TOPOLOGY PROCEEDINGS

Volume 2, 1977

Pages 309-319

http://topology.auburn.edu/tp/

CYCLIC GROUP ACTIONS ON Q AND HUREWICZ FIBRATION

by Raymond Y. Wong

Topology Proceedings

 $\textbf{Web:} \qquad \text{http://topology.auburn.edu/tp/}$

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

CYCLIC GROUP ACTIONS ON Q AND **HUREWICZ FIBRATION**

Raymond Y. Wong*

Section 1

For a compact metric space X, let G(X) be the space of self-homeomorphisms of X with the supremum metric. Let Q denote the Hilbert cube $\prod_{i=1}^{\infty} J_i$, $J_i = [-1,1]$ and let $G_{k}(Q) \subset G(Q)$ denote the subspace consisting of all period k homeomorphisms, k > 1, each having a unique fixed point 0 = (0,0,...). In this paper we show that every $\beta \in G_k(Q)$ is joined to the standard action α by a path λ in $G_{\underline{k}}\left(Q\right)$, and that it induces a Hurewicz fibration p: $E \rightarrow [0,1]$ with E a Q-manifold and the fibers $p^{-1}(t)$ being the orbit spaces of the non-degenerate orbits of $\lambda(t)$. The formulation is motivated by the following theorem of Chapman-Ferry:

Theorem ([C-F]). Let p: $E \rightarrow [0,1]$ be a Hurewicz fiber map with E a Q-manifold. If the fibers p⁻¹(t) are compact Q-manifolds, then p is a trivial bundle map.

To state our result more precisely, consider a map $\lambda: [0,1] \rightarrow G_{\nu}(Q)$. λ induces a level-preserving (1.p.) homeomorphism H: Q × [0,1] \rightarrow Q × [0,1] by H|_{Q×{t}} = λ (t). Let E denote the orbit space of non-degenerate orbits of H and let $E_t \subset E$ be the orbits at level t. Define p: $E \rightarrow [0,1]$ by $p(E_+) = t$.

^{*}Supported in part by NSF Grant MPS75-08334.

310 Wong

Theorem. Given any $\beta_0, \beta_1 \in G_k(Q)$, there is a path $\lambda \colon [0,1] \to G_k(Q) \text{ joining } \beta_0, \beta_1 \text{ such that } p \colon E \to [0,1] \text{ is a Hurewicz fibration.}$

The general question concerning cyclic group actions on Q is whether β_0 is necessarily conjugate to $\beta_1;$ that is, whether there is an $h \in G(Q)$ such that $\beta_1 = h\beta_0 h^{-1}$. If we are able to assert that p is in fact a trivial bundle map, then it implies $\mathbf{E}_0 \ \cong \ \mathbf{E}_1$ (" \cong " means homeomorphic to) which then shows that β_0,β_1 are conjugate. The last assertion, unfortunately, is not yet known. A partial solution was given in $[\mathbf{W}_2]$ where it was shown that the answer is yes when restricted to the cyclic actions which have a basis of contractible, invariant neighborhoods about the fixed point. Other results which generalized those of [W2] are given in [B-We] and [E-H]. In [We] a non-trivial action in Hilbert cube hyperspace was shown to satisfy the criterion in $[W_2]$ and in [L], it is demonstrated that free finite group actions on compact Q-manifolds can be factored into actions on finite dimensional manifolds.

Theorem 1(3) of [C-F] and our theorem implies

Corollary. The composition $p \cdot proj$: $E \times [0,1) \rightarrow E \rightarrow [0,1]$ is a trivial bundle map.

Notation. Composition of two maps f and g is denoted either by gf or g.f.

2. A Canonical Isotopy in G_{l.} (Q)

In this section we show that any two members α,β in $G_{\bf k}(Q)$ can be canonically joined by a path in $G_{\bf k}(Q)$. Let

 $C(I,G_k(Q))$ denote the space of maps (sup metric) of $I = [0,1] \text{ into } G_k(Q).$

Lemma 2.1. Fix any $\alpha \in G_k(Q)$. There is a map $\mu \colon G_k(Q) \to C(I,G_k(Q)) \text{ such that for any } \beta, \ \mu(\beta)(0) = \alpha,$ $\mu(\beta)(1) = \beta.$

Proof. Given any $\beta \in G_k(Q)$, we shall construct a path from β to α in $G_k(Q)$ by exhibiting a level-preserving (1.p.) homeomorphism $H\colon Q\times [0,1]\to Q\times [0,1]$ such that each $h_t=H\big|_{Q\times\{t\}}\in G_k(Q)$, $h_0=\alpha$, $h_1=\beta$ and H depends continuously on β . To simplify notation we shall construct a 1.p. homeomorphism of $Q\times R^*$ onto itself, where $R^*=R\cup\{-\infty,\infty\}$ and then reparametrize R^* to [0,1].

We write Q as $J^2 \times J^2 \times \cdots$, where $J^2 = [-1,1]^2$. For points $(\mathbf{x}_1, \mathbf{x}_2, \cdots)$, $(\mathbf{y}_1, \mathbf{y}_2, \cdots)$ in Q, $\mathbf{x}_1, \mathbf{y}_1 \in J^2$, denote $(\mathbf{x}_1^{\boldsymbol{\cdot}}, \mathbf{x}_2^{\boldsymbol{\cdot}}, \cdots) = \beta(\mathbf{x}_1, \mathbf{x}_2, \cdots)$ and $(\mathbf{y}_1^{\boldsymbol{\cdot}}, \mathbf{y}_2^{\boldsymbol{\cdot}}, \cdots) = \alpha(\mathbf{y}_1, \mathbf{y}_2, \cdots)$.

First we define h_n at level n by

 $h_n(x_1, \dots, x_{n+1}, y_1, x_{n+2}, y_2, \dots) = (x_1, \dots, x_{n+1}, y_1, x_{n+2}, y_2, \dots)$ for $n \ge 0$, and

 $h_{-n}(y_1, \dots, y_n, x_1, y_{n+1}, x_2, \dots) = (y_1, \dots, y_n, x_1, y_{n+1}, x_2, \dots)$ for -n < 0. Let

$$h_{\infty}(x_1, x_2, \cdots) = (x_1, x_2, \cdots)$$

and

$$h_{-\infty}(y_1,y_2,\cdots) = (y_1,y_2,\cdots).$$

Next we define h_{n-t} for $0 \le t \le 1$. For any integer n define $\theta_{|n|} \in G(Q)$ by interchanging the $(|n|+1)^{th}$ and $(|n|+2)^{th}$ coordinates, and in general, $(|n|+2j-1)^{th}$ and $(|n|+2j)^{th}$ coordinates, $j = 1, 2, \cdots$.

By $[W_1]$ $\theta_{|n|}$ is isotopic to the identity in G(Q) and the isotopy fixes the point $(0,0,\cdots)$ and leaves the first |n| coordinates of each point unchanged. Denote such an isotopy by $\{\theta_{|n|,t}\}_{0 \le t \le 1}$ with $\theta_{|n|,0} = id$, and $\theta_{|n|,1} = \theta_{|n|}$. Define

(*)
$$h_{n-t} = \theta_{|n|,t} h_n \theta_{|n|,t}^{-1}$$

Then $\{h_{n-t}\}_{0\leq t\leq l}$ induces a path in $G_k(Q)$ between h_n and h_{n-l} . Putting all the $\{h_{n-t}\}$ together we get a l.p. homeomorphism H: $Q \times R^* \to Q \times R^*$ such that $h_{-\infty} = \alpha$ and $h_{\infty} = \beta$. Finally, the dependency of H on β follows trivially from the construction.

Section 3

In this section we establish lemma 3.3 which will be used in section 4. For any t \in **R**, let λ_{t} denote the "square" rotation of the complex space (in the sense that, by writing (as the union of concentric squares (with center 0 and sides parallel to the coordinate axes), each point z travels to the point z' along the unique square to which it belongs, and that Arg z' = Arg z + t. Denote $\lambda_{\pi/4}$ by λ . Define $\tilde{\lambda}, \tilde{\lambda}_{t} \colon (\times (\to (\times (x_{1}, y_{1}), (x_{2}, y_{2}))) = ((x_{1}, y_{1}), (x_{2}, y_{2}))$

where

 $\tilde{\lambda}_{+} = \lambda_{+} \times id$

$$(x_1', x_2') = \lambda(x_1, x_2)$$
 and $(y_1', y_2') = \lambda(y_1 y_2)$.

Lemma 3.1. (i) $\tilde{\lambda}^{-1}(\lambda_{t} \times \lambda_{t})\tilde{\lambda} = \lambda_{t} \times \lambda_{t}$ for all $t \in \mathbf{R}$ and (ii) $\tilde{\lambda}^{-1}\tilde{\lambda}_{\pi}\tilde{\lambda}(\mathbf{z}_{1},\mathbf{z}_{2}) = (\mathbf{z}_{2},\mathbf{z}_{1})$.

 $\mathit{Proof}.$ The proof is a result of routine computation and will be omitted.

Remark. Intuitively the justification for concluding (ii) is as follows: The map $(x_1,x_2) \rightarrow (x_2,x_1)$ is a result of (a) applying λ to the point (x_1,x_2) , (b) following by the reflexion γ across the y-axis $((x,y) \rightarrow (-x,y))$ and (c) applying λ^{-1} to the image $\gamma \cdot \lambda(x_1,x_2)$.

Using the data above we obtain

Lemma 3.2. $(\tilde{\lambda}\tilde{\lambda}_{S\pi}\tilde{\lambda}^{-1})(\lambda_{t} \times \lambda_{t})(\tilde{\lambda}\tilde{\lambda}_{S\pi}\tilde{\lambda}^{-1})^{-1} = \lambda_{t} \times \lambda_{t}$ for any $t \in \mathbf{R}$ and for all $s \in [0,1]$.

Proof. This is a trivial application of Lemma 3.1 (i). Next let $J_n^2 \subseteq ($ be the square $[-1,1]^2$. For fixed k>1, define

$$\alpha, \theta: J_1^2 \times J_2^2 \times \cdots \rightarrow J_1^2 \times J_2^2 \times \cdots$$
 by
$$\alpha = \lambda_{2\pi/k} \times \lambda_{2\pi/k} \times \cdots \text{ and }$$

$$\theta(z_1, z_2, \cdots) = (z_2, z_1, z_4, z_3, \cdots).$$

Lemma 3.3. There is a path $\{\theta_t\}$ in G(Q) such that $\theta_0 = id$, $\theta_1 = \theta$, each θ_t fixes $0 = (0,0,\cdots)$, and $\theta_t \alpha \theta_t^{-1} = \alpha$ for all $0 \le t \le 1$.

Proof. By Lemma 3.2 there is a path $\{\phi_{\mathbf{s}} = \widetilde{\lambda}\widetilde{\lambda}_{\mathbf{s}\pi}\widetilde{\lambda}^{-1}\}$ in $G((\times))$ such that $\phi_0 = \mathrm{id}$, $\phi_1(z_1,z_2) = (z_2,z_1)$ and $\phi_{\mathbf{s}}(\lambda_{2\pi/k} \times \lambda_{2\pi/k})\phi_{\mathbf{s}}^{-1} = \lambda_{2\pi/k} \times \lambda_{2\pi/k}$ for all $\mathbf{s} \in [0,1]$. Now apply $\{\phi_{\mathbf{s}}\}$ to each pair (J_{2n-1},J_{2n}) , $n \geq 1$.

Section 4

In this section we establish the main technical lemmas. As in section 2, we write $Q=J_1^2\times J_2^2\times \cdots$, where $J_n^2\subset C$. Let $\alpha,\theta\colon Q\to Q$ be defined as in section 3. If $f\colon X\to X$ and $g\colon Y\to Y$ are maps, we define a map of pairs $\phi\colon (X,f)\to (Y,g)$ to be a map $\phi\colon X\to Y$ satisfying $\phi\cdot f=g\cdot \phi$. For any $\beta\in G_k(Q)$,

314 Wong

let H: Q × [0,1] \rightarrow Q × [0,1] be the isotopy joining α to β as described in the proof of Lemma 2.1. Denote M = Q\{0}, H₀ = H|_{M×[0,1]}, M_t = M × {t}, $\alpha_0 = \alpha|_{M_0}$ and $\beta_1 = \beta|_{M_1}$.

Lemma 4.1. For any map g: $(M_1, \beta_1) \rightarrow (M_0, \alpha_0)$, there is a retraction G: $(M \times [0,1], H_0) \rightarrow (M_0, \alpha_0)$ such that $G|_{M_1} = g$.

 $\it Remark.$ As a consequence of the contruction, G_0 actually depends continuously on g.

Proof. We adopt the notation as in the proof of Lemma 2.1 where we identify M \times [0,1] as M \times (R \cup { $-\infty$, ∞ }). We also let $h_t = H_0|_{\dot{M}_t}$. To begin, define $G|_{\dot{M}_{-\infty}} = \operatorname{id}$ and $G|_{\dot{M}_{\infty}} = \operatorname{g}$ and for integer $n \geq 0$, define $g_n = G|_{\dot{M}_n} : M_n \to M_{-\infty}$ by

Similarly, for -n < 0, define

$$g_{-n}(y_1, \dots, y_n, x_1, y_{n+1}, x_2, \dots, -n)$$

= $(y_1, \dots, y_n, x_1, y_{n+1}, x_2, \dots, -\infty)$.

The map of g_n clearly satisfies (A) $g_nh_n=\alpha_0g_n$, and thus, is a map of (M_n,h_n) into $(M_{-\infty},\alpha_0)$. Next we shall define $g_{n-t}=G|_{M_{n-t}}\colon M_{n-t}\to M_{-\infty}$ for $0\le t\le 1$. But first, for any integer n, let $\{\theta_{\mid n\mid,t}\}_{0\le t\le 1}$ be given as in the proof of Lemma 2.1. By Lemma 3.3 we may choose $\{\theta_{\mid n\mid,t}\}$ to satisfy (B) $\theta_{\mid n\mid,t}^{-1}\cdot\alpha_0\cdot\theta_{\mid n\mid,t}=\alpha_0$ for all t. We then observe that $\theta_{\mid n\mid,t}$ can be regarded as a homeomorphism of M_n onto M_{n-t} . Now we define (C) $g_{n-t}=\theta_{\mid n\mid,t}g_n\theta_{\mid n\mid,t}$. We assert that $g_{n-t}\cdot h_{n-t}=\alpha_0\cdot g_{n-t}$. To prove this, we have

$$\alpha_{0} \cdot g_{n-t} = \alpha_{0} \cdot \theta_{|n|, t} \cdot g_{n} \cdot \theta_{|n|, t}^{-1}$$

$$= \theta_{|n|, t} \cdot \alpha_{0} \cdot g_{n} \cdot \theta_{|n|, t}^{-1}$$

$$= \theta_{|n|, t} \cdot g_{n} \cdot h_{n} \cdot \theta_{|n|, t}^{-1}$$

$$= g_{n-t} \theta_{|n|, t} \cdot h_{n} \cdot \theta_{|n|, t}^{-1}$$

$$= g_{n-t} \cdot h_{n-t}$$

Finally it is routine to verify that, when putting all the levels $\{h_+\}$ together, we get a retraction G as required.

For the next lemma, let G be as above and let $G': (M \times [0,1], H_0) \rightarrow (M \times [0,1], \alpha_0 \times id)$ be defined by G'(x,t) = (G(x,t),t). Denote $G'|_{M_+} = g'_t$.

Two maps ϕ_0, ϕ_1 : $(X,f) \rightarrow (Y,g)$ are *homotopic* if there is a homotopy of maps ϕ_+ : $(X,f) \rightarrow (Y,g)$ joining ϕ_0 to ϕ_1 .

Lemma 4.2. Given the data above, suppose g: $(M_1, \beta_1) + (M_0, \alpha_0)$ and f: $(M_0, \alpha_0) + (M_1, \beta_1)$ are maps such that fg is homotopic to the identity in (M_1, β_1) by $\{\phi_t\}$. There is, then, a level-preserving map F: $(M \times [0,1], \alpha_0 \times id) + (M \times [0,1], H_0)$, such that $F|_{M_0} = id$, $F|_{M_1} = f$ and $F \cdot G'$ is level preservingly homotopic to the identity in $(M \times [0,1], H_0)$.

Proof. Again as in section 2 we regard [0,1] as $R\times \{-\infty,\infty\} \text{ and adopt the notations established in Lemma 4.1.}$ Denote

$$\begin{array}{ll} & \text{f}(x_1, x_2, \cdots, -\infty) = (x_1', x_2', \cdots, +\infty) \; . \\ \\ \text{Define, for } n \geq 0 \; , \; f_n = F\big|_{M_n} \colon (M_n, \alpha_0) \; + \; (M_n, h_n) \; \text{ by } \\ & f_n(x_1, \cdots, x_{n+1}, y_1, x_{n+2}, y_2, \cdots, n) \\ & = (x_1', \cdots, x_{n+1}', y_1, x_{n+2}', y_2, \cdots, n) \end{array}$$

and for -n < 0

$$f_{-n}(y_1, \dots, y_n, x_1, y_{n+1}, x_2, \dots, -n)$$

= $(y_1, \dots, y_n, x_1', y_{n+1}, x_2', \dots, -n)$.

Recall that $g_n' = G'|_{M_n}$: $(M_n, h_n) \to (M_{+n}, \alpha_0)$. We assert that $f_n \cdot g_n'$ is homotopic to id in (M_n, h_n) . To see this suppose n > 0. By definition

$$f_n \cdot g_n'(x_1, \dots, x_{n+1}, y_1, x_{n+2}, y_2, \dots, n)$$

= $(\tilde{x}_1, \dots, \tilde{x}_{n+1}, y_1, \tilde{x}_{n+2}, y_2, \dots, n)$,

where $(\tilde{\mathbf{x}}_1, \tilde{\mathbf{x}}_2, \cdots) = \mathbf{f} \cdot \mathbf{g}(\mathbf{x}_1, \mathbf{x}_2, \cdots)$. Since $\mathbf{f} \cdot \mathbf{g}$ is homotopic to id in $(\mathbf{M}_1, \boldsymbol{\beta}_1)$, by definition of \mathbf{h}_n , $\mathbf{f}_n \cdot \mathbf{g}_n'$ is homotopic to id in $(\mathbf{M}_n, \mathbf{h}_n)$. The case for $-\mathbf{n} < 0$ is similar.

Now let $\{\phi_t\}$ denote a homotopy in (M_n,h_n) so that $\phi_0 = \text{id and } \phi_1 = f_n \cdot g_n'. \text{ At any level n-t, } 0 \leq t \leq 1, \text{ define } f_{n-t} = F|_{M_{n-t}}: M_{n-t} \to M_{n-t} \text{ by } f_{n-t} = \theta_{n-t} \cdot f_n \cdot \theta_{n-t} - 1.$

We assert

(1)
$$h_{n-t} \cdot f_{n-t} = f_{n-t} \cdot \alpha_0$$
 and

(2) $f_{n-t} \cdot g'_{n-t}$ is homotopic to id in (M_{n-t}, h_{n-t}) .

To see (1), $h_{n-t} \cdot f_{n-t} = h_{n-t} \cdot \theta | n|, t \cdot f_{n} \cdot \theta | n|, t$ $= \theta | n|, t \cdot h_{n} \cdot f_{n} \cdot \theta | n|, t \cdot \theta | n|, t \cdot f_{n} \cdot \alpha_{0} \cdot \theta | n|, t$ $= (\theta | n|, t \cdot f_{n} \cdot \theta | n|, t \cdot \theta | n|, t \cdot \alpha_{0} \cdot \theta | n|, t \cdot \theta | n|, t$ $= (\theta | n|, t \cdot f_{n} \cdot \theta | n|, t \cdot \theta | n|, t \cdot \alpha_{0} \cdot \theta | n|, t \cdot \theta |$

Furthermore, for any $s \in [0,1]$,

$$\begin{split} h_{n-t} \cdot \gamma_s &= (\theta | n |, t \cdot h_n \cdot \theta | n |, t^{-1}) (\theta | n |, t \cdot \phi_s \cdot \theta | n |, t^{-1}) \\ &= \theta | n |, t \cdot h_n \cdot \phi_s \cdot \theta | n |, t \\ &= \theta | n |, t \cdot \phi_s \cdot h_n \cdot \theta | n |, t \\ &= (\theta | n |, t \cdot \phi_s \cdot \theta | n |, t^{-1}) (\theta | n |, t \cdot h_n \cdot \theta | n |, t^{-1}) \\ &= \gamma_s h_{n-t}. \end{split}$$

So $\{\gamma_s\}$ is a homotopy in (M_{n-t},h_{n-t}) between $f_{n-1}g_{n-1}'$ and id. This proves assertion (2).

5. Proof of the Theorem

Without loss of generality, we may assume β_0 is the map $\alpha = \lambda_{2\pi/k} \times \lambda_{2\pi/k} \times \cdots \text{ as defined in section 3. Let}$ $\text{H: Q} \times [0,1] \rightarrow \text{Q} \times [0,1] \text{ be the 1.p. homeomorphism given in}$ the proof of Lemma 2.1. Denote $\text{H}_0 = \text{H}\big|_{M\times[0,1]} \text{ where M} = \text{Q}\setminus\{0\}.$ We shall continue to employ the notations established previously.

Imbed E into E \times [0,1] by i: e + (e,p(e)) and let p': E \times [0,1] + [0,1] be the projection map. We assert that there is a f.p. retraction of E \times [0,1] onto i(E). Since p' is a Hurewicz fibration, so is p' $|_{i(E)}$ and hence p.

Let us now prove the assertion. The Q-manifolds $p^{-1}(0) = M_0/\alpha_0 \text{ and } p^{-1}(1) = M_1/\beta_1 \text{ are Eilenberg-Maclane}$ spaces of type $(Z_k,1)$. Hence there is a homotopy equivalence $f_*\colon p^{-1}(0) \to p^{-1}(1). \text{ Let } g_*\colon p^{-1}(1) \to p^{-1}(0) \text{ be a homotopy}$ inverse of $f_*\colon f_* \text{ and } g_* \text{ induce maps } f\colon (M_0,\alpha_0) \to (M_1,\beta_1)$ and $g\colon (M_1,\beta_1) \to (M_0,\alpha_0) \text{ such that } f\cdot g\colon (M_1,\beta_1) \to (M_1,\beta_1) \text{ is homotopic to id in } (M_1,\beta_1). \text{ Denote such a homotopy by } \{\phi_t\}.$ Now let $G\colon (M\times [0,1],H_0) \to (M_0,\alpha_0)$ and $G'\colon (M\times [0,1],H_0) \to (M\times [0,1],\alpha_0 \times \text{id})$ be the maps described in section 4 and let $F\colon (M\times [0,1],\alpha_0 \times \text{id}) \to (M\times [0,1],H_0)$ be the

level-preserving map given by Lemma 4.2. We have the following properties:

(1)
$$G|_{M_1} = g$$

(2)
$$F|_{M_0} = id$$
, $F|_{M_1} = f$ and

(3) F°G' is l.p. homotopic to id in (M \times [0,1],H $_0$) by $\{\gamma_{\pm}\}\,.$

q: $(E \times [0,1] \times \{0\}) \cup (i(E) \times [0,1]) \rightarrow i(E)$

Passing to the orbit spaces, G, G', F and $\{\gamma_t\}$ induce maps $G_\star\colon E \to p^{-1}(0)$, $G_\star^!\colon E \to p^{-1}(0) \times [0,1]$, $F_\star\colon p^{-1}(0) \times [0,1] \to E$ and a f.p. homotopy $\gamma_S^\star\colon E \to E$ between $F_\star \cdot G_\star^!$ and id where $\gamma_0^\star = F_\star G_\star^!$ and $\gamma_1^\star = id$. Define a map

by

$$q(x,t,0) = (i(F_*(G_*(x),t)),0)$$
 for
 $(x,t,0) \in E \times [0,1] \times \{0\}$

and

 $q(i(x_t),s) = (i(\gamma_s^*(x_t)),s) \text{ where } x_t \in p^{-1}(t).$ We verify easily that q is well-defined and $q|_{i(E) \times \{1\}} = id.$ We wish to extend q fiber-preservingly (preserving the middle-coordinates) to all of E × [0,1] × [0,1]. If q' is such an extension, then the restriction $q'|_{E \times \{0,1\} \times \{1\}}$ is a fiber-preserving retraction of E × [0,1] onto i(E). The usual techniques of homotopy extension imply that we need only to extend q fiber-preservingly to a neighborhood of A = (E × [0,1] × {0}) U (i(E) × [0,1]) in E × [0,1] × [0,1]. To achieve this it is sufficient to construct a neighborhood N of A which fiber-preservingly retracts onto A. Since the obit maps M × [0,1] + E and M × {t} + $p^{-1}(t)$ are covering maps, each a \in A has either a local fiber-collared or

fiber-bi-collared neighborhood in E \times [0,1] \times [0,1]. The usual proofs of M. Brown that locally collared (or bi-collared) implies collared (or bi-collared) apply equally well in the fibered case (see, for example, [R]). So N exists and the proof of the theorem is complete.

References

- [B-W] I. Berstein and J. E. West, Based free compact lie group actions on Hilbert cubes, preprint.
- [C-F] T. A. Chapman and S. Ferry, Hurewicz fiber maps with ANR fibers, preprint.
- [E-H] D. A. Edwards and H. M. Hastings, Čech and Steenrod homotopy theories with applications to geometric topology. Lecture notes in Math. #542. Springer (1976).
- [L] Vo-Thanh-Liem, Factorizations of free finite group actions on compact Q-manifolds, preprint.
- [R] T. B. Rushing, Topological Embeddings, Academic Press, 1973.
- [We] J. E. West, Induced involutions on Hilbert cube hyperspaces, preprint.
- [W₁] R. Y. Wong, On homeomorphisms of certain infinitedimensional spaces, Tran. AMS 128 (1967), 148-154.
- [W₂] ____, Periodic actions on the Hilbert cube, Fund. Math. 85 (1974), 203-210.

University of California Santa Barbara Santa Barbara, California 93106