been defined for all i < n, where 

nEw. Define an,a~, and An similar to the case n = 0, but 

if a > 8 = max{an_l,a~_l}' let B E B(a,n) imply B c f-
l 

«8+l, 

a]). Let 8 = sup{a In E w}. Note that 8 = sup{a' In E w}
n n 

also. Let be an increasing sequence of ordinals{Yn}nEw 

larger than 8 such that Y E A Let x be a point of the 
n n 

boundary of f- l (8) . We see from the definition of a that n 

there exists B E B(y ,n), for each nEw. Let B' = {B ' 
n n O 

-1
B ,···}. It is easy to see from the relations f (Yi) n

l 
-1 -1

Bi ~ ~,f ([O,a i ]) n Bi ~ ~,f (Yi+l) n Bi = ~ and 

f-l([0,a _ ]) n B = ~ that (i) no two elements of B' are
i 1 i 

related, and (ii) nB' c f- l (8). Property (i) says that B 

does not have subinfinite rank and (ii) says that B is not 
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an ortho-base. 

Theorem 1. Every separable space with an ortho-base 

has a Go-diagonal. 

Proof. Let Q = {q1,q2' ••• } be a countable dense subset 

of a space X with ortho-base B. For each n E N, let 

{B . }~ c B be such that q; E B - U.~. B If x E X,n,]. ].c1 .I. n,i J ]. n, j. 

and x ~ qi if i ~ n, let C E B be such that x E C and x,n x,n 
n

C n {q • •• q } ~. Let U U {c Ix E X -x,n l' , n n {Bn ,i}i=l x,n 

{q l' • • • , qn } } · 

Pick Y E X, and suppose z E rh=l (y, Un)' z ~ y. Then 

there exists Un E Un such that {y,z} c Un. Thus U 

is open, and so there exists qk E Q n U. Therefore, if n > k, 

then Un Bn,k· But (n:=k Bn,k) n Q = {qk}' contradicting the 

fact that n~=k Bn,k is a non-degenerate open set. Thus 

n~=l st(y,U ) = {y} for every y E X, and so X has a Go-diagonal.n 

In our next theorem, we use the following notation: 

d(X) is the density of X, hd(X) is the hereditary density 

(i.e., the supremum of the densities of the subspaces of X), 

hL(X) is the hereditary ~inde1of degree, and s(X) is the spread 

(i.e., the supremum of the cardinalities of the discrete sub­

spaces of X). We also use the following theorem of partition 

2calculus, denoted by a + (a,w) : If the unordered pairs of 

a set A of cardinality a are put into two sets, set I and 

set II, then either there exists an infinite subset of A all 

of whose pairs belong to set II, or there exists a subset of 

A of cardinality a, all of whose pairs belong to set I. 

Theorem 2. Let X be a regular space with a base of 
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subinfinite rank. Then d(X) hd(X) > hL(X) = s(X). Thus a 

regular separable space with a base of subinfinite rank is 

hereditarily separable and hereditarily Lindelof. 

Proof. We first prove that d(X) = hd(X). Let t = d(X) , 

and suppose hd(X) > T. Then there exists a sequence {xa}a<t+ 

such that Xs I tx:Ta<S whenever S < 1+. Let B be a base of 

subinfinite rank, and for each S < T
+

, let Us E B be such that 

X E Us and Us n {xa}a<S =~. Since d(X) = t, there is a s 
+fixed subcollection A of {U la < t+} such that IAI t . 

a 
+ + 2Applying T + (t ,w) , there exists a subset A' of A of 

cardinality t+ such that C = {U Iu E A'} is a chain. Note 
a a 

that if a < a' and Ua'U ' E C, then U ~ U ' and x E U - Ua'.a a a a a 

For a < t+, let a = min{yly > a and U E C}. Then 
y 

{U - UAlu E C} is a disjoint collection of cardinalitya a a 

t+ of open subsets of X, contradiction. 

To prove the remaining parts of the theorem, we shall 

use the following: (*) if U is a collection of open subsets 

of X of subinfinite rank, then for each x E X there exists 

a subcollection U' c U such that IU'I ~ c(X) and st(x,U) c 

{olu E U'}. 

Assuming (*) holds, it is easy to see that d(X) ~ hL(X) . 

To see that (*) implies s(X) ~ hL(X), and thus s(X) = hL(X), 

let Y be any open subset of X and V an open cover of Y. 

Let U be a cover of Y of subinfinite rank such that U E U 

implies IT c V for some V E V. Pick YO E Y. If Y has been a 

chosen for all a < B, pick YS 
E Y - Ua<S st(ya,U) · Then the 

Ya ' s are discrete, thus there are no more than s (X) of them. 

Applying (*), we get a subcover of Y of cardinality not 

greater than s(X), hence hL(X) < s(X). 



156 Gruenhage 

It remains to prove that (*) holds. Let U be a collec­

tion of open subsets of X of subinfinite rank, and let x E X. 

Let x E Uo E U. If U has been chosen for all a < S, let a 

Us E U be such that x E Us and whenever a < S, U ~ 0, pro­
a 

viding such a set exists. Suppose we have chosen such U 
a 

for all a < c(X)+. Since c(X)+ + (c(X)+,w), there exists a 

chain {ua616 < c(X)+}. We can assume 6 < 6' implies a < a 6 ,.6 

Then {U - 0--16 < c(X)+} is a disjoint collection of open
a6+1 a6 

sets of cardinality c(X)+, contradiction. Therefore (*) 

holds. 

Theorem 3. If X is a regular countably compact space 

with an ortho-base~ or a base of subinfinite rank~ then X is 

compact. 

Remark. Nyikos [6] has shown that a compact space with 

an ortho-base is metrizable. 

Proof. Let X satisfy the hypothesis of the theorem. 

If X is also separable, then it is compact by Theorem 2 if it 

has a base of subinfinite rank, and by Theorem 1 and a theorem 

of Chaber [2] if it has an ortho-base. If X is not compact, 

then, X satisfies the hypothesis of Lemma 1. Therefore X 

contains a perfect pre-image of w ' but this is impossiblel 

by Lemma 2. Thus X is compact. 

A base B for a space X is said to have point-finite rank 

if for each x E X, the set B(x) of all members of B containing 

x has rank n for some positive integer n. We denote by rxB 

the least positive integer n such that B(x) has rank n. Our 

next theorem answers a question of Nyikos asked in [3]. 
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Theorem 4. A regular hereditarily Lindelof space with 

a base of point-finite rank has a point-countable base. 

Proof. Let X be hereditarily Lindelof with a base E of 

point-finite rank. For each n E N, let X = {x E xlr E < n}.n x 

Note that X is a closed subset of X. 
n 

We follow the proof of [3, Theorem 5.6] to obtain a base 

Un for the points of X ' such that if x E X ' then x is in at n n 

most countably many elements of U. Since the proof is 
n 

essentially the same, we shall not include it, except to note 

the following differences: 

(i) replace Ua by U~ {U E Ua IU n Xn =I ,0}, and 

(ii) replace M by MS {x E xnl every neighborhood of
S
 

x contains an element of Ua<S U~.
 

Then the proofs that X = US<Wl M ' and that US<Wl Vs is an S 

base for X ' point-countable with respect to the points of 
n 

X ' are almost exactly the same. We let Un = US<Wl vS.n 

Since X is hereditarily Lindelof, for each U E U there 
n 

exists a countable set E c E such that U = uE and B c U u u 
for each B E Eu. Let En {B E E : u E Un' B n x =I ~}.u n 

Then En is a base in X for the points of X . Suppose there n 

is a point of X in uncountably many elements of En. Then 

applying a + (a,w)2, there is an uncountable chain C c E . 
n 

Let {Ca}a<S be a well-ordered decreasing cofinal subset of 

minimum cardinality. The~_-S is not countable, for otherwise 

there would exist some C contained in uncountably many ele­
a 

ments of C, contradicting the point-countability of U on X n n 

Since X is hereditarily Lindelof, there is a countable sub-
n 

cover of {X \C : a < S}. Thus there is some cS < S with n a 

U{Xn\C : a < S} = Xn\C • If x E X n C , then x E na<S Ca·a cS n cS 
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But each C is contained in some U with C E B , so againa a u
this contradicts the point-countability of U on X. Thus 

n n 

B is point-countable in X, and so U~=l B is a point-countablen n 

base for X. 

In [3], it is proved that a regular separable space with 

a base of finite rank is metrizable. The following corollary 

extends this result to the case of a base of point-finite 

rank. 

Corollary. A regular separable space with a base of 

point-finite rank is metrizable. 

Proof. Let X satisfy the hypotheses. Then X is 

hereditarily Lindelof by Theorem 2. Thus, by Theorem 4, X 

has a point-countable base, and by the separability this base 

is countable. 

A space is proto-metrizable if it is paracompact and 

has an ortho-base. Proto-metrizable spaces are monotonically 

normal [6], and this fact leads to the question asked by 

Nyikos whether monotonically normal spaces with an ortho-

base are paracompact (or, equivalently, proto-metrizable). 

Here we present an easy solution to this question with the 

help of a characterization of proto-metrizable spaces due to 

Gruenhage and Zenor [4]. According to this characterization, 

a space is proto-metrizable if and only if it has a rank 1 

pair-base, i.e., a pair-base B = {B = (B l ,B 2 ) IB E B} such that 

whenever B,B' E Band B n Bi * ~, then either B C B2 orl l 

Theorem 5. A spaae is proto-metrizable if and only if 
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it is monotonically normal and has an ortho-base. 

Proof. We have already noted that a proto-metrizable 

space has an ortho-base and is monotonically normal. Suppose 

X is	 a monotonically normal space with an ortho-base B. By 

a characterization of monotone normality due to Borges [1], 

for each open set U and x E U, there exists an open set U x 

such that U n V ~ fiJ implies x E V or y E U. Let U' 
x y x 

n{B E Blx E B and B cF U}. Let U" U n U' and let 
x x x' 

fj) = {(U~,U)IU E B} • Suppose U~ n V"
y 

'# fiJ, where U,V E B. 

Without loss of generality, we may assume x E V. If V c U, 

then	 so is V". If V rj:. U, then U' c V, and hence U" c V. y x x 

Thus fj) is a rank 1 pair-base for X, and so X is proto­

metrizable. 
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