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SOME RESULTS ON SPACES HAVING AN 

ORTHo-BASE OR A BASE OF 

SUBINFINITE RANK 

Gary Gruenhage 

Introduction 

Let B be a base for a topological space x. B is said 

to be an ortho-base if whenever B' c Band p E nB', then 

either nB' is open, or B' contains a local base at p. B is 

said to have subinfinite rank (rank n) if whenever B' c B, 

nB' F ~, and B' is infinite (B' has cardinality n + 1), then 

at least two elements of B' are related by set inclusion. 

Spaces having an ortho-base, and spaces having a base of sub

infinite rank both generalize two more familiar classes of 

spaces, namely the non-archimedean spaces, and the spaces 

having a uniform base. These concepts were introduced by 

P. J. Nyikos [6], and studied in depth by W. F. Lindgren and 

Nyikos [5]. The spaces having a base of subinfinite rank 

were also studied by Nyikos and the author in [3]. 

It is the purpose of this paper to answer a number of 

questions of Nyikos concerning these two classes of spaces. 

Among other results, we prove that countably compact spaces 

with a base of either type are compact, separable spaces with 

a base of subinfinite rank are hereditarily Lindelof, separable 

spaces with a base of point-finite rank are metrizable, and 

monotonically normal spaces with an ortho-base are paracompact. 

Main Results 

Our first few results lead up to the proof that countably 
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compact spaces with an ortho-base or a base of subinfinite 

rank are compact, but some are also interesting by them

selves. The first two lemmas reduce the problem to the 

separable case, and then the first two theorems finish it 

off. Lemma 1 was proved independently by Dennis Burke. 

Lemma 1. Let X be countably compact but not compact. 

Suppose every separable closed subspace of X is compact. 

Then X contains a perfect pre-image of wl . 

Proof· X is not Lindelof, so there exists an open cover 

ti of X with no countable subcover. Let ' = {rJ}. PickUO 

V E tJ and X E V O· Let (j = {vOl. Suppose x and tJ haveo o 1 a a 

been chosen for all a < S < wl . Let X = ~a<a' and let s 

tiS c tJ be a finite cover of X . Pick X E X - u{utJala < a}.
S s 

Clearly, {xS}S<Wl' is a discrete set of points. 

For each limit ordinal S < w ' let Zs be the set ofl 

limit points of {xa}a<S which are not limit points Gf {xa}a<y 

if y < S. Clearly Zs is closed, compact, and non-empty. 

For nEw, let Zn {Xn }. For W < a < WI' a not a limit 

ordinal, let Za, {Xa,_l}· Let Z = Za· Defineua<Wl 

f: Z ~ w by f (z) a, if and only if z E Z 
a,~l 

Clearly f-l(a) is compact for all a < 
l Also,w · 

f-l«a"S]) = Z - which is clopen in Z. ThusuY~B y Uy~a, Zy' 

f is continuous. 

It remains to prove that f is closed. Let A be a closed 

subset of Z, and suppose f(A) is not closed in w Letl . 

S E f (A) - f (A) • There exist o:,! ~ S in w such thatl~ 
an E f (A) for all n E w. Let a i E Z n A. The set n an 

{aO,al ,a2 ,·· .} must have a clus~er point z E X. It is easy 
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to see that z E Z, hence z E A and f(z) S E f(A), contra

diction. 

Lemma 2. No perfect pre-image of wI has a base of sub

infinite rank or an ortho-base. 

Proof. Let f: X + wI be a perfect map and let B be a 

base for X. We shall show that B is not an ortho-base and 

does not have subinfinite rank. For each limit ordinal 

a < wI' let B(a,O) be a finite minimal cover of f-l(a) by 

-1
elements of B, such that (uB(a,O» n f ((a,wl » =~. Let 

S(a,O) be the least ordinal y such that f-l((y,a]) c uB(a,O), 

land let 8' (a,O) be the least ordinal 8 such that f- ([0,8]) n 

B ~ ~ whenever B E B (a, 0) and B ¢ f 
-1 

(a). 

The functions a + S(a,O) and a + S' (a,O) are regressive, 

so there exists an uncountable subset AO of wI and aO,aO E wI 

such that S(a,O) = a and S' (a,O) = a O for all a E Sup-
O AO· 

pose ai,ai' and Ai have been defined for all i < n, where 

nEw. Define an,a~, and An similar to the case n = 0, but 

if a > 8 = max{an_l,a~_l}' let B E B(a,n) imply B c f-
l 

«8+l, 

a]). Let 8 = sup{a In E w}. Note that 8 = sup{a' In E w}
n n 

also. Let be an increasing sequence of ordinals{Yn}nEw 

larger than 8 such that Y E A Let x be a point of the 
n n 

boundary of f- l (8) . We see from the definition of a that n 

there exists B E B(y ,n), for each nEw. Let B' = {B ' 
n n O 

-1
B ,···}. It is easy to see from the relations f (Yi) n

l 
-1 -1

Bi ~ ~,f ([O,a i ]) n Bi ~ ~,f (Yi+l) n Bi = ~ and 

f-l([0,a _ ]) n B = ~ that (i) no two elements of B' are
i 1 i 

related, and (ii) nB' c f- l (8). Property (i) says that B 

does not have subinfinite rank and (ii) says that B is not 
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an ortho-base. 

Theorem 1. Every separable space with an ortho-base 

has a Go-diagonal. 

Proof. Let Q = {q1,q2' ••• } be a countable dense subset 

of a space X with ortho-base B. For each n E N, let 

{B . }~ c B be such that q; E B - U.~. B If x E X,n,]. ].c1 .I. n,i J ]. n, j. 

and x ~ qi if i ~ n, let C E B be such that x E C and x,n x,n 
n

C n {q • •• q } ~. Let U U {c Ix E X -x,n l' , n n {Bn ,i}i=l x,n 

{q l' • • • , qn } } · 

Pick Y E X, and suppose z E rh=l (y, Un)' z ~ y. Then 

there exists Un E Un such that {y,z} c Un. Thus U 

is open, and so there exists qk E Q n U. Therefore, if n > k, 

then Un Bn,k· But (n:=k Bn,k) n Q = {qk}' contradicting the 

fact that n~=k Bn,k is a non-degenerate open set. Thus 

n~=l st(y,U ) = {y} for every y E X, and so X has a Go-diagonal.n 

In our next theorem, we use the following notation: 

d(X) is the density of X, hd(X) is the hereditary density 

(i.e., the supremum of the densities of the subspaces of X), 

hL(X) is the hereditary ~inde1of degree, and s(X) is the spread 

(i.e., the supremum of the cardinalities of the discrete sub

spaces of X). We also use the following theorem of partition 

2calculus, denoted by a + (a,w) : If the unordered pairs of 

a set A of cardinality a are put into two sets, set I and 

set II, then either there exists an infinite subset of A all 

of whose pairs belong to set II, or there exists a subset of 

A of cardinality a, all of whose pairs belong to set I. 

Theorem 2. Let X be a regular space with a base of 
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subinfinite rank. Then d(X) hd(X) > hL(X) = s(X). Thus a 

regular separable space with a base of subinfinite rank is 

hereditarily separable and hereditarily Lindelof. 

Proof. We first prove that d(X) = hd(X). Let t = d(X) , 

and suppose hd(X) > T. Then there exists a sequence {xa}a<t+ 

such that Xs I tx:Ta<S whenever S < 1+. Let B be a base of 

subinfinite rank, and for each S < T
+

, let Us E B be such that 

X E Us and Us n {xa}a<S =~. Since d(X) = t, there is a s 
+fixed subcollection A of {U la < t+} such that IAI t . 

a 
+ + 2Applying T + (t ,w) , there exists a subset A' of A of 

cardinality t+ such that C = {U Iu E A'} is a chain. Note 
a a 

that if a < a' and Ua'U ' E C, then U ~ U ' and x E U - Ua'.a a a a a 

For a < t+, let a = min{yly > a and U E C}. Then 
y 

{U - UAlu E C} is a disjoint collection of cardinalitya a a 

t+ of open subsets of X, contradiction. 

To prove the remaining parts of the theorem, we shall 

use the following: (*) if U is a collection of open subsets 

of X of subinfinite rank, then for each x E X there exists 

a subcollection U' c U such that IU'I ~ c(X) and st(x,U) c 

{olu E U'}. 

Assuming (*) holds, it is easy to see that d(X) ~ hL(X) . 

To see that (*) implies s(X) ~ hL(X), and thus s(X) = hL(X), 

let Y be any open subset of X and V an open cover of Y. 

Let U be a cover of Y of subinfinite rank such that U E U 

implies IT c V for some V E V. Pick YO E Y. If Y has been a 

chosen for all a < B, pick YS 
E Y - Ua<S st(ya,U) · Then the 

Ya ' s are discrete, thus there are no more than s (X) of them. 

Applying (*), we get a subcover of Y of cardinality not 

greater than s(X), hence hL(X) < s(X). 
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It remains to prove that (*) holds. Let U be a collec

tion of open subsets of X of subinfinite rank, and let x E X. 

Let x E Uo E U. If U has been chosen for all a < S, let a 

Us E U be such that x E Us and whenever a < S, U ~ 0, pro
a 

viding such a set exists. Suppose we have chosen such U 
a 

for all a < c(X)+. Since c(X)+ + (c(X)+,w), there exists a 

chain {ua616 < c(X)+}. We can assume 6 < 6' implies a < a 6 ,.6 

Then {U - 0--16 < c(X)+} is a disjoint collection of open
a6+1 a6 

sets of cardinality c(X)+, contradiction. Therefore (*) 

holds. 

Theorem 3. If X is a regular countably compact space 

with an ortho-base~ or a base of subinfinite rank~ then X is 

compact. 

Remark. Nyikos [6] has shown that a compact space with 

an ortho-base is metrizable. 

Proof. Let X satisfy the hypothesis of the theorem. 

If X is also separable, then it is compact by Theorem 2 if it 

has a base of subinfinite rank, and by Theorem 1 and a theorem 

of Chaber [2] if it has an ortho-base. If X is not compact, 

then, X satisfies the hypothesis of Lemma 1. Therefore X 

contains a perfect pre-image of w ' but this is impossiblel 

by Lemma 2. Thus X is compact. 

A base B for a space X is said to have point-finite rank 

if for each x E X, the set B(x) of all members of B containing 

x has rank n for some positive integer n. We denote by rxB 

the least positive integer n such that B(x) has rank n. Our 

next theorem answers a question of Nyikos asked in [3]. 
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Theorem 4. A regular hereditarily Lindelof space with 

a base of point-finite rank has a point-countable base. 

Proof. Let X be hereditarily Lindelof with a base E of 

point-finite rank. For each n E N, let X = {x E xlr E < n}.n x 

Note that X is a closed subset of X. 
n 

We follow the proof of [3, Theorem 5.6] to obtain a base 

Un for the points of X ' such that if x E X ' then x is in at n n 

most countably many elements of U. Since the proof is 
n 

essentially the same, we shall not include it, except to note 

the following differences: 

(i) replace Ua by U~ {U E Ua IU n Xn =I ,0}, and 

(ii) replace M by MS {x E xnl every neighborhood of
S
 

x contains an element of Ua<S U~.
 

Then the proofs that X = US<Wl M ' and that US<Wl Vs is an S 

base for X ' point-countable with respect to the points of 
n 

X ' are almost exactly the same. We let Un = US<Wl vS.n 

Since X is hereditarily Lindelof, for each U E U there 
n 

exists a countable set E c E such that U = uE and B c U u u 
for each B E Eu. Let En {B E E : u E Un' B n x =I ~}.u n 

Then En is a base in X for the points of X . Suppose there n 

is a point of X in uncountably many elements of En. Then 

applying a + (a,w)2, there is an uncountable chain C c E . 
n 

Let {Ca}a<S be a well-ordered decreasing cofinal subset of 

minimum cardinality. The~_-S is not countable, for otherwise 

there would exist some C contained in uncountably many ele
a 

ments of C, contradicting the point-countability of U on X n n 

Since X is hereditarily Lindelof, there is a countable sub-
n 

cover of {X \C : a < S}. Thus there is some cS < S with n a 

U{Xn\C : a < S} = Xn\C • If x E X n C , then x E na<S Ca·a cS n cS 
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But each C is contained in some U with C E B , so againa a u
this contradicts the point-countability of U on X. Thus 

n n 

B is point-countable in X, and so U~=l B is a point-countablen n 

base for X. 

In [3], it is proved that a regular separable space with 

a base of finite rank is metrizable. The following corollary 

extends this result to the case of a base of point-finite 

rank. 

Corollary. A regular separable space with a base of 

point-finite rank is metrizable. 

Proof. Let X satisfy the hypotheses. Then X is 

hereditarily Lindelof by Theorem 2. Thus, by Theorem 4, X 

has a point-countable base, and by the separability this base 

is countable. 

A space is proto-metrizable if it is paracompact and 

has an ortho-base. Proto-metrizable spaces are monotonically 

normal [6], and this fact leads to the question asked by 

Nyikos whether monotonically normal spaces with an ortho-

base are paracompact (or, equivalently, proto-metrizable). 

Here we present an easy solution to this question with the 

help of a characterization of proto-metrizable spaces due to 

Gruenhage and Zenor [4]. According to this characterization, 

a space is proto-metrizable if and only if it has a rank 1 

pair-base, i.e., a pair-base B = {B = (B l ,B 2 ) IB E B} such that 

whenever B,B' E Band B n Bi * ~, then either B C B2 orl l 

Theorem 5. A spaae is proto-metrizable if and only if 
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it is monotonically normal and has an ortho-base. 

Proof. We have already noted that a proto-metrizable 

space has an ortho-base and is monotonically normal. Suppose 

X is	 a monotonically normal space with an ortho-base B. By 

a characterization of monotone normality due to Borges [1], 

for each open set U and x E U, there exists an open set U x 

such that U n V ~ fiJ implies x E V or y E U. Let U' 
x y x 

n{B E Blx E B and B cF U}. Let U" U n U' and let 
x x x' 

fj) = {(U~,U)IU E B} • Suppose U~ n V"
y 

'# fiJ, where U,V E B. 

Without loss of generality, we may assume x E V. If V c U, 

then	 so is V". If V rj:. U, then U' c V, and hence U" c V. y x x 

Thus fj) is a rank 1 pair-base for X, and so X is proto

metrizable. 
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