TOPOLOGY PROCEEDINGS Volume 2, 1977

Pages 265–280

http://topology.auburn.edu/tp/

A NECESSARY CONDITION FOR A DUGUNDJI EXTENSION PROPERTY

by

L. I. Sennott

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOONT	0140 4104

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A NECESSARY CONDITION FOR A DUGUNDJI EXTENSION PROPERTY

L. I. Sennott

The paper is organized into three sections. In Section 1 we utilize a proof by E. Michael of the Arens-Eells Embedding Theorem to show that if every continuous function from a subspace S of a topological space X into a complete locally convex topological vector space extends to X, then (X,S) satisfies a property relating to the simultaneous order-preserving extension of the bounded continuous pseudometrics on S.

Section 2 introduces various related 'Dugundji-type' extension properties. Results are given showing the relationship of these properties to various concepts involving the simultaneous linear extension of functions. Section 3 consists of examples.

Section 1

The Arens-Eells Embedding Theorem [2] states that every metric space (X,d) can be embedded isometrically as a closed, linearly independent subset of a normed linear space. Michael's proof [12] involves choosing a metric space (Y,d) containing (X,d) and with a point $y_0 \in Y-X$. Lip(Y) = $\{f: Y \rightarrow R: f(Y_0) = 0$ and for some $K \ge 0$, $|f(x) - f(y)| \le$ K d(x,y) for all $x,y \in Y$. With ||f|| equal to the infimum of the K's that work, Lip(Y) becomes a Banach space, and its dual E is also a Banach space. The map h: $X \rightarrow E$ is defined by h(x)(f) = f(x) for all $f \in Lip(Y)$. It is then shown that h is an isometry and if x_1, \dots, x_n are distinct elements of X, then {h(x₁),...,h(x_n)} forms a linearly independent set in E. If d is a pseudometric rather than a metric, the following modifications must be made. Let (Y,d) be a pseudometric space containing X with $y_0 \in Y-X$ such that $d(y_0, x) > 0$ for all $x \in X$. Let (Y*,d*) be the metric space formed from (Y,d) in the usual way. Observe that y_0 is not identified with any point of X. Let E be the dual of Lip(Y*) and h be defined as above. Then h is still an isometry but not necessarily 1-1, that is h(x) = h(y) iff d(x,y) = 0. If x_1, \dots, x_n are elements of X such that $d(x_i, x_j) > 0$ for $i \neq j$, then { $h(x_1), \dots h(x_n)$ } forms a linearly independent set in E.

For the remainder of the paper, S will denote a subspace of a topological space X. No separation axioms will be assumed unless stated. All functions and pseudometrics will be continuous. We use the abbreviation l.c.s. to refer to a locally convex topological vector space. Recall that X is P-embedded in X if every pseudometric on S can be extended to a pseudometric on X. The following facts are known: (a) S is P-embedded in X iff every bounded pseudometric on S extends to a pseudometric on X ([1], p. 178); (β) S is P-embedded in X iff every function from S to a Fréchet space (complete metrizable l.c.s.) extends to X ([1], p. 227); (y) X is collectionwise normal iff every closed subset is P-embedded ([1], p. 189); (δ) If UX exists and has non-measurable cardinal, then X is P-embedded in $\cup X$ ([1], p. 187). $\mathcal{P}^*(X)$ will denote the collection of bounded pseudometrics on X. If $\hat{\partial}$ is a collection of bounded pseudometrics on S a function $\Phi: \mathcal{D} \to \mathcal{P}^*(X)$ will be called an order-preserving extender if (1) $\Phi(d)$ is an extension of d for all $d \in \partial$, and (2) if

 $d_1 \leq d_2$, where d_1 and d_2 are in $\hat{\partial}$, then $\Phi(d_1) \leq \Phi(d_2)$.

Theorem 1. Let (X,S) have the property that every function from S to a complete l.c.s. extends to X. Then there exists an order-preserving extender from $P^*(S)$ to $P^*(X)$.

Lemma. Let x_0 be a point not in S. There exists a family $D = \{d^*: d \in P^*(S)\}$ of pseudometrics on $Y = S \cup \{x_0\}$ such that d^* extends d and d < e implies $d^* < e^*$.

Proof. For $d \in \mathcal{P}^*(S)$, let $M = \sup\{d(x,y): x, y \in S\}$ and define $d^*(x,x_0) = M$ for all $x \in S$.

To prove the theorem, observe that the identically zero pseudometric on S will be mapped to the identically zero pseudometric on X, so we will assume it is excluded from $\mathcal{P}^*(S)$. Let Y and \mathcal{P} be as in the Lemma. For each $d \in \mathcal{P}^*(S)$, let Lip_d denote Lip(Y*), where Y* is the metric space associated with (Y,d*). Let E_d denote its dual and h_d the map of Michael from (S,d) into E_d. Let B_d denote the closed span of h_d(S). Suppose $d \leq e$. We will define a linear norm-decreasing mapping g_e^d from B_e to B_d such that the diagram below commutes (where i is the inclusion map):

Define g_e^d ($h_e(x)$) = $h_d(x)$ and observe that g_e^d is a welldefined map from $h_e(S)$ into B_d . Extend this map linearly to the span of $h_e(S)$ in B_e . The fact that this extension is

Sennott

well-defined follows from the fact that h_e takes finite sets of points in (S,e) (with distinct pairs of points having positive distance) to a linearly independent set in B_e . We now have g_e^d : span $h_e(S) \rightarrow B_d$ and we claim that g_e^d is a normdecreasing (and hence uniformly continuous) map. This follows from the fact that the unit ball of Lip_d is contained in the unit ball of Lip_e. Since B_d is complete, we may extend g_e^d to a norm-decreasing linear map g_e^d : $B_e \rightarrow B_d$ and the commutativity of the above diagram is clear.

Let L be the projective limit $\lim_{t \to 0} g_e^d B_e$, and observe [14] that L is a complete l.c.s. Let $g: S \to L$ be defined by $g(x)_d = h_d(x)$, and let g^* denote an extension of g to X. For each $d \in \mathcal{P}^*(S)$, define $\Phi(d)(x,y) = ||g^*(x)_d - g^*(y)_d||$. Since h_d is an isometry, it is clear that $\Phi(d)$ extends d. Let $d \leq e$, then $\Phi(d)(x,y) = ||g_e^d(g^*(x))_e - g_e^d(g^*(y))_e|| = ||g_e^d(g^*(x)_e - g^*(y)_e)|| \leq ||g^*(x)_e - g^*(y)_e|| = \Phi(e)(x,y)$. Finally, define $\Psi: \mathcal{P}^*(S)$ to $\mathcal{P}^*(X)$ by $\Psi(d) = \Phi(d) \land \sup\{d(x,y): x, y \in S\}$.

Using (α) , (β) , and the fact that the projective limit of a countable family of Banach spaces is a Fréchet space, we have:

Corollary. S is P-embedded in X iff there exists an order-preserving extender from any countable family of bounded pseudometrics on S to $P^*(X)$.

Lutzer and Przymusiński ([10], [11]) have obtained some results relating to the simultaneous extension of pseudo-metrics. They showed that if S is P^{γ} -embedded in X, then

there exists a continuous extender from $\mathcal{P}^*_{\gamma}(S)$ (the bounded γ -separable pseudometrics on S) to $\mathcal{P}^*_{\gamma}(X)$, where $\mathcal{P}^*(S)$ is regarded as a subset of C*(S × S), with the sup norm topology.

Section 2

To understand how the properties mentioned in the theorem relate to other 'Dugundji type' extension properties, we will consider the following embeddings. If every function from S to a convex subset K of a l.c.s. L extends to X with values in K, we say S is D-embedded in X. If L is complete and K closed, S is D*-embedded in X. If the extension is only required to go into L (not necessarily complete) we say S is L-embedded in X, and if this holds for complete L, then S is CL-embedded in X. If the first property holds for K metrizable, then S is M-embedded in X, and if the third property holds for L a normed linear space, then S is M*-embedded in X. The following relationships hold:

The only implication that is not obvious is M* implies M. That is shown in Theorem 1 of [15], where M-embedding was introduced and extensively considered. This section will explore the inter-relationships among these embeddings and also attempt to clarify their relation to properties involving the simultaneous linear extension of functions. In Section 3 material developed in this section will be used to show that none of the implications (except $M \iff M^*$) in the diagram (*) is reversible.

Sennott

(2) S is P-embedded in X and clS is CL-embedded in X.

(3) S is P-embedded in clS and clS is CL-embedded in X.

Proof. 1) implies 2) implies 3) is obvious. To show that 3) implies 1) let f be a function from S to a complete 1.c.s. L. It is clearly only necessary to lift f to clS. L may be regarded as a closed subspace of a product $\pi\{B_{\alpha}: \alpha \in A\}$ of Banach spaces. For each α , let f_{α}^{*} denote an extension of $p_{\alpha} \circ f$ to cl S. Define f* from clS to L by $f^{*}(x)_{\alpha} = f_{\alpha}^{*}(x)$. To see that $f^{*}(x)$ is in L, recall that $f^{*}(clS) \subset cl(f(S)) \subset L$.

In a similar fashion we obtain:

Proposition 2. The following are equivalent:

(1) S is D*-embedded in X;

(2) S is P-embedded in X and clS is D^* -embedded in X;

(3) S is P-embedded in ClS and ClS is D^* -embedded in X.

Corollary. (1) If S is dense and P-embedded in X, then S is $D^{\star}\text{-embedded}$ in X.

(2) If vX exists and has non-measurable cardinal, then X is D^* -embedded in vX.

Proof. (1) is obvious. For (2), use fact (δ) of Section 1.

The following proposition involves an embedding property that is between L- and CL-embedding.

Proposition 3. If $\cup X$ has non-measurable cardinal, then every continuous function from X to a projective limit of

normed linear spaces (or metrizable l.c.s.) extends to $\cup X$.

Proof. Let f be a function from X into $L = \lim_{+} g_{\alpha\beta} E_{\beta}$, where each E_{α} is a normed linear space or each E_{α} is a metrizable l.c.s. Since X is M-embedded in vX [15], each $p_{\alpha} \circ f$ has a (unique) extension to f_{α}^{*} : vX + E_{α} . Defining f^{*} : vX + L by $f^{*}(x)_{\alpha} = f_{\alpha}^{*}(x)$ gives the result.

For a topological space X and a l.c.s. L, C(X,L) will denote the set of all continuous functions from X to L. By a simultaneous linear extender (s.l.e.) from C(S,L) to C(X,L) we mean a linear function $\Psi: C(S,L) \rightarrow C(X,L)$ such that $\Psi(f) | S = f$ for all $f \in C(S,L)$. Note that we can further specialize this notion by requiring Ψ to be continuous with respect to various topologies that can be placed on C(X,L). For example, this space can be equipped with the topology of uniform convergence $(C_u(X,L))$, the topology of compact convergence $(C_c(X,L))$, or the topology of pointwise convergence $(C_p(X,L))$. Thus a s.l.e. $\Psi: C_u(S,L) \rightarrow C_u(X,L)$ would be a s.l.e. that is continuous with respect to the topology of uniform convergence on both function spaces. The following theorem relates the embedding concepts D, D*, L, and CL to the s.l.e. concept just introduced.

Theorem 2. Let S be a subspace of a topological space
X.
a) S is D-embedded in X iff given a l.c.s. L, there exists a
s.l.e. Ψ: C_u(S,L) → C_u(X,L) such that Ψ(f) is contained

in the convex hull of f(S) for all $f \in C(S,L)$.

b) S is D*-embedded in X iff given a complete l.c.s. L, there exists a s.l.e. Ψ : $C_{\mu}(S,L) \rightarrow C_{\mu}(X,L)$ such that $\Psi(f)$ is

contained in the closed convex hull of f(S) for all $f \in C(S,L)$.

- c) S is L-embedded in X iff given a l.c.s. L, there exists a s.l.e. $\Psi: C_p(S,L) \rightarrow C_p(X,L)$ such that $\Psi(f)$ is contained in the span of f(S) for all $f \in C(S,L)$.
- d) S is CL-embedded in X iff given a complete l.c.s. L, there exists a s.l.e. Ψ : C(S,L) \rightarrow C(X,L) such that Ψ (f) is contained in the closed span of f(S) for all f \in C(S,L).

Proof. Observe that in each case sufficiency is clear. To show necessity, let L be a l.c.s. (complete for proof of b) and d) and let E be a product of copies L_f of L, one for each $f \in C(S,L)$. Let ϕ be the canonical map from S into E and let ϕ^* denote an extension of ϕ to X. In the case of a) (b), we assume $\phi^*(X)$ is contained in the (closed) convex hull of $\phi(S)$. In the case of c) (d), we assume $\phi^*(X)$ is contained in the continuity $\psi(f)(x) = \phi(x)_f$, one checks that all properties except the continuity of Ψ are satisfied. Since there is no continuity requirement in d), the proof of d) is completed.

To show the continuity of Ψ in a), fix $f_0 \in C(S,L)$, p a seminorm on L, and $\varepsilon > 0$. Assume $p(f(x) - f_0(x)) < \varepsilon$ for all $x \in S$. Fix $x_0 \in X$ and assume $\phi^*(x_0) = \sum_{i=1}^n \alpha_i \phi(x_i)$ is a convex combination of elements in $\phi(S)$. Then $p(\Psi(f)(x_0) - \Psi(f_0)(x_0)) = p(\sum_{i=1}^n \alpha_i f(x_i) - \sum_{i=1}^n \alpha_i f_0(x_i)) \le \sum_{i=1}^n \alpha_i p(f(x_i) - f_0(x_i)) < \varepsilon$.

To show the continuity of Ψ in b), fix f_0 , p, and $\varepsilon > 0$ as above and assume $p(f(x) - f_0(x)) < \varepsilon/3$ for all $x \in S$. Fix $x_0 \in X$. Since $\phi^*(x_0)$ is in the closed convex hull of $\phi(S)$ and since E has the product topology, there exists a convex combination $\sum \alpha_{i}\phi(x_{i})$ of elements of $\phi(S)$ such that $p(\sum \alpha_{i}f(x_{i}) - \phi^{*}(x_{o})_{f}) < \epsilon/3$ and $p(\sum \alpha_{i}f_{o}(x_{i}) - \phi^{*}(x_{o})_{f_{o}}) < \epsilon/3$. Hence $p(\Psi(f)(x_{o}) - \Psi(f_{o})(x_{o})) \leq p(\Psi(f)(x_{o}) - \sum \alpha_{i}f(x_{i})) + p(\sum \alpha_{i}f(x_{i}) - \sum \alpha_{i}f_{o}(x_{i})) + p(\sum \alpha_{i}f_{o}(x_{i}) - \Psi(f_{o})(x_{o})) < \epsilon$.

To show the continuity of Ψ in c), fix f_0 , p, and $\varepsilon > 0$ as above and fix $x_0 \in X$. We will find a finite subset F of S and $\delta > 0$ such that $p(f(x) - f_0(x)) < \delta$ for $x \in F$ implies $p(\Psi(f)(x_0) - \Psi(f_0)(x_0)) < \varepsilon$. Now $\phi^*(x_0) = \sum_{i=1}^n \alpha_i \phi(x_i)$, where $x_i \in S$ for $i = 1, \dots, n$. If $\phi^*(x_0) = 0$, choose F to be some singleton subset of S and choose $\delta = 1$. If $\phi^*(x_0) \neq 0$, we assume $\alpha_i \neq 0$ and $x_i \neq x_j$ for $i \neq j$. Let $F = \{x_i: i = 1, \dots, n\}$ and $\delta = \sum_{i=1}^{c} |\alpha_i|$. Then if $p(f(x_i) - f_0(x_i)) < \delta$, we have $p(\Psi(f)(x_0) - \Psi(f_0)(x_0)) = p(\sum_{i=1}^{c} \alpha_i(f(x_i) - f_0(x_i)) < \varepsilon$.

Corollary 1. a) If S is L-embedded in a $T_{3\frac{1}{2}}$ space X, then S is closed in X. b) If X is a $T_{3\frac{1}{2}}$ non-realcompact space, then X is never L-embedded in vX.

Proof. b) follows from a). To show a), suppose S is L-embedded in X and let $x_o \in clS - S$. By c) of Theorem 2, there exists a s.l.e. $\Psi: C_p(S) \rightarrow C_p(X)$. Fix l_S , F a finite subset of S and $\varepsilon > 0$. Choose a continuous function f on X such that $f(x_o) = 1 + \varepsilon$ and f(x) = 1 for all $x \in F$. This leads to a contradiction.

Note that the same trick will work to show there exists no s.l.e. from $C_{c}(X)$ to $C_{c}(\cup X)$. Now let X be a $T_{3\frac{1}{2}}$ nonrealcompact space such that $\cup X$ has non-measurable cardinality. By the corollary to Proposition 2, we see that X is D^* -embedded in $\cup X$, but by Corollary 1 above, X is not L-embedded in $\cup X$. Proposition 3 shows us that $(\cup X, X)$ actually satisfies an embedding property between L- and CL-embedding. Let us now relate our embeddings to the order-preserving extension of real-valued continuous functions.

An extender Ψ from C(S) to C(X) is a (strict) monotone extender if $f \leq g$ implies $\Psi(f) \leq \Psi(g)$ (f < g implies $\Psi(f) < \Psi(g)$). The proof of the following corollary is based on the same idea as the proof of Theorem 2.

Corollary 2. If S is D*-embedded (D-embedded) in X, there exists a simultaneous linear (strict) monotone extender from $C_{ij}(S)$ to $C_{ij}(X)$.

We now prove a proposition closely related to Theorem 2. It answers a question of Dave Lutzer. Let S be a countable collection of continuous functions on S with values in a Banach space B, and let S^* denote the span of S in C(S,B).

Proposition 4. Let ${\bf S}$ be a subspace of a topological space ${\bf X}.$

- a) S is P-embedded in X iff given any Banach space B and any S as above, there exists a s.l.e. $\Psi: S^* \rightarrow C(X,B)$ such that $\Psi(f)$ is contained in the closed convex hull of f(S) for all $f \in S^*$ and such that Ψ is continuous with respect to the topology u.
- b) S is M-embedded in X iff given any countable collection S of functions from S into a normed linear space L, there

exists a simultaneous extender $\Psi: S \rightarrow C(X,L)$ such that $\Psi(f)$ is contained in the convex hull of f(S) for all $f \in S$ and such that Ψ is continuous when both spaces have the u topology or both have the p topology.

Proof. Sufficiency in a) is clear. To show necessity, let \hat{S} denote all linear combinations of functions in S with rational coefficients. Then \hat{S} is countable and we can form the product E of copies B_f of B, one for each $f \in \hat{S}$. Since E is a Fréchet space, the canonical map ϕ from S into E extends to ϕ^* on X with $\phi^*(X)$ contained in the closed convex hull of $\phi(S)$, ([1], p. 277). Defining $\Psi(f)(x) = \phi^*(x)_f$, we get an extender from \hat{S} to C(X,B). Considering \hat{S} as a subset of $C_u(S,B)$ we see (similar to the proof of b) Theorem 2) that Ψ is uniformly continuous. Hence Ψ can be lifted to the closure of \hat{S} (and this contains S^*). Hence we get a $\Psi^*: S_u^* + C_u(X,B)$. One checks that Ψ^* is a linear extender and $\Psi^*(f)(X)$ is contained in the closed convex hull of f(S)

To prove b), observe that sufficiency is clear. To show necessity, form the product E of copies L_f , one for each $f \in S$ and let ϕ be the canonical map from S into E. Note that E is a metrizable l.c.s. By [15] there exists an extension ϕ^* of ϕ to X with $\phi^*(X)$ contained in the convex hull of $\phi(S)$. The proof is now similar to that of Theorem 2.

Note that in a) Ψ cannot always be assumed to be continuous with respect to the topologies of compact or pointwise convergence, as Heath has shown (p. 28 [9]) that there exists a countable subset S of C*(Q) such that no extender

Sennott

(linear or not) from S to C*(X), where X is the Michael line, is continuous with respect to either of these topologies. Of course, this implies that Q is not M-embedded in X, a fact we will observe in Section 3.

We now relate the property of D*-embedding to a simultaneous extension property considered in [4]. Van Douwen defines a space X to be D_c^* , where $c \ge 1$ is a real number, if for each closed subspace F of X, there is a s.l.e. Ψ from C*(F) to C*(X) such that $|| \Psi(f) || \le c$ || f || for each $f \in C^*(F)$. He shows (3.4, p. 304) that if X is a D_1^* space, then X is hereditarily collectionwise normal.

By the proof method of Theorem 2, we obtain:

Proposition 5. If S is D^* -embedded in X, there exists a norm-preserving s.l.e. from $C^*(S)$ to $C^*(X)$.

Section 3

Let us now use the results in Section 2 to show that none of the implications (except $M \iff M^*$) in the diagram (*) are reversible.

First, let X be a $T_{3\frac{1}{2}}$ non-realcompact space such that vX has non-measurable cardinality. By the comments following Corollary 1 of Theorem 2, we know that X is D*-embedded (and hence CL-embedded) in vX, but it is not L-embedded. Since it is known [15], that X is M-embedded in vX, this shows the non-reversibility of the implications L \Rightarrow CL, L \Rightarrow M*, and D \Rightarrow D*.

Heath, Lutzer, and Zenor [7] have shown that there is no s.l.e. from $C_p(\beta N - N)$ to $C_p(\beta N)$. Theorem 2 (c) then implies that $\beta N - N$ is not L-embedded in βN . Since it was

276

shown in [15] that every embedding of a compact space in a $T_{3\frac{1}{2}}$ space is an M-embedding, this produces another example of an M-embedded, non-L-embedded subspace.

Yet another example is essentially contained in Proposition 6.1 of [13]. Let H be a Hilbert space whose orthonormal dimension is the continum and let S be the unit sphere of H in the weak topology. If we let X be the Cartesian product of continum many closed unit intervals, then Michael shows that S is homeomorphic to a closed, convex subset of X. It is known that X is separable, and Michael shows that H with the weak topology is not separable. Let i: $S \rightarrow H$ be the identity map, where both S and H have the weak topology. Observe that H with the weak topology is a l.c.s. If i extended to a continuous function i* on X, then we would have $S \subset i^*(X) \subset H$, which would imply that H is separable, a contradiction. Since S is compact, this produces another example of an M-embedded, non-L-embedded subspace.

Each of the above examples also shows the non-reversibility of the implication $D \Rightarrow M$. Now let X be any compact Hausdorff, non-hereditarily collectionwise normal space. By Proposition 5 and the comments directly preceding it, we know that X must contain a closed subset F that is not D*-embedded in X. This produces an example of an M-embedded, non-D*-embedded subspace.

An example due to van Douwen ([4], p. 311) will be used to give an example of an L-embedded, non-D-embedded subspace. Let A_i be a discrete space of cardinality \aleph_i and let $C_i = A_i \cup \{p_i\}$ be the one-point compactification of A_i for i = 0,1. Let $X = C_0 \times C_1$, $S = (\{p_0\} \times C_1) \cup (C_0 \times \{p_1\})$ and let f be a function from S into a l.c.s. L. Define an extension f^* on X - S by $f^*(x_0, x_1) = f(x_0, p_1) + f(p_0, x_1) - f(p_0, p_1)$. One can show that f^* is continuous, hence S is L-embedded in X. It follows from van Douwen's results and Proposition 5 that S is not D*-embedded (and hence not D-embedded) in X. This shows the non-reversibility of the implications D \Rightarrow L and D* \Rightarrow CL.

It remains to show the non-reversibility of $M \Rightarrow P$ and $CL \Rightarrow P$. Let X denote the Michael line with Q denoting the rationals. In [15], it is shown that Q is P-embedded in X but not M-embedded. The author would like to express her appreciation to E. Michael for communicating the following proof that Q is not CL-embedded in X.

To show this, let P denote the irrationals with their usual topology, and define f: $Q \times P \rightarrow R$ by $f(x,y) = (y-x)^{-1}$. We first show that there is no continuous extension of f to $X \times P$. Suppose g were such an extension. For $n \in N$, let $H_n = \{x \in X-Q: g(x,y) < n \text{ whenever } |x-y| < 1/n\}$. One can show that $X - Q = \cup \{H_n: n \in N\}$. Since Q is not a G_{δ} in X, we must have $\overline{H}_k \cap Q \neq \emptyset$ for some k.

Pick $x \in \overline{H}_k \cap Q$ and then pick $y \in P$ such that 0 < y-x < 1/2k. Then g(x,y) > 2k. Since g is continuous, there exist neighborhoods U of x and V of y such that $(x',y') \in U \times V$ implies g(x',y') > k. Since $x \in \overline{H}_k$, we can choose $x' \in H_k \cap U$ such that |x-x'| < 1/2k. Hence g(x',y) > k. But $|x'-y| \leq |x'-x| + |x-y| < 1/k$. Therefore, since $x' \in H_k$, we must have g(x',y) < k, a contradiction.

Now let $L = C_{C}(P)$ and define h: $Q \rightarrow L$ by h(x)(y) = f(x,y). One can show that h is continuous and L is complete.

Suppose h extended to $h^*: X \rightarrow L$. Defining g: $X \times P \rightarrow R$ by $g(x,y) = h^*(x)(y)$ would give a continuous extension of f, contrary to the above result.

The author would like to thank the referee for various suggestions leading to a clearer presentation of the results in this paper.

Comments and Open Questions

- 1. Is the converse of Theorem 1 true?
- If not, find a P-embedded subset that fails to satisfy the conclusion of Theorem 1.
- 3. From Theorem 2 it is clear that if S is D-embedded in X, then there exists a s.l.e. from $C_u(S)$ to $C_u(X)$ and from $C_p(S)$ to $C_p(X)$. Must there exist a s.l.e. from $C_c(S)$ to $C_c(X)$?
- Give characterizations (similar to those known for Pand M-embedding) for the other embeddings introduced in Section 2.

Bibliography

- R. A. Aló and H. L. Shapiro Normal Topological Spaces, Cambridge, University Press, 1974.
- R. F. Arens and J. Eells, Jr., On embedding uniform and topological spaces, Pac. J. Math. 6 (1956), 397-403.
- E. K. van Douwen, Simultaneous extension of continuous functions, Academisch Proefschrift, Academische Pers., Amsterdam, 1975.
- 4. ____, Simultaneous linear extension of continuous functions, Gen. Top. and Appl. 5 (1975), 297-319.
- 5. _____, D. Lutzer, and T. Przymusiński, Some extensions of the Tietze-Urysohn theorem, to appear, Am. Math. Monthly.
- 6. J. Dugundji, An extension of Tietze's theorem, Pac. J.

Math. 1 (1951), 353-367.

- R. Heath, D. Lutzer, and P. Zenor, On continuous extenders, Studies in Topology, Stavrakas and Allen, ed., Academic Press, 1975, 203-213.
- R. Heath and D. Lutzer, Dugundji extension theorems for linearly ordered spaces, Pac. J. Math. 55 (1974), 419-425.
- 9. R. Heath, Extension properties of generalized metric spaces, Lecture Notes, The Univ. of North Carolina at Greensboro, Dept. of Mathematics.
- 10. D. Lutzer, A selection-theoretic approach to certain extension theorems, to appear.
- 11. _____ and T. Przymusiński, Continuous extenders in normal and collectionwise normal spaces, to appear.
- E. Michael, A short proof of the Arens-Eells embedding theorem, Proc. Am. Math. Soc. 15 (1964), 415-416.
- 13. ____, Some extension theorems for continuous functions, Pac. J. Math. 3 (1953), 789-806.
- H. H. Schaefer, *Topological vector spaces*, The Macmillan Co., New York, 1966.
- L. I. Sennott, Extending continuous functions into a metrizable AE, to appear, Gen. Top. and Appl.

George Mason University

Fairfax, Virginia 22030