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SEMILATTICE STRUCTURES
 

ON DENDRITIC SPACES
 

T. B. Muenzenberger and R. E. Smithson, 

1.	 Introduction 

The algebraic structure available in dendritic spaces 

is refined and studied in a spirit analogous to that found 

in [5], [6], and [7]. A major contribution is to fill a 

gap in the proof of a key lemma in [14] by proving that the 

cutpoint order gives a dendritic space the structure of a 

meet semilattice. The actual mechanics involve the theory of 

Galois correspondences and gap points in partially ordered 

sets. The assumption of rim finiteness on a dendritic space 

yields an even finer algebraic structure on the space. 

For example, it is shown that a rim finite dendritic 

space has the structure of a monotone topological semilattice 

and that the topology on such a space is uniquely determined 

by the cutpoint order. The paper also includes another con­

struction of the unique dendritic compactification of a rim 

finite dendritic space. Other contributions to the theory 

of dendritic spaces can be found in the work of Allen [1], 

Bennett [2], Gurin [4], Pearson [10], Proizvolov [11] and 

[12],	 and Ward [13] and [14]. 

2.	 Galois Correspondences and Gap Points in Posets 

Let (X,~) be a poset. For A c X define L(A) 

{x E Xla E A ~ x < a} and M(A) {x E xla E A ~ a < x}. 

For x E X define L(x) = L({x}) and M(x) = M({x}). 
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Lemma 2.1. Let (X,~) be a poset~ Zet x E X~ and Zet 

A,B c X. Then 

a.	 A c LM(A) and A c ML(A) . 

b.	 If A C B~ then L(B) c L(A) and M(B) c M(A) . 

c.	 A c L(B) if and onZy if B c M(A) . 

d.	 If A c B~ then LM(A) c LM(B) and ML(A) c ML(B) . 

e.	 LML(A) = L(A) and MLM(A) = M(A) .
 

LM(x) = L(x) and ML(x) M(x) .
 f· 
g.	 If x E L(A)~ then L(x) c L(A). If x E M(A)~ then 

M(x) c M(A) . 

As observed in [3] and [9], statements (a) and (b) 

taken together say that Land Mare GaZois correspondences 

for the subsets of X. Statement (c) is an equivalent formu­

lation due to J. Schmidt [3, page 124]. Statements (d) and 

(e) are proved in [3] and [9]. Statement (f) is alluded to 

on page 126 of [3], and statement (g) follows easily from 

transitivity. 

If (X,~) is a poset and X c X, then x E X is a gapo	 o 

point of X if and only if o
 

(L(x) - {x}) n ML(X ) = ~.
 o 

Lemma 2.2. Let (X,~) be a poset and Zet X c X. Then o 

a. If x E X n L(X ) ~ then x is a gap point of X 
0 o	 0 

b.	 No two gap points of X are comparabZe.o 

c. If x is a gap point of X and x E Yo c ML (X ) ~ then o o 

x is a gap point of Yo. 

Proof. (a) If x E X n L(X )' then ML(X ) = ML(x) = o o o 

M(x) and so x is a gap point of X . (b) If x and x' are gapo 

points of X with x < x', then x E (L(x') - {x'}) n ML(X ) =~. o	 o 
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(c)	 If Yo C ML (X ) , then ML (Yo) c: ML (X ) from which the o o 

result follows readily. 

Lemma 2.3. Let (X,~) be a poset and let X c X be 
o 

a nondegenerate set of noncomparable elements. Then 

a.	 X n L(X ) = ~.o o

b. If x is a gap point of X and L(x) is a toset, then o
 

L(X ) = L(x) - {x}.

o 

Proof. (a) An element of X n L(X ) would be comparableo o

to any element of X . (b) L(X ) c L(x) {x} since x E X ­o o	 o 

L(X	 ). Suppose that y < x. Since x is a gap point of X ' o o 

there exists a E L(X ) such that a t y. So y < a and thus o

y E L (X ) • 
o 

3. Mods 

Let (X,~) be a poset and for x,y E X define x A y 

inf {x,y} when the infimum involved exists. 

Definition 3.1. A poset (X,~) is a mod if and only if 

the following conditions hold: 

a.	 For all x,y E X, X A Y exists. 

b.	 For all x E X, L(x) is a toset. 

c.	 Each nonempty subset of X which is bounded above 

(below) has a supremum (an infimum) in X. 

d.	 If x,y E X and x < y, then there exists z E X such 

that x < z < y. 

So a mod is a conditionally complete and order dense 

meet semilattice in which the lower sets are tosets. 

There is an alternative approach. Let X be a set, let 

P be a collection of subsets of X, and consider the following 
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five axioms on (X,~). 

Axiom 1. If x,y E X~ then there exists P E ~ such. that 

x,y E P. 

Axiom 2. If ~ ~ ~ C P and if n ~ ~ ~~ then n ~ E~. 
000 

If x,y E X, then the chain with endpoints x and y is 

defined by [x,y] = n{p E ~Ix,y E pl. Set [x,y) = [x,y] - {y} 

= (y,x] and (x,y) = [x,y] - {x,y}. A set A c X is chainable 

if and only if x,y E A imply [x,y] c A. 

Axiom 3. If P E ~~ then there exist unique x,y E X such 

that P = [x,y]. 

Axiom 4. The union of two chains that meet is chainable. 

Axiom 5. If x,y E X and x ~ y~ then (x,y) ~ ~. 

If e is an element of X, then the chain order < with 

basepoint e is defined by the rule: If x,y E X, then x < y 

if and only if x E [e,y]. 

Theorem 3.2. If (X,~) satisfies Axioms 1-5~ if e E X~ 

and if ~ is the chain order with basepoint e~ then (X,~) 

is a mod with least element e and the chains obey the follow­

ing equality: 

= 1L(¥) n M(x) if x ~ y. 
[x,y] 

[XI\Y, x] U [XAY, y] if x and y are not comparable. 

A proof of Theorem 3.2 can be found in [5] • 

Theorem 3.3. If (X,~) is a mod and the chains in ~ are 

defined as in the previous theorem, then (x,~) satisfies 



TOPOLOGY PROCEEDINGS Volume 2 1977	 247 

Axioms 1-5. Moreover~ if f E X~ then the chain order with 

basepoint f is exactly 

(~-{(x,y) Exxxlx<fAy}) U{(x,y) Exxxif Ay~x<f}. 

A proof of the first part of Theorem 3.3 may be found 

in [5]. The second part of Theorem 3.3 is not necessary for 

the primary purposes of this paper, and so the proof is 

omitted. Theorems 3.2 and 3.3 show that the concept of a 

mod is coextensive with that of a mod with least element. 

Many results proved in [6] did not require the existence 

of maximal elements, and so they are valid in the more gen­

eral context of a mod. Here is an example. An arc is a 

Hausdorff continuum with exactly two noncutpoints. A Haus­

dorff space X is acyclic if and only if any two distinct 

points x,y E X are the endpoints of a unique arc A[x,y] in 

x. An acyclic space admits a natural mod structure which 

will now be described. Define A[x,x] = {x} where x E X. 

If X is an acyclic space and e E X, then the arc order < 

with basepoint e is defined by the rule: If x,y E X, then 

x ~ y if and only if x E A[e,y]. It was shown in [8] that 

(X,~)	 is a mod. In fact, there is a topological characteri ­

zation of mods with certain natural order compatible topolo­

gies in terms of acyclic spaces which is analogous to 

Theorems 7.1 and 7.2 in [6]. 

If (X,~) is a mod with least element and each nonempty 

toset in X has a supremum in X, then (X,~) is called a semi­

tree. Semitrees were studied extensively in [5]-[7]. 

4.	 Dendritic Spaces 

Let X be a connected Hausdorff space. If e is an 
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element of X, then the cutpoint order ~ with basepoint e is 

defined by the rule: If x,y E X, then x ~ y if and only if 

x = e, x = y, or x separates e and y. Let Max(X) denote the 

< maximal elements of X and let N(X) denote the noncutpoints 

of X. 

Lemma 4.1. Let X be a connected Hausdorff space 3 let 

e E X3 and let < be the cutpoint order with basepoint e. 

Then 

a.	 ~ is a partial order with least element e. 

b.	 For all x E X3 L(x) is a toset. 

c.	 For all x E X3 M(x) - {x} is an open set. 

d.	 If x,y,z E X and z separates x and Y3 then z < x or 

z < y. 

e.	 If X is nondegenerate 3 then Max(X) = N(X) - {e}. 

Proof. statements (a)-(c) are proved in [14]. (d) 

Suppose that X - {z} = A U B where x E A, Y E B, and A and 

B are separated sets. If z = e, then z < x,y. If z ~ e, then 

z < x or z < y depending on whether e E B or e E A. (e) See 

the proof of Theorem 13 in [14]. 

A dendritic space is a connected Hausdorff space in 

which each pair of distinct points can be separated by some 

third point. Through Proposition 4.7 in this section, X will 

denote a dendritic space, e will denote an element of X, and 

< will denote the cutpoint order with basepoint e. The fol­

lowing Lemma is also proved in [14]. 

Lemma 4.2. (aJ The partia l order 2. is dense. (b J For 

aLL x E X3 L(x) and M(x) are olosed sets. (cJ The partial 
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order < is a closed subset of X x X. 

The remainder of what is needed to show that (X,<) is 

a mod would seem to be provided by Lemma 8.2 of [14]. Un­

fortunately, there is a gap in the proof of Lemma 8.2 given 

therein because, in the notation of the proof of that lemma, 

Xl and y need not be comparable. In effect, what is needed 

to complete the proof of the Lemma is the existence of xl A y, 

and the main part of this section will be devoted to proving 

the existence of the infimum of a doubleton in X. 

Lemma 4.3. If X c X is a set of noncomparable elem~nts, o 

then there exists at most one gap point of X . o 

Proof. Suppose that xl and x are distinct gap points2 

of X . By Lemma 2.3, [e,x1 ) = L(X ) = [e,x ). Let z E X o o 2

separate xl and x By Lemma 4.1, it may be assumed that2 . 

z < xl. Then z i ML(X ) since xl is a gap point of X . So o o 

there exists a E L(X ) such that a z. But a,z < xl whence o t 
z < a since L(X ) is a toset. Now there are two separations

1 

of interest here. First, X - {z} = C U D where xl E C, 

ED, and C and D are separated sets. Second.x 2 

X {a} (X - M(a) ) U (M(a) a) 

where e,z E X - M(a), xl and x are in M(a) - {a}, and2 

X - M(a) and M(a) - {a} are disjoint open sets. The question 

is where does a lie in the first separation? If a E C, then 

D U {z} is connected and meets both pieces of the second 

separation. Similarly, a E D leads to a contradiction. So 

X has at most one gap point.o 

Corollary 4.4. If X c X, then there exists at most one o 



250 Muenzenberger and Smithson 

gap point of x • o 

Proof. Suppose that xl and x are distinct gap points2 

of X . Then xl and x are gap points of Yo = {xl ,x } c X o 2 2 o 

by Lemma 2.2(c). By Lemma 2.2(b), xl and x are noncompara­
2 

ble. Then Lemma 4.3, when applied to Yo' provides a contra­

diction. 

Theorem 4.5. If x l ,x E X3 then xl A x exists.2 2 

Proof. Let x
l

,x E X and define B = ML{x ,x }. Observe2 l 2 

that ML(B) = B by Lemma 2.l(e), that 

B = n{M(a) la E L{x
l 

,x }}
2 

is a closed set by Lemma 4.2(b), and that B has at most one 

gap point by Corollary 4.4. Suppose first that B has no 

gap points. Then 

(1) B = U{M(b) - {b} Ib E B}. 

For suppose that X E B. Then [e,x) n B ~ ~ since x is not a 

gap point of B, and if b E [e,x) n B, then x E M(b) - {b} 

where b E B. On the other hand, if x E M(b) - {b} where 

b E B, then x E M(b) c B by Lemma 2.l(g). By (1) and Lemma 

4.I(c), B is an open set. Thus, B is a clopen set, and 

therefore B = X. So e E B, but e is a gap point of X by 

Lemma 2.2(a). Thus, B must have exactly one gap point. Sup­

pose that b is the only gap point of B. Then o 

(2) B - {b } = U{M(b) - {b} Ib E B}.o 

The proof of (2) is identical with the proof of (1) save for 

the observation that b i M(b) - {b} when b E B because o
 

[e,b ) n B =~. So B - {b } is an open set. If e E B, then
 o 0 

e = xl A x 2 . Suppose that e i B. If xl = x 2 ' then xl = 

xl A X 2 = x 2 . Suppose that xl ~ x 2 . Then 
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(3) X - {b } = (X - B) U (B - {b })
0 0 

is a separation. If bo = xl' then (3) implies that xl < x 2 

and xl /\ · Similarly, b x implies that x == xl x 2 0 2 2 

xl /\ x 2 · Finally, if xl ~ b ~ then (3) implies that o x 2 ' 

Corollary 4.6. The pair (X,~) is a mod. 

Proof. There are two avenues of attack here. First, it 

can be proven directly from Theorem 4.5 that each nonempty 

subset of X has an infimum in X, and from that it can be easily 

proven that each nonempty subset of X which is bounded above 

has a supremum in X. Second, the gap in the proof of Lemma 

8.2 of [14] has now been filled, and so that Lemma may also 

be applied to yield the desired conclusion. 

If X is a dendritic space and X c X, then inf X is ao o 
gap point of ML(X ) and vice versa. In fact, the concepts ofO

gap point and infimum can be made to coincide in a dendritic 

space by changing the definition of gap point to only require 

that a gap point X of X be a member of ML(X ) instead of re­o O

quiring that x lie in X itself.o 
Theorem 4.5 also provides simple proofs of several re­

suIts in [14]. Here is an example. 

Proposition 4.7. For all x E X~ L(x) is closed. 

Proof. Let yi L(x) and choose t so that x /\y < t < y. 

Then y E M(t) - {t} c X - L(x). 

In fact, for any x E X 

X - L(x) = U{M(t) - {t}lt E X and t f x}. 

For another application, note that the existence of mod 
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structures on acyclic and dendritic spaces means that the 

fixed point theorems proven in [5], [6], [8], and [14] are 

valid for such spaces. 

The final theorem in this section can be proved by using 

Theorem 3.3, Lemmas 4.1 and 4.2, and Proposition 2.3 in [14]. 

Theorem 4.8. Let X be an acyclic or a dendritic 

space~ let e E X~ and let < be the arc order or the cutpoint 

order with basepoint e~ respectively. Then the family P of 

chains described in Theorem 3.3 is independent of e. In fact~ 

if f E X~ then the chain order with basepoint f determined by 

P equals the arc order or the cutpoint order with basepoint 

f~ respectively. 

5.	 Rim Finite Dendritic Spaces 

If A is a subset of a space X, then A will denote the 

closure of A in X. A space X is rim finite if and only if 

each element of X admits arbitrarily small neighborhoods whose 

boundaries are finite. Through Theorem 5.11, let X be a rim 

finite dendritic space and let X* denote the unique dendritic 

compactification of X first given by Proizvo1ov [11] and later 

refined by Allen [1], Pearson [10], and Ward [14]. By the 

construction of X* given in [14], 

x* = X U No where X n No = ~ and No C N{X*) . 

This is because the cutpoints of X* are all members of X as 

observed in the proof of Theorem 23 in [14]. Let e E X, 

let < be the cutpoint order on X with least element e, and 

let ~* be the cutpoint order on X* with least element e. Let 

A and A* be the corresponding infimum operations. By Corro1­

1ary 4.6, (X'~) and (X*'~*) are mods. Since X* is a tree 
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(a compact dendritic space), (X*'~*) is actually a semitree, 

and J*, the topology of X*, is strongly order compatible as 

defined in [6]. The later fact is well known, and indeed it 

follows from Lemmas 4.1 and 4.2, Theorem 4.8, and certain 

results in [6]. Thus, if x,y E X* and [x,y]* denotes the 

chain in x* with endpoints x and y, then [x,y]* is the unique 

arc in X* with endpoints x and y. Furthermore, the family 

consisting of all sets of the form 

M*(x) - {x}, X* - M*(x), X* - L*(x) where x E X*, 

L*(x) {y E x*ly ~* x}, and M*(x) = {y E x*lx ~* y}

is a subbasis for ]* by Theorem 4.27 in [6]. The purpose of 

the present section is to extend these and other results to 

X in so far as possible. 

Lemma 5.1. If m E Max(X*), then the family 

] = {M*(t) - {t}lt E X* and t <* m} 

is a basis for the neighborhoods of m in x*. 

Proof. Let x E X* and m E X* - M*(x). If x A* m <* t 

<* m, then m E M*(t) - {t} c X* - M*(x). The lower sets have

already been handled in Proposition 4.7. Furthermore,] 

is closed under finite intersections, and so ] is an open 

basis at m in x*. 

Corollary 5.2. If x E X*, then a separation X* - {x} 

CUD of x* - {x} restricts to a separation X - {x} = 

(c n X) U (D n X) of X - {x}. 

Proof. If C n X = ~, then C C No c Max(X*). But C is 

open, contradicting Lemma 5.1 or else the local connectivity

of X*. 
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Lemma 5.3. The inclusion <* n (X x X) c < holds.
 

Proof. Apply Corollary 5.2.
 

Actually, Corollary 5.2 is not necessary to prove Lemma
 

5.3, but Corollary 5.2 will be needed later in the proof of 

Corollary 5.8. 

Lemma 5.4. If C cX* is chainable and M cMax(X*), then 

C - M is chainable and therefore connected. 

Proof. If x,y E X* - M, then [x,y] * c L* (x) U L* (y) c 

X* - M. Hence, C - M is chainable and therefore connected by 

Theorem 4.21 in [6]. 

Corollary 5.5. Max(X*) = Max(X) UNo. 

Proof. Apply Lemmas 4.l(e), 4.2(a), 5.3, and 5.4. 

All closures in the next Lemma and proof are to be 

taken in X*. 

Lemma 5.6. If x E X, then a separation X - {x} = CUD 

of X - {x} extends to a separation X* - {x} = (C - {x}) U 

(0 - {x}) of x* - {x}. 

Proof. Notice that enD = {x} by Lemma 1.2 in [1], and 

so C - {x} and IT - {x} are separated sets in X* - {x}. Now 

X - {x} = X*, and so X* - {x} = (C - {x}) U (0 - {x}) is a 

separation. 

Corollary 5.7. The partial order <* restricted to 

X x X equals ~. 

Of course Corollary 5.7 follows immediately from Lemmas 

5.3 and 5.6, but alternate proofs are possible by verifying 

the conditions in Theorem 5 or Corollary 11.1 or 12.1 in [14].
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Corollary 5.8. N{X*) = N{X) UNo. 

Proof. Lemmas 4.l{e) and 5.6 and Corollary 5.5 are enough 

to show that N{X*) c N{X) U No' and Corollary 5.2 shows that 

N(X) cN{X*). 

Corollary 5.9. The equation A*l = A holds. xxx
 

Proof. This is immediate from Corollary 5.7.
 

Theorem 5.10. The pair (X,A) is a monotone topological 

semilattice. 

Proof. The function A* is continuous since X* is a tree. 

So A is continuous by Corollary 5.9, and A is shown to be 

.monotone in the proof of Theorem 11 in [7]. 

Examples 3 and 4 in [7] show that an arbitrary dendritic 

space need not have a continuous infimum operation. How­

ever, Theorem 11 in [7] does yield a result about the con­

tinuity of the infimum operation on certain dendritic spaces 

that is slightly better than the one in Theorem 5.10. To 

see that it is a better result necessitates a fuller illumina­

tion of the structure of a rim finite dendritic space. 

It seems to be well known that a rim finite dendritic 

space X is acyclic; see, for example, [2], [4], [10], [11], 

and [14]. In fact, if x,y E X, then [x,y] = [x,y]* is the 

unique arc joining x and y by Lemma 5.7, Corollary 5.9, and 

the corresponding structure on X*. Thus, the cutpoint order 

on X with basepoint e coincides with the arc order on X with 

basepoint e. Compare Theorem 4.8. 

Theorem 5.11. The family consisting of all sets of the 

form 
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M(x) - {x}, X - M(x), X - L(x) 

where x E X is a subbasis for the topoZogy J of x. 

Proof. The subbasis for J* described at the beginning 

of this section restricts to a subbasis for J. However, for 

x E X* 

(M* (x) - {x}) n X =i:(X) - {x} if x 

if x 

E X. 

rj X. 

(X* - M*(x)) n X 
=iX-M(Xl 

X - {x} = X 

if x 

if x 

E X. 

i X. 

(X* - L* (x)) n X 
=iX ­ L(xl if x E x. 

U{M(t) - {t} It E X, t 1.* x} if xi x. 

The last equality holds because of the equality following 

Proposition 4.7. So the family described in the statement 

of the theorem is also a subbasis for J. 

Let (X,J) be a connected space with topology J. Follow­

ing Ward [14], let a denote the topology generated by the 

family of all components of sets of the form X - {x} where 

x E X. Suppose now that (x,~) is a mod and let J denote 
0 

the topology generated by the family of all sets of the form 

H(x) - {x}, X - M(x) , and X - L(x) where x E X. 

The topology J is called the tree topo logy determined by < • 
0 

Corollary 5.12. If (X,J) is a dendritic space~ if 

e E X~ and if ~ is the cutpoint order with basepoint e~ then 

the following statements are equivalent. 

a. (X,J) is rim finite. 

b. J a. 

c. J J 
o~ 

the tree topology determined by ~. 

Proof. (a) and (b) were shown to be equivalent in 
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Theorem 21 in [14]. (a) =;. (c) is Theorem 5.11. (c) 9 (b) 

Observe that the components of X - {x} where x E X consist 

of X - M(x) and all B - {x} where B is a branch at x as 

defined in [6]. Apply Lemma 4.19 in [6] and the equality 

following Proposition 4.7. 

Several other conditions which are equivalent to rim 

finiteness in a dendritic space are given in [14]. 

Theorem 5.13. Let (X,~) be a mod with least element e 

and let J be the tree topology determined by ~. Then J is o o 

a strongly order compatible topology and (X,J ) is a rim o 

finite dendritic space. Moreover~ J is the only rim finite 
o

dendritic order compatable topology on x. 

Proof. Let? denote the family of chains in X, let 

J(?) denote the strong topology on X induced by ?, and let 

!) denote the interval topology on X (see [6]) • Then 

!) cJ c J(?) by definition of J and Lemma 4.3 in [6] • 
0 0 

Hence, J is a strongly order compatible topology. Now o 

(X,J ) is dendritic by Lemmas 4.19 and 4.25 and Theorem 4.21o 

in [6], and (X,J ) is easily seem to be rim finite. Let J o 

be an order compatible topology on X for which (X,J) is a 

rim finite dendritic space. Then for x,y E X, the chain 

[x,y] is an arc in (X,J), whereas the space (X,J) is acyclic 

as observed earlier. Accordingly, the cutpoint order on 

(X,J) with basepoint e, the arc order on (X,J) with basepoint 

e, and the chain order on (X,?) with basepoint e (namely, ~) 

all coincide. Corollary 5.12 then implies that J J • o 

So there do not exist two nonhomeomorphic rim finite 
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dendritic spaces having order isomorphic mod structures com­

patible with their respective topologies. When applied to an 

acyclic space with an arc order, Theorem 5.13 shows that the 

rim finite dendritic spaces play the same role amongst the 

acyclic spaces that the trees play amongst the nested spaces 

[6] • 

There is another construction of X* which is identical 

as a set to that provided by Ward in [14], but which differs 

from his construction in that the topology is derived from 

the order. Let (X,~ be a rim finite dendritic space, let 

e E X, and let < be the cutpoint order with basepoint e. 

Then (X'2) is a mod and] = ]0 is the tree topology deter­

mined by <. For each maximal < toset T in X with no largest 

element, adjoin to X an element x i X. Let NoT 

a maximal < toset in X with no largest element} and let 

X* = X U No. Extend < to X* as follows. 

a. If x,y E X, then x <* y if and only if x < y. 

b. If x,y E N
0' 

then x -<* y if and only if x = y. 

c. If x E X and y E N then x <* y if and only if
0' ­

x E T, a maximal < toset in X with no largest ele­

ment, and y = x T . 

Then (X*,~*) is a semitree and <* n (X x X) = <. If ]* is 
o 

the tree topology determined by 2*' then (X*,]~) is compact 

Hausdorff and dendritic by Theorem 4.27 in [6]. It can be 

shown that J; n X is a rim finite dendritic order compatible 

topology on X, and hence, ]~ n X = J by Theorem 5.13. But o 

the later equality is more readily derivable from the equali­

ties listed in the proof of Theorem 5.11, and those equali­

ties are easily shown to be valid in the present context. 
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Observe that the construction of X* given herein really does 

depend on the construction provided by Ward in [14] since 

Theorem 5.11 required the existence of X* in its proof and 

was	 used in observing that J = J . o 
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