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SPACES WHICH ARE SCATTERED WITH
RESPECT TO COLLECTIONS OF SETS

H. H. Wicke and J.M. Worrell, Jr.

We study in this paper some of the topological structure
associated with scattered spaces, o-scattered spaces, or,
more generally, spaces which are collectionwise or o-collec-
tionwise scattered with respect to collections of sets which
are either complete or satisfy some sort of generalized uni-
form first countability condition. A number of important
counterexamples are spaces of this kind. One of the earliest
results known to us of the type considered is that of Kura-
towski [K]: Every separable metric scattered space is an
absolute G6' Telgdrsky [T] proved that every T2 paracompact

first countable scattered space is an absolute metric G The

5

authors [WW2] showed that every Tl first countable scattered

space has a A-base. (Both the results of Kuratowski and
Telgdrsky follow from this theorem which is a point of de-
parture for the present paper.} Subsequently they showed
(announced in [WW7]) that o-{(closed and scattered) Tl first
countable spaces have a base of countable order and o-scat-
tered first countable spaces have primitive bases. Further-
more, by replacing first countable by point-countable type
or by q-space, analogues of the above results are obtained

, X

involving the Bb’ Bc

b’ Ac-spaces [Wl] and primitively

quasi-complete spaces. These results will be obtained here

as special cases of theorems involving generalizations of
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scattered and o-scattered. The main concept is that of a
space being scattered with respect to a collection / of its
subsets (Definition 2.1). 1In this generalization, the points
of scattered spaces are replaced by certain sets having suit-
able properties: for example, each M ¢ /) is compact and of
countable character or each M € /| has a base of countable
order in the global topology. An analogue of the first
theorem stated above is: Suppose X is [J-collectionwise
scattered with respect to a collection // of sets having a
base of countable order (A-base) in the global topology.
Then X has a base of countable order (A-base). The various
local-implies-global theorems of base of countable order
theory [WW8] are special cases of the results obtained here.

Passing from scattered to collectionwise scattered
greatly widens the scope of the results previously obtained.
Simple examples show this: No uncountable separable metric
connected space can be o-scattered; however such a space
can be o-/l-collectionwise scattered, where /) is a disjoint
collection of arcs.

We present first the main definition and some consequences.
In order to derive a number of results efficiently, we then
prove some theorems concerning spaces which are scattered with
respect to collections of sets each of which has an open primi-
tive sequence in the global topology. The results indicate
that the primitive sequence theory is a natural setting for
the discussion of collectionwise scattered spaces. We then
apply these theorems to get results concerning some of the
concepts of base of countable order theory including those

mentioned above. Examples show that these results cannot be
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improved, say, by requiring collectionwise scattered with

respect to sets which are metrizable in the global topology.

Terminology. A space is scattered if and only if it
contains no nonempty dense-in-itself subset [K]; it is
called o-scattered if it is the union of a countable collec-
tion of scattered subsets; if each of these scattered sub-

sets is closed, the space is called o-(closed and scattered).

As an heuristic guide, we emphasize that for first
countable Tl spaces, scattered implies a strongly complete
base of countable order [WWZ]’ 0-(closed and scattered) im-
plies base of countable order [ww8], and o-scattered implies
primitive base [WWB]' (Proofs of these statements are given
in Section 7 below.) Analogues of these results hold for
collectionwise scattered spaces and this is the underlying
organizing principle of the presentation; see especially
Sections 4 and 5. The replacement of points by spaces having
certain structures in the global topology leads to Theorems
6.1, 6.3, and 6.6 which are generalizations of the theorems
just quoted (in the order as given). We note that a number
of the results of Section 7 were presented at the Prague
Conference [WWS]; a summary is to appear in the Proceedings

of the Conference.

2. Collectionwise Scattered Sets

The definition of collectionwise scattered sets is given

here and various properties are established.

Definition 2.1. Let X be a space, A c X and [} a col-

lection of subsets of X. Then A is called [j-collectionwise
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scattered in X if and only if there exists # < /] such that
A = y# and for all K c ¥, if K # B, there exist M € £ and an

open set U, such that M c Uy, and for all K € K, Kn Uy € M.

Theorem 2.2. A set A c X is scattered in the usual
sense if and only if it is fl-collectionwise scattered, where

Ml = {{x}: x € Aa}.

Theorem 2.3. Suppose A < X has property P locally
(i.e. for all X € A there s an open U in X such that x € U
and U N A has P). Then if M is the set of all subsets of
X having P, the set A is M-collectionwise scattered in X.
Proof. Let # = {U N A: U is open in X and U N A has P}.
Then A = UV, If UNA, VNAEAHNthenUnAcU and

(Vha) n U U N A.

Theorem 2.4. A set A < X ig [l-collectionwise scattered
in X if and only if A = UN where N is a well ordered
subcollection of M, and for each M € N there exists an open
set UM such that M c UM and for all X € J, if K does not pre-

cede M in N, them K n U, < M.

M

Proof. Assume A is /l-collectionwise scattered, A # 4,
and A = y/# as in Definition 2.1. Let A/ be well ordered by
the cardinal |[#| = A. Let M, denote the first element of #

such that for some open U = MO' KnNnNuc M0 for all K € /.

0 denote such an open set U. Assume MB and UB have been

defined for all B < o where a < A. Then by Definition 2.1

Let U

we may define Ma as the first element of # such that for
some open U 2 M , if K € N\{MB: B <a} then K NU M . Let

U, be such an open set. Thus sequences {Ma: a < A} and
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{Ua: @ < A} have been defined. If M € #, then for some
@ <X, M=M. Thus N = {Ma: a < A}. Thus / is expressed as
a well ordered set. If M, € ¥, then for B > a, MB n U, € Ma
by the construction.

Suppose the condition is satisfied by a well ordered

collection N. If £ c # and K # #, let M be the first element

of K. If K € £ then K does not precede M. Hence M = UM and

Definition 2.5. A subset A of a space X is o-/l-collec~
tionwise scattered in X if and only if A = U{Sn: n € N} where
each Sn is M-collectionwise scattered. If, in addition, each
Sn is closed in X, then A is called o-(closed and M-collec-

tionwise scattered).

Terminology 2.6. If A < X is fj-collectionwise scattered
then by Definition 2.1 and Theorem 2.4 there exist a collec-
tion # and a collection (/ = {UM: M € N} of open sets satisfy-
ing the conditions of Definition 2.1 or Theorem 2.4, respec-
tively. A pair <N,U> of such collections # and {/ will be
said to be an Ml-pair for A, respectively, an fl-pair in the
order sense for A, if the conditions of 2.1, respectively

2.4, are satisfied by / and /.

Theorem 2.7. Suppose X is a space and A is 0-R-collec-
tionwise scattered in X where R is a disjoint collection of
o-M-collectionwise scattered subsets of X. Then A is
o-fMl-collectionwise scattered in X.

Proof. Suppose first that A is R-collectionwise scat-

tered. Let <N,Uh%> be an R-pair for A (see 2.6). For
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each M €¢ #, M = y{S(M,n): n ¢ w} and for each n € w, S(M,n)
has an /-pair <h’(M,n),U(M,n)> . Let Kn = {K: for some

M €N K€M (Mn)}. Suppose [ c Kn and [ # #§. Then

A= {M € N: for some K € [, K € fI”(M,n)} # . Hence there

exists A € A and U, = A such that U

IN is open and L N U, < A

A A

for all L. € A. Since R is a disjoint collection, L n Uy, = ¢
if L#A. Let / = {K € M (A,n): K€ [}, Then ¥ # #, so there

exist B € # and an open set V_, € (/(A,n) such that B < V, and

B B
KN Vy © B for all K € W. suppose K € [. If K € f1’(A,n),
KNV, NU <BNU, =B, since BcA. If K€ N'(L,n) for
some L € A such that L # A, then K NV, N U, cVp NnLnU =

g < B. Hence for each nonempty [ c Kn there exist B € / and
an open set Wy 2 B such that L N Wy ©B for all L € L. Hence
Tn = Ukn is /fl-collectionwise scattered. Then A = U{Tn: n € w}
is o-Ml-collectionwise scattered. If A is c-R-collectionwise

scattered, the preceding argument shows that A is the counta-

ble union of o-fl-collectionwise scattered sets.

Theorem 2.8. If X is a space and A < X is R-collection-
wise scattered in X and R is a disjoint collection of Ml-col-
lectionwise scattered subsets of X, then A is M-collection~
wise scattered.

Proof. Similar to the preceding theorem.

Theorem 2.9. Suppose X 18 a space, A is M-collection-
wise scattered in X (o-fl-collectionwise scattered in X) and
B c X is such that B N M € /I for all M € fl. Then B n A is
M-collectionwise scattered in X (c-fl-collectionwise scattered
in X).

Proof. Suppose <N,0> is an /l-pair for A. Let
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MB=1{MnB: M€AN. ThenBna=y#B. If K ## and
K<cWNB, 1let K" = {M € ¥: M n B € K}. Then K’ # # so there
exists M € £’ and an open UM > M such that for all K ¢ K’,
KﬂUMEM. Then B N M€ A and if B N K € X where K € 4,
then K € £/, so BN KN UM < B N M. Thus the first state-~
ment is proved. If A is a countable union of /l-collection-
wise scattered sets Sn, then each B N Sn is /l-collectionwise

scattered.

Theorem 2.10. Suppose X is a spaceandA c X is covered by
a collection Y of open sets such that for all V € V, v n A
is a-M-collectionwise scattered (M-collectionwise scattered).
Suppose that for every closed F € X, F N M € /I for all
M € M. Then A is o-Ml-collectionwise scattered (M-collection-
wise scattered).

Proof. Well order J/ and let /)’ = {V e JV: p(V,/)) N A#@}
where p(V,V) = V\u{v': V' precedes V in [}. Let # =
{pw,V)y N a: v e VYIN{g}. Then # is a disjoint collection of
sets which are (o)-/l~collectionwise scattered by the preceding
theorem. Theorem 2.7 (2.8) implies that A is o-/f~collection-

wise scattered (m—collectionwise scattered) .

Corollary 2.11. If X is loecally M-collectionwise scat-
tered (o0-fl-collectionwise scattered) where Ml is relatively
closed hereditary (cf. Theorem 2.10), then X is fM-collection-

wise scattered (o-fl-collectionwise scattered).

If X has property P locally and P is a closed hereditary
property, then X is collectionwise f}]-scattered, where M is a

disjoint collection of sets each of which has property P.
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3. Primitive Sequences

We recall here some primitive sequence theory [WW2, 37

WWG] in order to facilitate the proofs of the main results.

Definition 3.1. Let (Z,<) be a well ordered collection
of sets. For each W € A4, let p(w,A) denote W\U{W' € Z:
W' < W}. The set p(w,/) is called the primitive part of W
(in 2.

For x € UZ, we let F(x,Z) denote the first element of

7 that contains x. F(A,Z7) is similarly defined for A c W € Z.

Definition 3.2. A primitive sequence # of A in X is
a sequence # = <ﬂn: n € N> of well ordered subcollections
of P(X) such that for all n € N:

(1) For all H € /_, A n p(H, /) # 8.

(2) For all x € A, F(x,ﬂn+l) c F(x,ﬂn).

An open primitive sequence is a primitive sequence
relative to a topological space X whose terms are well ordered

collections of sets open in X.

Definition 3.3. Let # be a primitive sequence of A in
X. A primitive representative of # is a sequence H =
<Hn: n ¢ N> such that for all n € N, p(Hn,ﬂn) n
p(Hn+l,ﬂn+l) # B. The collection of all primitive repre-~
sentatives of # will be denoted by PR({#).

1f § = <§n: n € Ny is a sequence of collections of
sets a decreasing representative of § is a sequence G such

that G ., =G € 55 for all n € N. The set of all decreas-

+1
ing representatives of § will be denoted by DR(¢).

If H = <Hn: n € N> and G = <Gn: n € N> are decreasing
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sequences, H is said to dominate G (or G refines H) if and

only if for all n € N there is j > n such that Gj < Hn

4. Scattering and Primitive Sequences

We present theorems here guaranteeing the existence of
primitive sequences for sets which are scattered with respect
to collections of sets having primitive sequences. These

theorems underlie the proofs of the results of section 5.

Theorem 4.1. Suppose X is a space, A is [l-collectionwise
scattered in X and <N,0> is an M-pair for A in the order
sense such that each M € N has an open primitive sequence
V(M) in Uy Then there exists an open primitive sgsequence H
of A in ¥ such that for all H € DR(#), there exist k € N and
M € N such that Hj = Vj for all j > k for some V € DR(V(M)).

Proof. Using the notation in the statement, let ﬁ; =
{H: for some M € /, H € V(M)n and p(M,H) n p(H,V(M)n) # g},

If H € ﬂn there is only one M associated with H as indicated.
For if p(M,M n p(H,V(M) ) # @, and p(M', /) n p(H,V(M") ) # ¢
and H € V(M)n, then H < U,. Hence H N M' =M by Theorem 2.4.
Since H n p(M', M) # @, it follows that M' does not follow M.
Similarly, M does not follow M' so M = M'., Temporarily denote
such an M by M(H). For H and H' in ﬂn define H < H' if and
only if M(H) precedes M(H') in # or M(H) = M(H') and H pre-
cedes H' in V(M(H))n. It may be readily verified that <

well orders ﬂn and ﬂn covers A. Moreover, if x € A and

M = F(x,/), then F(x,ﬁn) = F(x,/(M) ). From this it is easy
to verify that # = <ﬂn: n € N> is an open primitive sequence
of A in X. Suppose H € DR(#/). Then for each n € N, H, €

V(Mn)n, where M = M(H ). In the well ordering of N, let My
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be the first element of the set of Mn's. If j > k, there

exists Xy € p(Hj,V(Mj)j) n p(Mj,N). Since xs € Hj cH

xj € Mj n UMk c Mk' Thus Mk = Mj. k)j

j > k. Let Vj = Hj for j > k and define Vj inductively for

kl
Hence Hj € V(M for all

j < k, by Vj = F(Vj+l,V(Mk)j). Then V € DR(V(Mk)).

Remark 4.2. If A is [l-collectionwise scattered in X and
each M € /] has an open primitive sequence V(M) in X, then
there exists an open primitive sequence # of A in X and for
each M € /| an open set Uy 2 M such that for all H € DR(#),
there exist V € DR(/(M)|Uy) and k € N such that vy = Hy for

all j > k.

Theorem 4.3. Suppose X is a space, A is fl-collectionwise
scattered in X and each M € [] has an open primitive sequence
V(M) in X. Then A has an open primitive sequence # in X such
that for all H € DR(H), there exist M and V € DR(V/(M)) such
that V dominates H.

Proof. Use the notation of Theorem 4.1, with the excep-
tion that /(M) need no longer be in Uype Define /((M)n =
I/(M)n|UM = {vn Uy: V € V(M)n} and note that K & first element of
{v ¢ V(M)n: v Uy = K} is an injection of /((M)n into V(M)n.
Using the order on /((M)n induced@ by this mapping, it is
easily seen that <K(M)n: n € N> is a primitive sequence
of M in UM‘ Now Theorem 4.1 applies and we obtain an open
primitive sequence # relative to the K(M) sequences. If
H € DR(#/) there is M and K € DR(A(M)) with the property indi-
cated in Theorem 4.1. Hence there exists L € PR(K(M)) that
dominates K and hence H (take Ln = first element of K(M)n

that includes a term of K). It is also easy to see that
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there is Vv € PR(V/(M)) that dominates L. Hence the result.

The following simple lemmas are used to abbreviate the

proof of the next theorem.

Lemma 4.4, Suppose /Z ,---,Zk are well ordered collec~-

tions of sets. Let rk(Ml,---,Mk) denote the relation Mi € Zl

for 1 = 1,+-+,k and ﬂ{p(Mi,Zl): i<k} #9. Then if

M,  s+o AM =M [ +o« 0 M' where M, Mi € Zl for all i < k

1 k 1 k
and rk(Ml,-~-,Mk) and rk(Mi,---,Mﬁ) hold, then M, = Mi for
all i < k.

Proof. Since ﬂ{p(Mi,Zl): i< k} # @ and n{p(Mi,Z&):
i < k} # @, it follows that for each i < k, M, N p(Mi,ZE) #

. _ .
g # Mi N p(Mi,Zl). Hence Mi = Mi for all i < k.

Lemma 4.5. Suppose Z ,---,Zk are well ordered collec-
tions of sets. Then the set [/ = {M] N «+¢ N Mz x) (M, eee, M)}
has a well ordering determined by the orderings on the Zi
sueh that for all x € Ul,

F(x,W) = F(x,2{) N «++ 0 F(x,2).

Proof. By the preceding lemma, the expression
Ml N eee N Mk is unique for elements of W. For w,w' € l,
define W < W' if and only if W # W' and if i is the first j
such that Mj # Mi, then Mi precedes Mi in Zi' The verifica-
tion that < well orders W is straightforward. Suppose x € W/

and F(x,/) = M +ee 1 M_. Since F(x,Zi) <M (in Zi), it

1 k
follows that M; = F(x,Zi).
Remark 4.6. We will refer to well orderings given by

Lemma 4.5 as "natural well orderings.” Note that in the

application of Lemma 4.5 in the proof below some of the sets
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Zi consist of a single element; we consider such a Z& as a
well ordered set of one element. We will well order finite
unions of disjoint well ordered sets below in the standard
way: If W = Oi y--- U 0;, the elements of 0& precede those
of (G for i < j and the elements of each 0& retain the order

of U..
1

Theorem 4.7. Suppose X is a space, A c X, and A =
uls : n € N} where each S, te closed and has an open primitive
sequence WM = <W£: m € N> in X. Then A has an open primi-
tive sequence # in X such that if G € DR(#) and ﬂ{Gn:
n € N} # @, then there exist k € N and W € PR(WX) such that
W dominates G.
Proof. Define Fo = § and Fn = Sl U *** U Sn. Define
V; = {W\Fk_l: W e W; and p(W,Wﬁ) n (Sk\Fk_l) # §}. Lemma
4.5 applies, so we give Vﬁ the natural well ordering. If
Vi covers A, define }l as §§, otherwise let ]l = {X\Sl}.
Define ﬁl = Vi U J; and well order it as a well ordered
union. Then ﬁl is critically well ordered (i.e. well ordered
and p(H,ﬁl) # @ for all H € ﬁl) and covers A. Assume
A --,ﬂn

10" _1 have been defined and are critically well ordered
open covers of A.
For k < nand m < n and k + m = n + 1 define

k _ ; k k
B,={vnNH:V €V , HE Ho_qr and p(v,V ) np(H, A _4) n
(8\F,_;) # #}. Give each B; the natural well ordering and
let ﬁg = B? U Bg_l U *e° U Bi well ordered as a disjoint

1 - - ’
union. Let }n = (E\F_: H € ﬁn_l and p(H,/fn_l) NA\NF_ £ u#}
with the natural well ordering.

Let ﬁn = ﬁé u }n well ordered as a disjoint union. Then
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ﬂn is a critically well ordered open cover of A and it may be
verified that # = <ﬁ£: n € N> is an open primitive sequence
of A in X,

Suppose G € DR{/) and MG, : n € N} # #. Let k be the
first integer j such that for some x € ﬂ{Gn: n € N}, x € Sj.
Then x € S\F, _; and x £ UV; for any i > k. Moreover x £ UJ
for n > k. Thus for n > k there exists j < k such that

G €8I Since G_¢ Bi implies that G £ B%, for ' < 7,

n n-j+1° n+l

it follows that for some m > k there exists t < k such that

c ¢Bt

for all n > m. From this it follows that for each
n n-t+1 —

n € N there exists W such that W, is the first element of
WE that includes some term of G. By a standard argument

(Lemma 2.2 of (WW,]) it follows that W € PRWY) .

Theorem 4.8. Let X be a space, and suppose that A is
o-(closed and fl-collectionwise scattered) in X and each
M € /1 has an open primitive sequence V(M) in X. Then there
exists an open primitive sequence # of A in X such that for
all H € DR{(#), if ﬂ{Hn: n € N} # B, then there exist M and
v € PR(V(M)) such that V dominates H.

Proof. The set A = U{Sn: n € N}, where each S, is
closed and /l-collectionwise scattered. By Theorem 4.3, each
5, has an open primitive sequence W™ such that for each
W € DRW™) there is M and V € PR(V(M)) such that V dominates
W. By Theorem 4.7, A has an open primitive sequence # in X
such that for all H € DR(#) if n{Hn: n € N} # @, then there
exist n and W € PR(¥/™) such that W dominates H. Thus there
exist M and V € PR(/(M)) such that V dominates W and, hence

V dominates H.
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Theorem 4.9. Let X be a space and suppose that A is
o-M-collectionwise scattered in X and each M € [ has an open
primitive sequence V(M) in X. Then there exists an open
primitive sequence # of A in X such that for all H € PR(/A),
if pc(H) = ﬂ{p(Hn,#n)n € N} # @, then there exist M and
V € PR(V(M)) such that V dominates H and pc(H) < pc(V).

Proof. The proof is similar to, but simpler than that
of Theorem 4.7. A is the union U{Sn: n € N} of Ml-collection-
wise scattered sets. Each Sn has an open primitive sequence
W™ formed as in Theorem 4.3. Let Ay = Wi with X added as a
final element if Wi does not cover A. Assuming #l,"',ﬂn_l
to be critically well ordered sets covering A, for k < n and
m<nand k + m =n + 1, define BE = {vVn H: VE Wﬁ, H € ”n—l’
and p(V,W;) n p(Hn_l) n (Sﬁ\Fk—l) # @}, where Fg = ¢ and
F,o=8S U ***US . Let# = 3? U 32‘1 U tee U Bi with the
natural well ordering (together with X as a final element if
ﬂn does not cover A).. It may be verified that # is an open

primitive sequence which satisfies the condition.

5. Base of Countable Order Theory

We briefly summarize some concepts used in the theorems
below, and prove three further theorems useful in the proofs.
Suppose H is a sequence. If {Hn: n € N} consists of
open sets which are a base at a point x of a space, we say
H 75 a base at x.

We list the following properties of decreasing sequences
B = <Bn: n € N> of open sets in a space X and A < X (cf.

[cCCN] and (W,1):
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Definition 5.1.

(A) There exists x € X such that every open set con-
taining x includes some Bn and B is a base at all
elements of ﬂ{Bn: n € N}.

(b) B is a base at all elements of ﬂ{Bn: n € N}.

(p) If 7 is a filterbase in X and 7 refines B (i.e. each
B includes some F ¢ #, then n{F: F ¢ 7} # @.

(a) If 7 is a countable filterbase in X and 7 refines
B, then n{F: F € F} # g.

(d) ﬂ{Bn: n € N} is empty or a singleton.

(sa) nB : n € N} < A.

Remark 5.2, Note that all properties listed are mono-
tonie [CCNl: A property (M) of decreasing sequences B is
monotonice if and only if for every decreasing sequence W of
open sets, if B dominates W and B has (M), then W has (M).
This fact, together with the nature of the definitions be-
low, permits the theorems below to be derived from those of
section 4.

Now we define certain types of open primitive sequences.
Suppose W is an open primitive sequence of A in X. Let

PR(W,A) = {W € PR(W): p(Wn,Wn) nNA#4g for all

n € N},
PRM(W,A) = {W ¢ PR(W,A): A n A{W_: n €N} # @},
PR"(W,n) = {w € PR(W,A): A n Np(W_, W ):n €N} # 3.

Definition 5.3. Let (c) denote any of the properties
listed in Definition 5.1. Then an open primitive sequence

W of A in X is called:
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a (c)-sequence of A in X if and only if every
W € PR(#,n) has (c),

a (uc)-sequence of A in X if and only if every
W ¢ PR"(W,A) has (c),

a (mc) -sequence of A in X if and only if every
w ¢ PR"(W,A) has (c).

If A = X we speak of a (c)-sequence in X, etc.

Remark 5.4. Note that if M has an (a)-sequence in X,
where (o) is any of the properties listed in the preceding
definition, then if F < X is closed, F N M has an (a)-sequence

in X.

The following theorem summarizes theorems and definitions

of [WW3, WWZ] and the present paper.

Theorem 5.5. An essentially T, space has the property
listed below on the left if and only <1f it has an open

primitive (0)-sequence where (&) is listed at right.

A-base (X)
base of countable order (ub)
primitive base (1b)

primitively quasi-complete

(or primitively q-space) (mq)
primitively p-space (mp)
primitive diagonal (md)
diagonal a set of interior condensation (ud).

If X is pararegular [WWG]'
Bb-space (up)
Bc—space (uq)

A, -epace (p)



TOPOLOGY PROCEEDINGS Volume 2 1977 297

Ao -8pace (q)
If A c X then A has the property

set of interior condensation (usA).

We add the following definitions as natural accompani-

ments to the foregoing (see Remark 5.9).

Definition 5.6. A space X is said to be:
a monotonically p-space if and only if it has a (up)-sequence;
a monotonically q-space if and only if it has a (ug)-sequence,
A space X is said to be:
(p) -complete if and only if it has a (p)-sequence;
(q) -complete if and only if it has a (q)-sequence.
The above concepts coincide, respectively, with Bb’Bc'

Ab,xc—spaces [Wl]' when X is pararegular [WW6].

The following definition is useful in stating the main

results.

Definition 5.7. Let X be a space and M ¢ X. Let P be
any of the properties listed in Theorem 5.5 or Definition 5.6
defined by some property (o). We say that M has P in the
global topology if and only if there is an (a)-sequence of M

in X.

Remarks 5.8.

Thus for example, M has a base of countable order in the
global topology if and only if there exists a sequence
g = <§n: n € N> of open sets such that each §n is a basis
for the topology of X at all points of M and if G is a de-

creasing representative of § such that x € ﬂ{Gn: n € N} nM,



298 Wicke and Worrell

then {Gn: n € N} is a base at x.

If X is a first countable space then each {x} = X has
a base of countable order (in fact a strong A-base (see 6))
in the global topology. If X is of point countable type
(respectively, a g-space), then each {x} < X is (p)-complete,
((g)-complete) in the global topology.

We note that the concepts of primitive base, primitively
quasi-complete, and primitively p-space can be formulated
more simply in terms of a sequence ¥ of well ordered open
covers of X by requiring an appropriate condition on
{F(x,#): n €N} for all x € X.

Thus X has a primitive base if and only if there exists
a sequence as described such that for all x € X, {F(x,Wn):

n € N} is a base at x.

Remarks 5.9.

The following remarks are intended to help in organizing
certain of the previously named concepts. Consider the four
properties: (1) space of point countable type [Al], (2)

6's.
The monotonic versions of these properties are, respectively:

g-space [M], (3) first countable space, (4) points are G

(M1) monotonically p-space, (M2) monotonically g-space, (M3)
spaces having bases of countable order, (M4) diagonal a set

of interior condensation. The primitive versions are, re-
spectively: (pl) primitively p-space, (p2) primitively g-
space, (p3) primitive base, (p4) primitive diagonal. Thus
some of the most frequently used monotone and primitive spaces
are uniformizations of first countability or some of its

generalizations.
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In the following theorems let X be a space, A c X, and

M a collection of subsets of X.

Theorem 5.10. Suppose A ig fl-collectionwise scattered
in X and each M € [ has an (a)-sequence in X where (a) ©s
any of the properties of the right hand list in Theorem 5.5.
Then each M € /] has an (a)-sequence /(M) and A has an
(a)-sequence # such that for all H € DR(f) there is some
M € /] and k € N such that Hj = Vj for all j > k and some
v € DR(V(M)) .

Proof. 1If <N,U> is an fl-pair for A in the order
sense, we can, using the technique of proof of Theorem 4.7,
obtain an (a)-sequence /(M) of M in UM for all M € #. By
Theorem 4.1, there is an open primitive sequence # of A in
X such that each H € DR(#) satisfies the stated condition.
Since each /(M) is an (a)-sequence, each H ¢ DR(#) will have

(¢), because the V € DR(V(M)) given by the theorem has (a).

Theorem 5.11. Suppose A is o-(closed and Ml-collection-
wise scattered) in X and each M € f] has an (a)-sequence in
X, where (o) is any of the properties of Theorem 5.5 involving
H or m. Then A has an (a)-sequence in X.

Proof. Let /(M) be an (a)~-sequence for each M € /.
There exists an open primitive sequence // of A in X satisfy-
ing the conclusion of Theorem 4.8. Suppose H € DR(#) and
ﬂ{Hn: n € N} # . Then if v € PR(/(M)) dominates H, V € PR(#).
Thus if (a) = (uc) or (wec), V has (c) and thus by Remark 5.2,

so does H.

Theorem 5.12. If A 1s o-fl-collectionwise scattered and
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each M € /] has an (o) -sequence where (a) is a property
listed in 5.3 involving w, then A has an (a)-sequence.

Proof. Each M € /1 has an (a)-sequence V(M) in X. Hence
there is an open primitive sequence # of A in X satisfying
the condition of Theorem 4.9. If H € PR"(#), then there is
M and V € PR(V/(M)) such that Vv dominates H. Since pc(V) # 7,
it follows that if V(M) has (mc) then V has (c¢) and so does

H. Hence # has (mc).

6. Main Results

In the theorems below, we assume that the set / is a
relatively closed hereditary subcollection of the power set
of a space X. This is Jjustified in view of Remark 5.4. See
5.7 for explanation of the usage of global topology.

We say that X has a strong A-base if and only if X has
a (A)-sequence # such that if H € PR(#), then ﬂ{Hn: n € N} # 4.
A set M ¢ X has a strong A-base in the global topology pro-

vided it has a (A)-sequence A/ in X such that for all H € PR(/),

M N ﬂ{Hn: n € N} # #.

Theorem 6.1. Suppose X 1s a locally fl-collectionwise
scattered space.

(a) If each M € M has a strong A-base (A-base) in the
global topology, then X has a strong A-base (A-base).

(b) If each M € /1 is (p)-complete ((q)-complete) in the
global topology, then X is (p)-complete ((q)-complete). If
X is pararegular and each M € M is a Ab-(xc)—space, then X
i8 a Xb-(Xc)-space.

Proof. (a) By Corollary 2.1 and our blanket assumption

on M, X is fM-collectionwise scattered. Each M € /) has a
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(A) -sequence (respectively, a strong A-sequence). By Theorem
5.10, X has the same kind of sequence. The proof of part (b)

is similar.

Corollary 6.2. Suppose X is a locally scattered T,-space.
If X is first countable, then X has a strong A-base. If X
is T, of point countable type, then X is (p)-complete. If
X 28 a g-space, then X is (q)-complete.

Proof. Here M= {{x}: x € X}. By Remarks 5.8 the

hypotheses of the theorem are satisfied.

Theorem 6.3. Suppose X is locally o-(closed in X and
M-collectionwise scattered).

(a) If each M € /) has a base of countable order in the
global topology, then X has a base of countable order.

(b) If each M € I is a monotonically p-space (respectively,
a monotonically q-space) in the global topology, then X is a
monotonically p-space (respectively, a monotonically q-space).
If X is pararegular and each M € [l is a Bb-space (Bc—space)
in the global topology, then X is a Bb—space (Bc—space).

(c) If each M € [/} has diagonal a set of interior con-
densation, then X also has such a diagonal.

Proof. (a) Suppose U < X is open and o-(closed in X and
fl-collectionwise scattered). Since each M € /] has a base of
countable order in the global topology, each M € [} has a
(ub) -sequence in X. By Theorem 5.11, U has a (ub)-sequence
in X. The conclusion follows from the local-implies-global
property of base of countable order [WoW]. It may also be
deduced from Corollary 2.11 of the present paper.

The proofs of (b) and (c) are similar.



302 Wicke and Worrell

Corollary 6.4. Suppose X is a locally o-(closed in X

and scattered) T, space.

1
(a) If X is first countable, then X has a base of
countable order.

(b) If X is T, and of point countable type (a g-space)

2
then X is a monotonically p-space (g-space).

(e¢) If points are Gg’s in X, then X has diagonal a set
of interior condensation.

Proof. Here again take M = {{x}: x € X}. The condi-

tions stated then translate into the corresponding conditions

of the preceding theorem for the sets M = {x} € /.

Theorem 6.5. Suppose X is a space and A < X. If A is
0-(closed and [fl-collectionwise scattered) in X where each
M € /1 is a set of interior condensation, then A is a set of
interior condensation.

Proof. Each M € /) has a (usM)-sequence in X. By
Theorem 5.11, A has a (usA)-sequence in X, so that A is a set

of interior condensation, by 5.3.

Theorem 6.6. Suppose X is a locally o-fl-collectionwise
scattered space.

(a) If each M € [} has a primitive base in the global
topology then X has a primitive base.

(b) If each M € [} is a primitively p-space (g-space)
in the global topology, then X is a primitively p-space
(g-space).

(c) If each M € Ml has a primitive diagonal in the global
topology, then X has a primitive diagonal.

Proof. By Corollary 2.11, X is o-flcollectionwise
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scattered. Since each M € /) has an appropriate type of
(a) -sequence in X as listed in Theorem 5.12, it follows that
X has such an (a)-sequence. Application of Theorem 5.3 com-

pletes the proof.

Corollary 6.7. Let X be a locally o-scattered space.
(a) If X 1s first countable, then X has a primitive
base.

(b) If X 1is T, and of point countable type (a g-space)

2
then X 1s a primitively p-space (g-space).

(e) If points are G.'s in X, then X has a primitive

§
diagonal.
Proof. This follows from Theorem 6.6, analogously to

the way in which Corollary 6.4 follows from Theorem 6.3.

7. Applications and Examples

We make application here to the case of scattered and

o-scattered spaces as illustrations.

Theorem 7.1. Let X be a Ty locally scattered g-space.

(a) If points are Gé’s and X is hereditarily weakly
6-refinable then X 18 quasi-developable and has a strong
A-base.

(b) If closed sets are G, 's and X is weakly O-refinable,

§
then X i1g developable and semi-complete.

(e¢) If X 18 collectionwice normal, closed sets are
Gé’s, and X is weakly O-refinable, then X is completely
metrizable.

Proof. Since X is locally scattered, it is scattered.

Since X is a T g-space and thus in (a), (b), and (c) points

17
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are G6's, it follows that X is Tl and first countable [L].
Hence by 6.2, X has a strong A-base. Part (a) then follows
from [BB]. Part (b) follows from (a) and [BL]. Part (c)
follows from (b) and [B] and the fact that a metric space

with a A-base is completely metrizable [WW1].

Theorem 7.2, Suppose X is a regular locally o-(closed
and scattered) space such that points are Gd’s. Then X has
a base of countable order if and only if X 18 a monotonically
p-space.

Proof. By 6.4 (c), X has diagonal a set of interior
condensation. A regular monotonically p-space with such a

diagonal has a base of countable order [W3].

Theorem 7.3. Let X be a locally o-(closed and scattered)
regular T, 4-space. Then if X is O-refinable, 1t is a
p-space.

Proof. By 6.4 (b), X is a monotonically g-space. By

[WW;1, it is a p-space.

Theorem 7.4. Let X be a scattered Tychonoff space of
point countable type. If X is 6-refinably embedded in X,
then X is Cech complete.

Proof. By 6.2, X is a A,_-space. The result follows

b
from [WWS]'

Theorem 7.5. Suppose X is a locally countable T,
g-space. Then X has a base of countable order.

Proof. Since X is locally countable, it is locally
o-scattered, hence o-scattered. Thus locally it has a primi-

tive base and closed sets are Gd's. By [ww4], locally it
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has a base of countable order and thus has one globally [WoW].

Theorem 7.6. Suppose X is a locally o-scattered Tl
g-space. If closed sets are sets of interior condensation in
X, then X has a base of countable order.

Proof. By 6.7 such a space is Tl and has a primitive
base because the hypothesis implies first countability. By
[WW4], the space has a base of countable order.

That the classes of scattered, o-scattered, o-(closed and

scattered) first countable spaces are distinct is shown by the

following examples.

Example 7.7. The space Q of rationals with the usual
topology is a o-(closed and scattered) space which is not
scattered. It does not have a A-base since it doesn't have
the Baire property.

Example 7.8. The so-called Michael line [SS, p. 90] is
a o-scattered first countable T, paracompact space which is
not o-(closed and scattered). This follows from the fact
that it cannot have a base of countable order.

Example 7.9. The space w, with the order topology shows

1
that no stronger property such as developable or even quasi-

developable is implied by being scattered, normal, and first

countable.
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