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CYCLIC GROUP ACTIONS ON Q AND
HUREWICZ FIBRATION

Raymond Y. Wong*

Section 1

For a compact metric space X, let G(X) be the space of
self-homeomorphisms of X with the supremum metric. Let Q
denote the Hilbert cube H:=l Ji’ Ji = [-1,1] and let
Gk(Q) c G(Q) denote the subspace consisting of all period k
homeomorphisms, k > 1, each having a unique fixed point
0 = (0,0,**+). 1In this paper we show that every B € Gk(Q)
is joined to the standard action o by a path A in Gk(Q)’
and that it induces a Hurewicz fibration p: E + [0,1] with
E a Q-manifold and the fibers p_l(t) being the orbit spaces

of the non-degenerate orbits of A(t). The formulation is

motivated by the following theorem of Chapman-Ferry:

Theorem ([C-F1). Let p: E + [0,1] be a Hurewicsz fiber
map with E a Q-manifold. If the fibers p_l(t) are compact

Q-manifolds, then p is a trivial bundle map.

To state our result more precisely, consider a map
A: [0,1) ~ Gk(Q). A induces a level-preserving (l.p.)
homeomorphism H: Q x [0,1] +~ Q x [0,1] by HIQx{t} = A(t).
Let E denote the orbit space of non-degenerate orbits of H

and let Et c E be the orbits at level t. Define p: E » [0,1]

by p(Et) = t.

*
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Theorem. Given any BO’Bl € Gk(Q), there is a path
A: [0,1] - G (Q) Jjoining BO,Bl such that p: E » [0,1] is a

Hurewicz fibration.

The general question concerning cyclic group actions on
Q is whether BO is necessarily conjugate to Bl; that is,
whether there is an h € G(Q) such that Bl = hBOh_l. If we

are able to assert that p is in fact a trivial bundle map,

R

then it implies E,y E, ("=" means homeomorphic to) which

1
then shows that BO,Bl are conjugate. The last assertion,
unfortunately, is not yet known. A partial solution was
given in [W2] where it was shown that the answer is yes when
restricted to the cyclic actions which have a basis of con-
tractible, invariant neighborhoods about the fixed point.
Other results which generalized those of [W2] are given in
[B-We] and [E-H]. 1In [We] a non-trivial action in Hilbert
cube hyperspace was shown to satisfy the criterion in [W2]

and in [L], it is demonstrated that free finite group actions
on compact Q-manifolds can be factored into actions on finite
dimensional manifolds.

Theorem 1(3) of [C-F] and our theorem implies

Corollary. The composition peproj: E x [0,1) - E » [0,1]

i8 a trivial bundle map.

Notation. Composition of two maps f and g is denoted

either by gf or g-f.

2. A Canonical Isotopy in Gk (Q

In this section we show that any two members a,B in

Gk(Q) can be canonically joined by a path in Gk(Q). Let



TOPOLOGY PROCEEDINGS Volume 2 1977 311

C(I,Gk(Q)) denote the space of maps (sup metric) of

I = [0,1] into Gk(Q).

Lemma 2.1. Fix any a € Gk(Q). There is a map
e Gk(Q) - C(I,Gk(Q)) such that for any B, v(B)(0) = a,
u(B) (1) = B.
Proof. Given any B € Gk(Q), we shall construct a path
from 8 to a in Gk(Q) by exhibiting a level-preserving (l.p.)
haomeomorphism H: Q x [0,1] - Q x [0,1] such that each
= € = = 1 -
hy Hle{t} G (Q), hy = a, h; = B and H depends continu
ously on B. To simplify notation we shall construct a l.p.
homeomorphism of Q X R* onto itself, where R* = R | {-w,o}
and then reparametrize R* to [0,1].
We write Q as J2 X J2 X es+, where J2 = [-l,l]2. For
. . 2
points (x;,X,,°**), (yl,yz,--~) in 9, x;,y; € J%, denote
(x]/x5,%++) = B(x;,X,,°+*) and
(y]'.,yz".oo) = a(yl,yz’oo-).
First we define hn at level n by
S RS SR TR Y e e T SR S TL e P TARAY
for n > 0, and
h_n(yll/..'lynlxllyn_'_llle"') = (Yi,"',Y;IIX:'L,Y;H_l,Xé,"')
for -n < 0. Let
s e = ! L )
hm(xl,xz, ) (xllxél )
and
ces) = Yoyl e
h_m(yl,yz, ) (YlIYZI ).

Next we define hn for 0 < t < 1. For any integer n define

-t
. . th th

elnl € G{Q) by interchanging the (|n] +1) and (|n] + 2)

coordinates, and in general, ({n] + 2j—l)th and (|n| + 2j)th

coordinates, 3 = 1,2,°°-.
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By [Wl] Gl is isotopic to the identity in G(Q) and

In|

the isotopy fixes the point (0,0,-.+) and leaves the first

|n| coordinates of each point unchanged. Denote such an

isotopy by {e|n|,t}0itil with eInI,O = id, and e|n],l = elnl.
Define
(*) h__ =6 h o7l
n-t [n|,t ' n” |n|,t"
Then {hn—t}Oitil induces a path in Gk(Q) between hn an@ hn-l'

Putting all the {hn_t} together we get a l.p. homeomorphism
H: Q x R* » Q0 x R* such that h_ = o and hoo = B. Finally,
the dependency of H on B follows trivially from the construc-

tion.

Section 3

In this section we establish lemma 3.3 which will be
used in section 4. For any t € R, let Xt denote the "square"
rotation of the complex space C in the sense that, by writing
C as the union of concentric squares (with center 0 and sides
parallel to the coordinate axes), each point z travels to the

point 2' along the unique square to which it belongs, and

that Arg z' = Arg z + t. Denote Aﬂ/4 by A. Define
Xt Cx C+Cx Cvy
» = 1 ' 1 t
X((Xl,yl),(xzryz)) ((Xllyl)l(leyz))
Xt = Xt x id,
where
p— L 1 P
(x{,x3) = A(x ,x,) and (y{,¥3) = Ay eY,)-
Lemma 3.1. (%) X'l(xt X xt)i = Ay X A, for all t € R
e S _
and (ii) X kﬂk(zl,zz) = (22’21)'

Proof. The proof is a result of routine computation and

will be omitted.
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Remark. Intuitively the justification for concluding
(ii) is as follows: The map (xl,xz) > (x2,xl) is a result
of (a) applying X to the point (xl,xz), (b) following by the
reflexion y across the y-axis ((x,y) = (-x,y)) and (c)

applying A—l to the image Y°A(xl,x2).

Using the data above we obtain

33 x=li-1 _
x A (RR X778 = A % a

>y -1
Lemma 3.2. (AAS“A )(>\t

for any t € R and for all s € [0,1].
Proof. This is a trivial application of Lemma 3.1 (i).
Next let Ji < C be the square [—l,l]2. For fixed k > 1,

define

2 2 2 2
o,8: Jli2 X eoe +Jli2x s+« by

a = X e+e+ and

Mnsk X Mok
e(zl,zz,---) = (22,21,24,23,---).

Lemma 3.3. There is a path {Gt} in G{(Q) such that

. . -1
60 = id, 91 = 8, each Gt fizes 0 = (0,0,++¢), and Gtaet = q
for all 0 < t < 1.

Proof. By Lemma 3.2 there is a path {¢_ = Xisﬂi_l} in

G(( x () such that by = id, ¢l(zl,22) = (22'21) and

-1 _
¢s(A2n/k x A2n/k)¢s = Azn/k x Azn/k for all s € [0,1]. Now

apply {¢s} to each pair (J2n—l'J2n)’ n > 1.

Section 4

In this section we establish the main technical lemmas.

As in section 2, we write Q = Ji X Jg X see, where Jﬁ c C.

Let a,0: Q + Q be defined as in section 3. If f: X - X and
g: Y + Y are maps, we define a map of pairs ¢: (X,f) -+ (Y,q)

to be a map ¢: X +» Y satisfying ¢*f = g+¢. For any B € Gk(Q),
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let H: 0 x [0,1] » Q x [0,1] be the isotopy joining o to B
as described in the proof of Lemma 2.1. Denote M = Q\{0},

H, = H|

0

=M x {t}, aj = alMo and B; = BIMl-

Mx[0,1]1’ Mt

Lemma 4.1. For any map g: (Ml,Bl) > (Mo,ao), there is
a retraction G: (M x [0,1],Hy) > (My,ay) such that G]Ml = g.

Remark. As a consequence of the contruction, G, actually

0

depends continuously on g.
Proof. We adopt the notation as in the proof of Lemma
2.1 where we identify M x [0,1] as M x (R U {-=,=}). We also

let h, = H To begin, define G| = id and G| = g and

ols, -
for integer n > 0, define g = GIMn: M > M__ by
CANCSTARANE SRR SN NPT PYRRANE Y

= (xl'..-’xr'1+1,y1,x;l+2'y2,-.-,_m)'

2 2
where (Xl’°°°’xn+l’y1’xn+2’y2" ) € Jl X J2 X and

1 * e 0 = o e
(x],%5, ) gixy,%x,, ).
Similarly, for -n < 0, define

g—l’l(yl’.. .Iynl xllyn+11x21"'1_n)

e, —)

= (Yl,"'lynrx]l_ryn_'_lrxér' ]

The map of 9, clearly satisfies (A) gnhn = a9, and thus, is
a map of (Mn,hn) into (M_m,ao). Next we shall define It =

GIMn_t: M _, *M_ for 0 <t < 1. But first, for any integer
n, let {elnl,t}oitil be given as in the proof of Lemma

2.1. By Lemma 3.3 we may choose {elnl t} to satisfy (B)
-1 _
e|n|,t % elnl,t = a, for all t. We then observe that

Glnl can be regarded as a homeomorphism of Mn onto M

n-t°
We assert that

't

, _ -1
Now we define (C) gn—t = e|n|,tgn8(n[,t
gn—t‘hn—t = 059, g To prove this, we have
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-1
% In-t = %% n|,t" 9" %n|,t
{(B) 1
- e]n] t'ao.gn.6|nl t
(a) -1
= 6[n|,t'gn'hn.6[n|,t
(<) -1

= gn—te|n|,t.hn.6|n|,t

(*)

=g h

n-t 'n-t°
Finally it is routine to verify that, when putting all the

levels {ht} together, we get a retraction G as required.

For the next lemma, let G be as above and let
G': (M x [O,l],HO) > (M x [O,l],ot0 x id) be defined by
G'(x,t) = (G(x,t),t). Denote G']Mt = gl.

Two maps ¢o,¢l: (X,£) » (Y,g) are homotopic if there is

a homotopy of maps ¢, : (x,f) » (Y,g) joining $g to ¢;-

Lemma 4.2. Given the data above, suppose g: (Ml,sl) >
(Mo,ao) and f: (Mo,ao) - (Ml,Bl) are maps such that fg is
homotopic to the identity in (Ml,Bl) by {¢t}. There is,
then, a level-preserving map F: (M X [O,l],ot0 x id) -

(M x [O,l],HO), such that F]MO = id, F|Ml = f gnd F*G' is
level preservingly homotopic to the identity in (M x [0,1],H0).

Proof. Again as in section 2 we regard [0,1l] as
R x {-»,»} and adopt the notations established in Lemma 4.1.
Denote

f(xllle...l—w) = (Xilxél...l+w) .
Define, for n > 0, fn =

Fan: (Mn,ao) - (Mn'hn) bY

En Xy X ¥y o Xy g0 Yot e e um)

= (xil'"rx;1+llylfx;l+21y21°"ln)
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and for -n < 0

f_n(Yl,'",Yn:Xl,Yn+l,X2,"',-n)

(yll...Iynlxilyn+llxél...l_n)-

Recall that g; = G'| (M ,h)) > (M0 We assert that

Mp* o)
is homotopic to id in (Mn,hn). To see this suppose

+n

g |
fh'9n
n>0 By definition

Enran (et X g ¥ Xy p e ¥ et tem)

= (Rt Y XYttt an)y
where (§1,§2,°'-) = f-g(xl,x2,°-'). Since f+g is homotopic
to id in (Ml,Bl), by definition of hn, fn'gﬁ is homotopic to
id in (Mn,hn). The case for -n < 0 is similar.
Now let {¢t} denote a homotopy in (Mn,hn) so that

¢0 = id and ¢l = fn'g . At any level n-t, 0 < t < 1, define

]
n
oot “Fly Moot ” Mnog BY .
fr-t = e|n|,t'fn.e|n|,t .
We assert
(1) h £ =£f a5 and
o . . Lo
(2) fn-t 9, _¢ 1is homotopic to id in (Mn—t’hn—t)'
= - . . _l
To see (1), h _, ~f . =h e|n|,t fn elnlrt
= elnl,t'hn.fn'eln[,t = e|n|,t°fn°a0'e|n|,t

-1 -1, .
(elnl,t.fn'elnl,t )(elnl,t'ao'e|n|,t ) = Ehg%- TO

see (2), define a homotopy {YS} of M__, into itself by
-1 .
Yg = e[n],t.¢s'e|n|,t Then Yo = id and
= . . _l_ . . . —l
Y1 = 9], % n), ¢ T ¥nl, e th 900, e

= _l. . _l.
- e|n|,t(e|n|,t fa-t eln],t)(elnl,t In-t

“¥1nl, €% n],¢

3 . 1
fn—t gn-t

Furthermore, for any s € [0,1],



TOPOLOGY PROCEEDINGS Volume 2 1977 317

bhot'¥s = (e|n],t'hn.e|n|,;l)(e|n|,t-¢s'e|n|,;l)
= e|n|,t'hn.¢s'e]n|,;
= eln|,t.¢s'hn'e|n|,1_:l
(elnl,t.¢s'e|n|,; )(e|n],t.hn.e|n|,;l)
= Yshn-t'
So {YS} is a homotopy in (M _,.,h _.) between f _,g' ;

and id. This proves assertion (2).

5. Proof of the Theorem

Without loss of generality, we may assume BO is the map

o = x s+ ag defined in section 3. Let

Mk X Pom
H: 9 x [0,1] - Q9 x [0,1] be the l.p. homeomorphism given in

the proof of Lemma 2.1. Denote H, = H| where M = Q\{0}.

0 Mx[0,1]
We shall continue to employ the notations established previ-
ously.
Imbed E into E x [0,1] by i: e + (e,p(e)) and let
p': E x [0,1] - [0,1] be the projection map. We assert that
there is a f.p. retraction of E x [0,1] onto i(E). Since

p' 1is a Hurewicz fibration, so is p'|i( and hence p.

E)

Let us now prove the assertion. The Q-manifolds

p_l(O) = My/a, and p_l(l) = M;/B; are Eilenberg-Maclane
spaces of type (Zk,l). Hence there is a homotopy equivalence
-1 1 -1 -1

£, P (0) » p ~(l). Let g,: p (1) ~ p ~(0) be a homotopy

inverse of f,. £, and g, induce maps f: (Mo,ao) - (Ml,Bl)
and g: (Ml,Bl) - (Mo,ao) such that f-g: (Ml,Bl) - (Ml,Bl) is
homotopic to id in (Ml,Bl). Denote such a homotopy by {¢t}.

Now let G: (M X [O,l],HO) -+ (Mo,a and G': (M x [O,l],HO) -+

)
0
(M x [0,l],oc0 x id) be the maps described in section 4 and

let F: (M x [O,l],ot0 x id) » (M x [0,l],H0) be the
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level-preserving map given by Lemma 4.2. We have the follow-

ing properties:

(1) G|Ml =g
(2) FIMO = id, FIMl = f and
(3) F*G' is l.p. homotopic to id in (M x [O,l],HO) by
{Yt}
Passing to the orbit spaces, G, G', F and {Yt} induce
-1

maps Gy: E » p T(0), GL: E+ p L(0) x [0,1], Fy: p 1(0) x
[0,1] * E and a f.p. homotopy Y;: E + E between F,+G; and
id where v§ = F,G; and v} = id. Define a map

q: (E x [0,1] x {0}) U (i(E) x [0,1l]) » i(E)
by

alx,t,0) = (i(F,(G,(x),t)),0) for

(x,t,0) € Ex [0,1] x {0}

and

1

q(i(xt),s) = (i(Y;(xt)),s) where X, € p— (t).

We verify easily that g is well-defined and qli(E)X{l} = id.
We wish to extend g fiber-preservingly (preserving the
middle-coordinates) to all of E X [0,1] x [0,1). TIf g' is
such an extension, then the restriction qllEX[O,l]X{l} is a
fiber-preserving retraction of E X [0,1l] onto i(E). The
usual techniques of homotopy extension imply that we need
only to extend g fiber-preservingly to a neighborhood of
A= (E x [0,1] x {0}) U (i(E) x [0,1]) in E x [0,1] x [O0,1].
To achieve this it is sufficient to construct a neighborhood
N of A which fiber-preservingly retracts onto A. Since the
obit maps M x [0,1] + E and M x {t} - p_l(t) are covering

maps, each a € A has either a local fiber-collared or
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fiber-bi-collared neighborhood in E x [0,1] x [0,1]. The
usual proofs of M. Brown that locally collared (or bi-
collared) implies collared (or bi-collared) apply equally
well in the fibered case (see, for example, [R]). So N

exists and the proof of the theorem is complete.
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