TOPOLOGY PROCEEDINGS

Volume 2, 1977
Pages 309-319
http://topology.auburn.edu/tp/

CYCLIC GROUP ACTIONS ON Q AND HUREWICZ FIBRATION

by
Raymond Y. Wong

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

CYCLIC GROUP ACTIONS ON Q AND

HUREWICZ FIBRATION

Raymond Y. Wong*

Section 1

For a compact metric space X, let $G(X)$ be the space of self-homeomorphisms of X with the supremum metric. Let Q denote the Hilbert cube $\prod_{i=1}^{\infty} J_{i}, J_{i}=[-1,1]$ and let $G_{k}(Q) \subset G(Q)$ denote the subspace consisting of all period k homeomorphisms, $k>1$, each having a unique fixed point $0=(0,0, \cdots)$. In this paper we show that every $\beta \in G_{k}(Q)$ is joined to the standard action a by a path λ in $G_{k}(Q)$, and that it induces a Hurewicz fibration $p: E \rightarrow[0,1]$ with E a Q-manifold and the fibers $p^{-1}(t)$ being the orbit spaces of the non-degenerate orbits of $\lambda(t)$. The formulation is motivated by the following theorem of Chapman-Ferry:

Theorem ([C-F]). Let $\mathrm{p}: \mathrm{E} \rightarrow[0,1]$ be a Hurewicz fiber map with E a Q-manifold. If the fibers $\mathrm{p}^{-1}(\mathrm{t})$ are compact Q-manifolds, then p is a trivial bundle map.

To state our result more precisely, consider a map $\lambda:[0,1] \rightarrow G_{k}(Q) . \lambda$ induces a level-preserving (1.p.) homeomorphism $H: Q \times[0,1] \rightarrow Q \times[0,1]$ by $H\}_{Q \times\{t\}}=\lambda(t)$. Let E denote the orbit space of non-degenerate orbits of H and let $E_{t} \subset E$ be the orbits at level t. Define $p: E \rightarrow[0, I]$ by $p\left(E_{t}\right)=t$.
*Supported in part by NSF Grant MPS75-08334.

Theorem. Given any $\beta_{0}, \beta_{1} \in G_{k}(Q)$, there is a path $\lambda:[0,1] \rightarrow G_{k}(Q)$ joining β_{0}, β_{1} such that $p: E \rightarrow[0,1]$ is a Hurewicz fibration.

The general question concerning cyclic group actions on Q is whether β_{0} is necessarily conjugate to β_{1}; that is, whether there is an $h \in G(Q)$ such that $\beta_{1}=h \beta_{0} h^{-1}$. If we are able to assert that p is in fact a trivial bundle map, then it implies $E_{0} \cong E_{1}$ (" \cong " means homeomorphic to) which then shows that β_{0}, β_{1} are conjugate. The last assertion, unfortunately, is not yet known. A partial solution was given in $\left[W_{2}\right]$ where it was shown that the answer is yes when restricted to the cyclic actions which have a basis of contractible, invariant neighborhoods about the fixed point. Other results which generalized those of $\left[W_{2}\right]$ are given in [B-We] and [E-H]. In [We] a non-trivial action in Hilbert cube hyperspace was shown to satisfy the criterion in [W_{2}] and in [L], it is demonstrated that free finite group actions on compact Q-manifolds can be factored into actions on finite dimensional manifolds.

Theorem $1(3)$ of $[C-F]$ and our theorem implies

Corollary. The composition p.proj: $\mathrm{E} \times[0,1) \rightarrow \mathrm{E} \rightarrow[0,1]$ is a trivial bundle map.

Notation. Composition of two maps f and g is denoted either by gf or g.f.

2. A Canonical Isotopy in $\mathbf{G}_{\mathbf{k}}$ (Q)

In this section we show that any two members α, β in $G_{k}(Q)$ can be canonically joined by a path in $G_{k}(Q)$. Let
$C\left(I, G_{k}(Q)\right)$ denote the space of maps (sup metric) of $I=[0,1]$ into $G_{k}(Q)$.

Lemma 2.1. Fix any $\alpha \in \mathrm{G}_{\mathrm{k}}(\mathrm{Q})$. There is a map $\mu: G_{k}(Q) \rightarrow C\left(I, G_{k}(Q)\right)$ such that for any $\beta, \mu(\beta)(0)=\alpha$, $\mu(\beta)(1)=\beta$.

Proof. Given any $\beta \in G_{k}(Q)$, we shall construct a path from β to α in $G_{k}(Q)$ by exhibiting a level-preserving (l.p.) homeomorphism H: $Q \times[0,1] \rightarrow Q \times[0,1]$ such that each $h_{t}=\left.H\right|_{Q \times\{t\}} \in G_{k}(Q), h_{0}=\alpha, h_{1}=\beta$ and H depends continuously on β. To simplify notation we shall construct a l.p. homeomorphism of $Q \times R^{*}$ onto itself, where $R^{*}=R U\{-\infty, \infty\}$ and then reparametrize R^{*} to $[0,1]$.

We write Q as $J^{2} \times J^{2} \times \cdots$, where $J^{2}=[-1,1]^{2}$. For points $\left(x_{1}, x_{2}, \cdots\right),\left(Y_{1}, Y_{2}, \cdots\right)$ in $Q, x_{i}, Y_{i} \in J^{2}$, denote

$$
\begin{aligned}
& \left(x_{1}^{\prime}, x_{2}^{\prime}, \cdots\right)=\beta\left(x_{1}, x_{2}, \cdots\right) \text { and } \\
& \left(y_{1}^{\prime}, y_{2}^{\prime}, \cdots\right)=\alpha\left(y_{1}, y_{2}, \cdots\right) .
\end{aligned}
$$

First we define h_{n} at level n by
$h_{n}\left(x_{1}, \cdots, x_{n+1}, y_{1}, x_{n+2}, y_{2}, \cdots\right)=\left(x_{1}, \cdots, x_{n+1}^{\prime}, y_{1}^{\prime}, x_{n+2}^{\prime}, y_{2}^{\prime}, \cdots\right)$ for $n \geq 0$, and
$h_{-n}\left(y_{1}, \cdots, y_{n}, x_{1}, y_{n+1}, x_{2}, \cdots\right)=\left(y_{1}^{\prime}, \cdots, y_{n}^{\prime}, x_{1}^{\prime}, y_{n+1}^{\prime}, x_{2}^{\prime}, \cdots\right)$ for $-n<0$. Let

$$
h_{\infty}\left(x_{1}, x_{2}, \cdots\right)=\left(x_{1}^{\prime}, x_{2}^{\prime}, \cdots\right)
$$

and

$$
h_{-\infty}\left(y_{1}, y_{2}, \cdots\right)=\left(y_{1}^{\prime}, y_{2}^{\prime}, \cdots\right) .
$$

Next we define h_{n-t} for $0 \leq t \leq 1$. For any integer n define ${ }^{\theta}|n| \in G(Q)$ by interchanging the $(|n|+1)^{\text {th }}$ and $(|n|+2)^{\text {th }}$ coordinates, and in general, $(|n|+2 j-1)^{\text {th }}$ and $(|n|+2 j)^{\text {th }}$ coordinates, $j=1,2, \cdots$.

By $\left[W_{1}\right] \theta_{|n|}$ is isotopic to the identity in $G(Q)$ and the isotopy fixes the point ($0,0, \cdots$) and leaves the first $|n|$ coordinates of each point unchanged. Denote such an isotopy by $\left\{\theta|n|, t^{\}}{ }_{0 \leq t \leq 1}\right.$ with ${ }^{\theta}|n|, 0=i d$, and ${ }^{\theta}|n|, 1={ }^{\theta}|n| \cdot$ Define

$$
\text { (*) } \quad h_{n-t}={ }^{\theta}|n|, t^{h_{n}} \theta^{-1}|n|, t .
$$

Then $\left\{h_{n-t}\right\}_{0 \leq t \leq 1}$ induces a path in $G_{k}(Q)$ between h_{n} and h_{n-1}. Putting all the $\left\{h_{n-t}\right\}$ together we get a l.p. homeomorphism $H: Q \times R^{*} \rightarrow Q \times R^{*}$ such that $h_{-\infty}=\alpha$ and $h_{\infty}=\beta$. Finally, the dependency of H on β follows trivially from the construction.

Section 3

In this section we establish lemma 3.3 which will be used in section 4. For any $t \in R$, let λ_{t} denote the "square" rotation of the complex space C in the sense that, by writing C as the union of concentric squares (with center 0 and sides parallel to the coordinate axes), each point z travels to the point z^{\prime} along the unique square to which it belongs, and that $\operatorname{Arg} z^{\prime}=\operatorname{Arg} z+t$. Denote $\lambda_{\pi / 4}$ by λ. Define $\tilde{\lambda}, \tilde{\lambda}_{t}: C \times C \rightarrow C \times C$ by

$$
\begin{aligned}
& \tilde{\lambda}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left(\left(x_{1}^{\prime}, y_{1}^{\prime}\right),\left(x_{2}^{\prime}, y_{2}^{\prime}\right)\right) \\
& \tilde{\lambda}_{t}=\lambda_{t} \times i d,
\end{aligned}
$$

where

$$
\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=\lambda\left(x_{1}, x_{2}\right) \text { and }\left(y_{1}^{\prime}, y_{2}^{\prime}\right)=\lambda\left(y_{1}, y_{2}\right) .
$$

Lemma 3.1. (i) $\tilde{\lambda}^{-1}\left(\lambda_{t} \times \lambda_{t}\right) \tilde{\lambda}=\lambda_{t} \times \lambda_{t}$ for azz $t \in \mathbf{R}$ and (ii) $\tilde{\lambda}^{-1} \tilde{\lambda}_{\pi} \tilde{\lambda}\left(z_{1}, z_{2}\right)=\left(z_{2}, z_{1}\right)$.

Proof. The proof is a result of routine computation and will be omitted.

Remark. Intuitively the justification for concluding (ii) is as follows: The map $\left(x_{1}, x_{2}\right) \rightarrow\left(x_{2}, x_{1}\right)$ is a result of (a) applying λ to the point $\left(x_{1}, x_{2}\right)$, (b) following by the reflexion γ across the y-axis $((x, y) \rightarrow(-x, y))$ and (c) applying λ^{-1} to the image $\gamma \cdot \lambda\left(x_{1}, x_{2}\right)$.

Using the data above we obtain

Lemma 3.2. $\left(\tilde{\lambda} \tilde{\lambda}_{s \pi} \tilde{\lambda}^{-1}\right)\left(\lambda_{t} \times \lambda_{t}\right)\left(\tilde{\lambda} \tilde{\lambda}_{s \pi} \tilde{\lambda}^{-1}\right)^{-1}=\lambda_{t} \times \lambda_{t}$ for any $t \in \mathbf{R}$ and for all $\mathbf{s} \in[0,1]$.

Proof. This is a trivial application of Lemma 3.1 (i). Next let $J_{n}^{2} \subset C$ be the square $[-1,1]^{2}$. For fixed $k>1$, define

$$
\begin{aligned}
& \alpha, \theta: J_{1}^{2} \times J_{2}^{2} \times \cdots \rightarrow J_{1}^{2} \times J_{2}^{2} \times \cdots \text { by } \\
& \alpha=\lambda_{2 \pi / k} \times \lambda_{2 \pi / k} \times \cdots \text { and } \\
& \theta\left(z_{1}, z_{2}, \cdots\right)=\left(z_{2}, z_{1}, z_{4}, z_{3}, \cdots\right)
\end{aligned}
$$

Lemma 3.3. There is a path $\left\{\theta_{t}\right\}$ in $G(Q)$ such that $\theta_{0}=i d, \theta_{1}=\theta$, each θ_{t} fixes $0=(0,0, \cdots)$, and $\theta_{t} \alpha \theta_{t}^{-1}=\alpha$ for all $0 \leq t \leq 1$.

Proof. By Lemma 3.2 there is a path $\left\{\phi_{S}=\tilde{\lambda} \tilde{\lambda}_{s \pi} \tilde{\lambda}^{-1}\right\}$ in $G(C \times C)$ such that $\phi_{0}=i d, \phi_{1}\left(z_{1}, z_{2}\right)=\left(z_{2}, z_{1}\right)$ and $\phi_{s}\left(\lambda_{2 \pi / k} \times \lambda_{2 \pi / k}\right) \phi_{s}^{-1}=\lambda_{2 \pi / k} \times \lambda_{2 \pi / k}$ for all $s \in[0,1]$. Now apply $\left\{\phi_{s}\right\}$ to each pair $\left(J_{2 n-1}, J_{2 n}\right), n \geq 1$.

Section 4

In this section we establish the main technical lemmas. As in section 2 , we write $Q=J_{1}^{2} \times J_{2}^{2} \times \cdots$, where $J_{n}^{2} \subset C$. Let $\alpha, \theta: Q \rightarrow Q$ be defined as in section 3. If $f: X \rightarrow X$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Y}$ are maps, we define a map of pairs $\phi:(\mathrm{X}, \mathrm{f}) \rightarrow(\mathrm{Y}, \mathrm{g})$ to be a map $\phi: X \rightarrow Y$ satisfying $\phi \cdot f=g \cdot \phi$. For any $\beta \in G_{k}(Q)$,
let $H: Q \times[0,1] \rightarrow Q \times[0,1]$ be the isotopy joining α to β as described in the proof of Lemma 2.1. Denote $M=Q \backslash\{0\}$, $H_{0}=\left.H\right|_{M \times[0,1]}, M_{t}=M \times\{t\}, \alpha_{0}=\left.\alpha\right|_{M_{0}}$ and $\beta_{1}=\left.\beta\right|_{M_{1}}$.

Lemma 4.1. For any map $\mathrm{g}:\left(\mathrm{M}_{1}, \beta_{1}\right) \rightarrow\left(\mathrm{M}_{0}, \alpha_{0}\right)$, there is a retraction $G:\left(M \times[0,1], H_{0}\right) \rightarrow\left(\mathrm{M}_{0}, \alpha_{0}\right)$ such that $\left.G\right|_{\mathrm{M}_{1}}=\mathrm{g}$.

Remark. As a consequence of the contruction, G_{0} actually depends continuously on g.

Proof. We adopt the notation as in the proof of Lemma 2.1 where we identify $M \times[0,1]$ as $M \times(R \cup\{-\infty, \infty\})$. We also let $h_{t}=\left.H_{0}\right|_{\dot{M}_{t}}$. To begin, define $\left.G\right|_{M_{-\infty}}=i d$ and $\left.G\right|_{M_{\infty}}=g$ and for integer $n \geq 0$, define $g_{n}=\left.G\right|_{M_{n}}: M_{n} \rightarrow M_{-\infty}$ by

$$
\begin{aligned}
& g_{n}\left(x_{1}, \cdots, x_{n+1}, y_{1}, x_{n+2}, y_{2}, \cdots, n\right) \\
& \quad=\left(x_{1}, \cdots, x_{n+1}^{\prime}, y_{1}, x_{n+2}^{\prime}, y_{2}, \cdots,-\infty\right),
\end{aligned}
$$

where $\left(x_{1}, \cdots, x_{n+1}, y_{1}, x_{n+2}, y_{2}, \cdots\right) \in J_{1}^{2} \times J_{2}^{2} \times \cdots$ and

$$
\left(x_{1}, x_{2}^{\prime}, \cdots\right)=g\left(x_{1}, x_{2}, \cdots\right) .
$$

Similarly, for $-\mathrm{n}<0$, define

$$
\begin{aligned}
& g_{-n}\left(y_{1}, \cdots, y_{n}, x_{1}, y_{n+1}, x_{2}, \cdots,-n\right) \\
& \quad=\left(y_{1}, \cdots, y_{n}, x_{1}^{\prime}, y_{n+1}, x_{2}^{\prime}, \cdots,-\infty\right) .
\end{aligned}
$$

The map of g_{n} clearly satisfies (A) $g_{n} h_{n}=\alpha_{0} g_{n}$, and thus, is a map of $\left(M_{n}, h_{n}\right)$ into $\left(M_{-\infty}, \alpha_{0}\right)$. Next we shall define $g_{n-t}=$ $\left.G\right|_{M_{n-t}}: M_{n-t} \rightarrow M_{-\infty}$ for $0 \leq t \leq 1$. But first, for any integer n, let $\{\theta|n|, t\}_{0 \leq t \leq l}$ be given as in the proof of Lemma 2.1. By Lemma 3.3 we may choose $\{\theta|n|, t\}$ to satisfy (B) ${ }^{\theta}|n|, t^{-1} \cdot \alpha_{0} \cdot \theta|n|, t=\alpha_{0}$ for all t. We then observe that ${ }^{\theta}|n|, t$ can be regarded as a homeomorphism of M_{n} onto M_{n-t}. Now we define (C) $g_{n-t}={ }^{\theta}|n|, t^{g_{n}}{ }^{\theta}|n|, t^{-1}$. We assert that $g_{n-t} \cdot h_{n-t}=\alpha_{0} \cdot g_{n-t}$. To prove this, we have

$$
\begin{align*}
& \alpha_{0} \cdot g_{n-t}=\alpha_{0} \cdot \theta|n|, t^{\bullet} \cdot g_{n} \cdot \theta|n|, t^{-1} \\
& \text { (B) } \\
& \stackrel{\theta}{ }|n|, t^{\cdot \alpha_{0}} \cdot g_{n} \cdot \theta|n|, t^{-1} \\
& \stackrel{(A)}{=}{ }^{(n \mid, t} \cdot g_{n} \cdot h_{n} \cdot \theta|n|, t^{-1} \tag{A}\\
& \stackrel{(C)}{=} g_{n-t^{\theta}}|n|, t^{\cdot h_{n}} \cdot \theta|n|, t^{-1} \\
& =g_{n-t} \cdot h_{n-t} . \tag{*}
\end{align*}
$$

Finally it is routine to verify that, when putting all the levels $\left\{h_{t}\right\}$ together, we get a retraction G as required.

For the next lemma, let G be as above and let $G^{\prime}:\left(M \times[0,1], H_{0}\right) \rightarrow\left(M \times[0,1], \alpha_{0} \times i d\right)$ be defined by $G^{\prime}(x, t)=(G(x, t), t)$. Denote $\left.G^{\prime}\right|_{M_{t}}=g_{t}^{\prime}$.

Two maps $\phi_{0}, \phi_{1}:(X, f) \rightarrow(Y, g)$ are homotopic if there is a homotopy of maps $\phi_{t}:(X, f) \rightarrow(Y, g)$ joining ϕ_{0} to ϕ_{1}.

Lemma 4.2. Given the data above, suppose $g:\left(M_{1}, \beta_{1}\right) \rightarrow$ $\left(\mathrm{M}_{0}, \alpha_{0}\right)$ and $\mathrm{f}:\left(\mathrm{M}_{0}, \alpha_{0}\right) \rightarrow\left(\mathrm{M}_{1}, \beta_{1}\right)$ are maps such that fg is homotopic to the identity in $\left(\mathrm{M}_{1}, \beta_{1}\right)$ by $\left\{\phi_{\mathrm{t}}\right\}$. There is, then, a Level-preserving map $F:\left(M \times[0,1], \alpha_{0} \times i d\right) \rightarrow$ $\left(\mathrm{M} \times[0,1], \mathrm{H}_{0}\right)$, such that $\left.\mathrm{F}\right|_{\mathrm{M}_{0}}=\mathrm{id},\left.\mathrm{F}\right|_{\mathrm{M}_{1}}=\mathrm{f}$ and $\mathrm{F} \cdot \mathrm{G}^{\prime}$ is rever preservingly homotopic to the identity in ($\mathrm{M} \times[0,1], \mathrm{H}_{0}$).

Proof. Again as in section 2 we regard $[0,1]$ as $R \times\{-\infty, \infty\}$ and adopt the notations established in Lemma 4.l. Denote

$$
f\left(x_{1}, x_{2}, \cdots,-\infty\right)=\left(x_{1}^{\prime}, x_{2}^{\prime}, \cdots,+\infty\right)
$$

Define, for $n \geq 0, f_{n}=\left.F\right|_{M_{n}}:\left(M_{n}, \alpha_{0}\right) \rightarrow\left(M_{n}, h_{n}\right)$ by

$$
\begin{aligned}
& f_{n}\left(x_{1}, \cdots, x_{n+1}, y_{1}, x_{n+2}, y_{2}, \cdots, n\right) \\
& \quad=\left(x_{1}^{\prime}, \cdots, x_{n+1}^{\prime}, y_{1}, x_{n+2}^{\prime}, y_{2}, \cdots, n\right)
\end{aligned}
$$

and for $-\mathrm{n}<0$

$$
\begin{aligned}
& f_{-n}\left(y_{1}, \cdots, y_{n}, x_{1}, y_{n+1}, x_{2}, \cdots,-n\right) \\
& \quad=\left(y_{1}, \cdots, y_{n}, x_{1}, y_{n+1}, x_{2}^{\prime}, \cdots,-n\right) .
\end{aligned}
$$

Recall that $g_{n}^{\prime}=\left.G^{\prime}\right|_{M_{n}}:\left(M_{n}, h_{n}\right) \rightarrow\left(M_{+n}, \alpha_{0}\right)$. We assert that $f_{n} \cdot g_{n}^{\prime}$ is homotopic to id in $\left(M_{n}, h_{n}\right)$. To see this suppose $\mathrm{n} \geq 0$. By definition

$$
\begin{aligned}
& f_{n} \cdot g_{n}^{\prime}\left(x_{1}, \cdots, x_{n+1}, y_{1}, x_{n+2}, y_{2}, \cdots, n\right) \\
& \quad=\left(\tilde{x}_{1}, \cdots, \tilde{x}_{n+1}, y_{1}, \tilde{x}_{n+2}, y_{2}, \cdots, n\right),
\end{aligned}
$$

where $\left(\tilde{x}_{1}, \tilde{x}_{2}, \cdots\right)=f \cdot g\left(x_{1}, x_{2}, \cdots\right)$. Since $f \cdot g$ is homotopic to id in $\left(M_{1}, \beta_{1}\right)$, by definition of $h_{n}, f_{n} \cdot g_{n}^{\prime}$ is homotopic to id in $\left(M_{n}, h_{n}\right)$. The case for $-n<0$ is similar.

Now let $\left\{\phi_{t}\right\}$ denote a homotopy in $\left(M_{n}, h_{n}\right)$ so that $\phi_{0}=i d$ and $\phi_{1}=f_{n} \cdot g_{n}^{\prime}$. At any level $n-t, 0 \leq t \leq 1$, define $f_{n-t}=\left.F\right|_{M_{n-t}}: M_{n-t} \rightarrow M_{n-t}$ by

$$
\mathrm{f}_{\mathrm{n}-\mathrm{t}}=\theta|\mathrm{n}|, \mathrm{t}^{\cdot \mathrm{f}_{\mathrm{n}} \cdot \theta}|\mathrm{n}|, \mathrm{t}^{-1}
$$

We assert
(1) $h_{n-t} \cdot f_{n-t}=f_{n-t} \cdot \alpha_{0}$ and
(2) $f_{n-t} \cdot g_{n-t}^{\prime}$ is homotopic to id in $\left(M_{n-t}, h_{n-t}\right)$.

To see (1), $h_{n-t} \cdot f_{n-t}=h_{n-t} \cdot \theta|n|, t^{\cdot f_{n}} \cdot \theta|n|, t^{-1}$
$={ }^{\theta}|n|, t^{\cdot h_{n}} \cdot f_{n} \cdot \theta|n|, t^{-1}={ }^{\theta}|n|, t^{\cdot f_{n}} \cdot{ }^{\prime} \alpha_{0} \cdot \theta|n|, t^{-1}$
$=\left(\theta|n|, t^{\cdot f_{n}} \cdot \theta|n|, t^{-1}\right)\left(\theta|n|, t^{\cdot \alpha_{0}}{ }^{\cdot \theta}|n|, t^{-l}\right)=f_{n-t}{ }^{\cdot \alpha_{0}}$. To
see (2), define a homotopy $\left\{\gamma_{s}\right\}$ of M_{n-t} into itself by

$$
\begin{aligned}
\gamma_{1}= & \theta|n|, t^{\cdot \phi_{1}} \cdot \theta|n|, t^{-1}=\theta|n|, t^{\cdot f_{n}} \cdot g_{n}^{\prime} \cdot \theta|n|, t^{-1} \\
= & \theta|n|, t^{(\theta}|n|, t^{-1} \cdot f_{n-t} \cdot \theta|n|, t^{(\theta}|n|, t^{-1} \cdot g_{n-t}^{\prime} \\
& \cdot{ }^{\prime}|n|, t^{\prime \theta}|n|, t^{-1} \\
= & f_{n-t} \cdot g_{n-t}^{\prime}
\end{aligned}
$$

Furthermore, for any $s \in[0,1]$,

$$
\begin{aligned}
& h_{n-t} \cdot \gamma_{s}=\left(\theta|n|, t^{\cdot h_{n}} \cdot \theta|n|, t^{-1}\right)\left(\theta|n|, t^{\cdot \phi_{s}} \cdot \theta|n|, t^{-1}\right) \\
& =\theta|n|, t^{\cdot h_{n}} \cdot \phi_{s} \cdot \theta|n|, t^{-1} \\
& =\theta|n|, t^{\cdot} \phi_{s} \cdot h_{n} \cdot \theta|n|, t^{-1} \\
& =\left({ }^{\theta}|n|, t^{\cdot \phi_{S}} \cdot{ }^{\cdot \theta}|n|, t^{-l}\right)\left(\theta|n|, t^{\cdot h_{n}} \cdot \theta|n|, t^{-l}\right) \\
& =\gamma_{s} h_{n-t} .
\end{aligned}
$$

So $\left\{\gamma_{s}\right\}$ is a homotopy in $\left(M_{n-t}, h_{n-t}\right)$ between $f_{n-1} g_{n-1}^{\prime}$ and id. This proves assertion (2).

5. Proof of the Theorem

Without loss of generality, we may assume β_{0} is the map $\alpha=\lambda_{2 \pi / k} \times \lambda_{2 \pi / k} \times \cdots$ as defined in section 3 . Let
$H: Q \times[0,1] \rightarrow Q \times[0,1]$ be the l.p. homeomorphism given in the proof of Lemma 2.1. Denote $H_{0}=\left.H\right|_{M \times[0,1]}$ where $M=Q \backslash\{0\}$. We shall continue to employ the notations established previously.

Imbed E into $E \times[0,1]$ by $i: e \rightarrow(e, p(e))$ and let $p^{\prime}: E \times[0,1] \rightarrow[0,1]$ be the projection map. We assert that there is a f.p. retraction of $E \times[0,1]$ onto $i(E)$. Since p^{\prime} is a Hurewicz fibration, so is $\left.p^{\prime}\right|_{i(E)}$ and hence p.

Let us now prove the assertion. The Q-manifolds $p^{-1}(0)=M_{0} / \alpha_{0}$ and $p^{-1}(1)=M_{1} / \beta_{I}$ are Eilenberg-Maclane spaces of type $\left(Z_{k}, 1\right)$. Hence there is a homotopy equivalence $f_{*}: p^{-1}(0) \rightarrow p^{-1}(1)$. Let $g_{*}: p^{-1}(1) \rightarrow p^{-1}(0)$ be a homotopy inverse of f_{*}. f_{*} and g_{*} induce maps $f:\left(M_{0}, \alpha_{0}\right) \rightarrow\left(M_{1}, \beta_{1}\right)$ and $g:\left(M_{1}, \beta_{1}\right) \rightarrow\left(M_{0}, \alpha_{0}\right)$ such that $\mathrm{f} \cdot \mathrm{g}:\left(M_{1}, \beta_{1}\right) \rightarrow\left(M_{1}, \beta_{1}\right)$ is homotopic to id in $\left(M_{1}, \beta_{1}\right)$. Denote such a homotopy by $\left\{\phi_{t}\right\}$. Now let $G:\left(M \times(0,1], H_{0}\right) \rightarrow\left(M_{0}, \alpha_{0}\right)$ and $G^{\prime}:\left(M \times[0,1], H_{0}\right) \rightarrow$ ($\left.M \times[0,1], \alpha_{0} \times i d\right)$ be the maps described in section 4 and let $F:\left(M \times[0,1], \alpha_{0} \times i d\right) \rightarrow\left(M \times[0,1], H_{0}\right)$ be the
level-preserving map given by Lemma 4.2. We have the following properties:
(1) $\left.G\right|_{M_{l}}=g$
(2) $\left.F\right|_{M_{0}}=i d,\left.F\right|_{M_{l}}=f$ and
(3) $\mathrm{F} \cdot \mathrm{G}^{\prime}$ is l.p. homotopic to id in $\left(\mathrm{M} \times[0,1], \mathrm{H}_{0}\right)$ by $\left\{\gamma_{t}\right\}$.
Passing to the orbit spaces, G, G^{\prime}, F and $\left\{\gamma_{t}\right\}$ induce $\operatorname{maps} G_{\star}: E \rightarrow p^{-1}(0), G_{\star}^{\prime}: E \rightarrow p^{-1}(0) \times[0,1], F_{\star}: p^{-1}(0) \times$ $[0,1] \rightarrow E$ and a f.p. homotopy $\gamma_{S}^{*}: E \rightarrow E$ between $F_{\star} \cdot G^{\prime}$ and id where $\gamma_{0}^{*}=F_{*} G_{*}^{\prime}$ and $\gamma_{1}^{*}=i d$. Define a map

$$
q:(E \times[0,1] \times\{0\}) \cup(i(E) \times[0,1]) \rightarrow i(E)
$$

by

$$
\begin{aligned}
& q(x, t, 0)=\left(i\left(F_{\star}\left(G_{\star}(x), t\right)\right), 0\right) \text { for } \\
& (x, t, 0) \in E \times[0,1] \times\{0\}
\end{aligned}
$$

and

$$
q\left(i\left(x_{t}\right), s\right)=\left(i\left(\gamma_{s}^{*}\left(x_{t}\right)\right), s\right) \text { where } x_{t} \in p^{-1}(t)
$$

We verify easily that q is well-defined and $\left.q\right|_{i(E) \times\{1\}}=i d$. We wish to extend q fiber-preservingly (preserving the middle-coordinates) to all of $\mathrm{E} \times[0,1] \times[0,1]$. If q^{\prime} is such an extension, then the restriction $\left.q^{\prime}\right|_{E \times\{0,1] \times\{1\}}$ is a fiber-preserving retraction of $\mathrm{E} \times[0,1]$ onto $\mathbf{i (E)}$. The usual techniques of homotopy extension imply that we need only to extend q fiber-preservingly to a neighborhood of $A=(E \times[0,1] \times\{0\}) \cup(i(E) \times[0,1])$ in $E \times[0,1] \times[0,1]$. To achieve this it is sufficient to construct a neighborhood N of A which fiber-preservingly retracts onto A . Since the obit maps $M \times[0,1]+E$ and $M \times\{t\} \rightarrow p^{-1}(t)$ are covering maps, each a $\in A$ has either a local fiber-collared or
fiber-bi-collared neighborhood in $\mathrm{E} \times[0,1] \times[0,1]$. The usual proofs of M. Brown that locally collared (or bicollared) implies collared (or bi-collared) apply equally well in the fibered case (see, for example, [R]). So N exists and the proof of the theorem is complete.

References

[B-W] I. Berstein and J. E. West, Based free compact lie group actions on Hilbert cubes, preprint.
[C-F] T. A. Chapman and S. Ferry, Hurewicz fiber maps with ANR fibers, preprint.
[E-H] D. A. Edwards and H. M. Hastings, Cech and Steenrod homotopy theories with applications to geometric topology. Lecture notes in Math. \#542. Springer (1976).
[L] Vo-Thanh-Liem, Factorizations of free finite group actions on compact Q-manifolds, preprint.
[R] T. B. Rushing, Topological Embeddings, Academic Press, 1973.
[We] J. E. West, Induced involutions on Hilbert cube hyperspaces, preprint.
$\left[W_{1}\right]$ R. Y. Wong, On homeomorphisms of certain infinitedimensional spaces, Tran. AMS 128 (1967), l48-154. $\left[W_{2}\right]$ \qquad , Periodic actions on the Hilbert cube, Fund. Math. 85 (1974), 203-210.

University of California Santa Barbara
Santa Barbara, California 93106

