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ORDERED SPACES WITH
s-MINIMAL BASES

H. R. Bennett and D. J. Lutzer

1. Introduction

A collection ( of subsets of X is minimal or irreducible
if each C € ( contains a point x(C) belonging to no other
member of (. Thus ( is irreducible if and only if
ud ; U ( whenever J ; (. (It is crucial to note that
U { = X is not required in this definition.) A collection
which is the union of countably many minimal collections is
said to be o-minimal.

Recall that a space X is quasi-developable if there is
a sequence {§(n)) of open collections (not necessarily covers)
in X such that if U is open and p € U then for some n,
p € St(p,%(n)) cU. 1In [BL] the authors obtained a result
from which it follows that every quasi-developable space has
a o-minimal base for its topology. C. E. Aull [Au] initiated
the study of o-minimal bases in their own right; in particular
he asked about conditions under which a space with a g-minimal
base must be quasi-developable.

This paper grew out of the surprising observation by
Bennett and Berney [BBl] that the lexicographic square S has
a o-minimal base. That example illustrates how disparate are
the notions of a quasi-development and a o-minimal base. More
precisely, the example shows simultaneously that (1) a space
can be compact, Hausdorff, have a o-minimal base and yet may

fail to be metrizable; and (2) that the existence of a
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o-minimal base is not a closed-hereditary property. Both of
these assertions follow from the fact that the Alexandroff
"double-arrow" space A (i.e., the top and bottom edges of the
square S) is a hereditarily LindelSf and yet non-metrizable
(closed) subspace of S whence A cannot have a o-minimal base
[Au].

In this paper we study the structure of ordered spaces
having o-minimal bases. Recall that a linearly ordered
topological space (LOTS) is a linearly ordered set equipped
with the usual open interval topology. By a generalized
ordered space (GO space) we mean a linearly ordered set
equipped with a Tl-topology having a base whose members are
convex. It is known that the class of GO spaces coincides
with the class of (closed) subspaces of LOTS [Ll, 2.9]. As
usual, we conduct our study in the class of GO spaces when-
ever possible.

At several points in our paper we will need to invoke
theorems from the literature. For the sake of completeness

we list them here.

1.1 Theorem [EL]. A GO space X is not hereditarily
paracompact i1f and only if some subspace of X is homeomorphic

to a stationary subspace of a regular uncountable cardinal.l

Recall that a completely regular space X is a p-space

[Ar] if there is a sequence (g(n)) of collections of open

1A cardinal is an initial ordinal and is identified with
the set of all ordinals which precede it. Thus we write w)]
for [o,w1[. A cardinal k is regular if it is not the sum of
fewer, smaller cardinals. A subset S of a cardinal « is
stationary if S N C # ¥ whenever C is a cofinal subset of «
which is closed in the usual topology of k.
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subsets of Bx (equivalently, in any compactification of X)
such that if p € X then n{St(p,§(n))|n > 1} < X where

st(p,4(n)) = U{G € G(n)|p ¢ G}.

1.2 Theorem [Bl]' A completely regular space X is
metrizable if and only if X is a quasi-developable paracompact

p-space.

1.3 Theorem [vW]. 4 LOTS having a o-diescrete dense

subspace is a paracompact p-space.

1.4 Pressing Down Lemma. Let S be a stationary subset
of a regular uncountable cardinal « and let f: S + « satisfy
f(x) < x whenever x € S - {0}. Then for some y € «k, f-l[{Y}]

18 a stationary subset of k.

1.5 Theorem [B2]. A space X is metrizable if and only
if X 1e collectionwise normal, quasi-developable and has the

property that every closed subset of X is a Gd—set.

We will use the symbol |S| to denote the cardinality of
a set S. Our notation and terminology for ordered spaces
will follow that of [Ll]. For example, we write ]p,ql[ =
{x € X|p < x < c} and 1p,+[ = {x € X|p < x}. Let N denote

the set of natural numbers.

2. Ordered Spaces Having o'-Minimal Basges

It is well known that the lexicographic square, cited
in the Introduction as being a pathological ordered space
having a o-minimal base, is hereditarily paracompact. That

is no accident, as our first result shows.
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2.1 Theorem. Any generalized ordered space having a
o-minimal base is hereditarily paracompact.

Proof. Let B = U{B(n): n > 1} be a o-minimal base for
X. Supposing X is not hereditarily paracompact, it follows
from Theorem (1.1l) that there is a regular uncountable cardi-
nal ¢k and a stationary subset S of k such that S is homeo-
morphic to a subspace of X. Since the homeomorphism can be
taken to be either order-preserving or order-reversing, we
may assume that § < X and that the ordering which S inherits
from X coincides with the ordering which S inherits from «.
We will use small Greek letters to denote points of S. The
supremum of S is either a point or a gap in X; in either
case, denote it by «.

Let T = {\A € S|A is a limit point of S}. Since S is
stationary in k, so is T. For each A € T, let % denote the
first element of T which is greater than A. Then for each

n 1, define T(n) = {A € T| for some B(A) € B(n),

|v

A € B(A) =] «,A[}. Because B is a base for X, T = u{T (n) |
n > 1}. Therefore the set M = {m € N|T(m) is stationary} is
nonvoid. For each m € M define a function fm: T(m) +~ S as
follows. For A € T(m) let fm(X) be the first element of S
satisfying fm(X) < A and ]fm(X),X] < B(A). Since fm is re-
gressive, the Pressing Down Lemma (1.4) guarantees that for
some B(m) € S, the set T'(m) = {X ¢ T(m)lfm(X) = g(m)} is
stationary in k. Because k has uncountable cofinality, there
is a y € S such that B(m) < y < x for each m € M.

Let R=T N [y + 1, k) and for each n > 1 let R(n) =
{A € R| some C(A) € B(n) has A € C(A\) = ]y,A[}. Then R is

stationary in k and, because 8 is a base for X,
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R = U{R(n)ln > 1}. Hence for some ng, R(no) is stationary.
Because R(no) c T(no), n, € M. Fix u € R(no) and consider

C(K). Since C(u) ¢ B(no) it is possible to find a point

p € Cc(u) such that ord(p,B(no)) 1.

Since n, € M, the stationary set T'(no) and the ordinal

B(no) exist and we may choose elements Al' AZ € T'(no) having

b < Al < Xl < AZ' Because Ai € T'(no) we have fno(Ai) =

B(ng) <y for i = 1,2 so that p € 1v,{i[ = ]fno(xi),ki]

n

B(Ai) € B(no) for i = 1,2. And since AZ € B(AZ) - B(Al),
B(Al) and B(AZ) are seen to be two distinct members of B(no)
containing p which is impossible because ord(p,B(nO)) = 1.

That contradiction completes the proof of the theorem.

2.2  Remarks. (a) The proof of Theorem (2.2) differs
from the usual proofs of paracompactness in ordered spaces
using [EL] because the property "X has a o-minimal base" is
not closed hereditary. Thus it is not sufficient to prove
that no stationary set in an uncountable regular cardinal
has a o-minimal base.

(b) There is a covering property related in the usual way

to the existence of a o-minimal base: a space X is g-irreduc-
ible if every open cover of X has a o-irreducible open re-
finement. An example due to van Douwen [vD] shows that a

LOTS can be o-irreducible and yet may fail to be paracompact
(let D be an uncountable linearly ordered set, having a first
element, which is discrete in the order topology; then the
lexicographic product w; * D is the required example.) How-
ever it is easy to see that a GO space X is paracompact if

and only if every closed subspace of X is o-irreducible;
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one utilizes Theorem (l.1l) after proving that no stationary
set in an uncountable regular cardinal can be o-irreducible.
(c) The argument in Theorem (2.2) wou;d be vastly simplified
if one knew that X had a o-minimal bagse whose elements are
convex sets. One cannot make such an assumption in the light
of a result announced by Bennett and Berney in [BBZ]’ viz.,
if a GO space X has a o-minimal base all of whose members

are convex, then X is gquasi-developable. The proof of that
fact follows from [Ll, 5.11] once it is observed that any

irreducible collection of convex sets is point-finite.

2.3 Acknowledgement. In the original version of this

paper, and in the talk presented at the L.S.U. Conference,

we asserted that any generalized ordered space having a
oc-minimal base must be first countable. That is not true,

as Dan Velleman pointed out to us. His example is a certain
subset of the‘lexicographic product @ x [O,wll, where @ is
the usual space of rational numbers; the relevant subspace is
X = {(r,0): either a is a successor or a = wl}. The authors

are grateful to Dr. Velleman for pointing out this error.

3. Metrization of LOTS and o-Minimal Bases

In this section we obtain structure theorems for certain
LOTS having o-minimal bases. Recall that a space X is per-

feet if every closed subset of X is a G We begin by pre-

5"
senting an example which shows the limits of the theory.
3.1 Ezample. There is a perfect LOTS having a o-minimal

base which is not quasi-developable.

Let D be a linearly ordered set such that (1) |D| = ¢;
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(2) D has no end points; (3) W is cofinal in D and w*, the

Ol

set w, with the reversed ordering, is coinitial with D; (4)

0
in its order topology, D is a discrete space. For example,
if k is the first ordinal with cardinality c, we could take
D to be the lexicographically ordered set
D = [[0,k) x wgl u [{k} x (0f U wyl.
Let P, Q and R be the sets of irrational, rational and
real numbers respectively. Define X to be the set
X = (0 xD) U (P x {0,1})
with the lexicographic ordering.
Let 9 be the set of all open intervals in R having both
end points rational. For each J € 9 write J = ]rJ,sJ[ and
fix a 1-1 function fJ: J - D. For each pair (q,J) where

q €0, J ¢ 9and q < r, and for each x ¢ J n P define a set

J
B(x,q,J) = (@ 0 lryx() xD u<(p nlry,x[) x {0,1Hu
u {(x,0)} u {(q,fJ(x))}.

Then B(x,q,J) is an open subset of X. Define, for each

-

J € 9 and each q € Q having g < r_, a collection 8(q,J) =

3’
{B(x,q,J)lx € P N J}. We assert that each 8(q,J) is irreduci-
ble. Fix x € P N1 J. Then (q,fJ(x)) € B(x,q,J). And if
Yy € PN Jwithy # x then £ (x) # £,(y) so that (q,f;(x)) 4
B(y,q,J), as required.

We assert that the collection 8 = y{8(q,J)|J € I and
q € Q has q < rJ} contains a base at each point (x,0) of X.
For let (x,0) € U, an open set in X. Then there is an irra-
tional number y < x such that ](y,0),(x,0)] <« U. Let J be
any element of ¢ having y < ry < x < sj. Choose any rational

q € ly,r;l. Then B(x,q,J) € B(q,J) and B(x,q,J) = 1(y,0),

(x,0)] = uU.
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An analogous construction yields a o-minimal collection
of open sets which contains a base at each point (x,1l) of X.
And finally, the collection 2 = {{(q,d)}|q € Q, d € D} is a
minimal collection which contains a base at each point of
Q x D. Therefore X has a o-minimal base.

Next X is perfect. For let V be any open set in X.
Using countable cofinality and coinitiality of D, write
D= U:=l[dn,en] where dl > d2 > e+ and e, < e, < e, For
each g € Q the set {g} x [dn’en] is a closed discrete subset
of X, so that each set F(V,q,n) =V n<{gq} x [dn’en]> is a
closed subset of X. Since V n<{Q x D) = U{F(V,q,n)|q € Q,
n > 1} we see that VN {Q X D) is an F in X. Now the sub-
space P x {0,1} of X is a part of the Alexandroff double
arrow and is therefore perfect. Hence Vv n (P x {0,1}) is an
Fo—subset of (P x {0,1}), so that because (P x {0,1}) is
closed in X, vn (P x {0,1}) is an F in X. Then, being
the union of two FO sets, V is an FO in X. Hence X is per-
fect.

Finally, X is not quasi-developable since P x {0,1} is

a non-metrizable subspace of X.

We now turn to positive results concerning LOTS having

o=-minimal bases.

3.2 Proposition. Suppose X is a perfect LOTS having
a 6-minimal base. Then X is a paracompact p-space.

Proof. Let 8 = y{B(n)|n > 1} be a o-minimal base for
X. For each B € B{(n) choose a point p(B,n) € B which belongs
to no other member of B(n). Then the set D(n) = {p(B,n) |

B € B(n)} is a relatively closed, discrete subspace of the
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open set Y fB(n). Write U B8(n) = U{F(n,k) |k > 1} where each
F(n,k) is closed in X, and let D(n,k) = D(n) N F(n,k). Then
D = U{D(n,k) |n,k > 1} is a o-discrete closed subspace of X
so that, in the light of van Wouwe's theorem (cf. 1.3), X

is a paracompact p-space.

3.3 Remarks. (a) The hypothesis in (3.2) that X is
perfect is necessary. Consider the Michael line M [M] and
the smallest LOTS M* containing M as a closed subspace
[Ll’ 2.7). It is easily seen that M* is paracompact and
quasi-developable, and therefore has a o-minimal base heredi-
tarily. Yet M* is not a p-space in the light of Theorem
(1.2) since M is a non-metrizable subspace of M¥*.

(b) Of course it is true that a GO space which is per-
fect and has a o-minimal base must also have a og-discrete
dense subspace. However, examples show that such spaces
need not be p-spaces. For example, consider the space X of
Example 3.1 and let Y = X - (P x {1}). Then Y is a perfect
GO space and Y has a o-minimal base for the same reasons that
X does. However Y cannot be a p-space because P x {0} is
a closed subspace of Y which is not a p-space ( and since
any closed subspace Y of p-space must be a p-space).

Our next result is a corollary to certain work of van
Wouwe [vW] or M. J. Faber [F]. However it is possible to

give a self-contained proof and we provide it here.

3.4 Proposition. Suppose X is a perfect, densely

ordered2 LOTS having a o-minimal base. Then X is metrizable.

’a linearly ordered set (X,<) is demsely ordered if
la,b[ # @ whenever a < b in X. For example, any connected
LOTS must be densely ordered.
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Proof. Since X is perfect and collectionwise normal
[S] by 1.5 it will be enough to show that X is quasi-develop-
able. As in Proposition 3.2 find E = y{E(n)|n > 1}, a
o-discrete dense subspace of X. We may assume that
E(n) < E(n+l) for each n > 1 and that any end points of X
are in E(1). Let 8 = y{B8(n)|[n > 1| be a o-minimal base for
X (not necessarily related in any way to the dense set E).
Since E(n) is a closed discrete subset of the collectionwise

normal space X there is a pairwise disjoint collection

V(n) {v(x)|x € E(n)} of open sets such that x € V(x) for
each x € E(n). Being perfect, X is first countable; for
each x € E(n) let {V(x,n,k)|k > 1} be a countable base of
open neighborhoods for x with V(x,n,k) < v(x) for every
x € E(n). Let {(n,k) = {V(x,n,k)|x € E(n)}. Then
u{f(n,k) |n,k > 1} is a o-disjoint collection of open subsets
of X which contains a neighborhood base at each point of E.
We now construct a o-disjoint collection which acts as
a base at points of X - E. For each m,n > 1 let §(m,n) be
the collection of all convex components of the open set
(UB(m)) - E(n). Suppose p € X - E and suppose p € U where U
is open in X. Because p % E, p is not an end-point of X so
that there are points a, b € X with a < p < b and ]a,b[ « U.
Since X is densely ordered, la,pl and ]p,bl are nonvoid open
sets so that for a suitably large n we may choose points
r € Ja,p[ n E(n) aﬁd s € ]p,bl N E(n). Fix any m for which
p € U B(m). Let G be the convex component of (U B(m)) -
E(n) which contains p. Then G < ]r,s[ < U and G € §(m,n).
Since each §(m,n) is clearly pairwise disjoint we see that

the collection (U{£(n,k)|n;k > 1}) U (u{§(m,n)|m,n > 1}) is
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a o-disjoint base for X.

The hypothesis that X is densely ordered guarantees that
there are no "jumps," i.e., pairs of consecutive points, in
X. The above theorem is valid if the jumps are not too
numerous, e.g,, if the jumps constitute a o-discrete subset

of X. Example 3.1 shows the necessity of such an assumption.

4. Open Questions

The major open questions concerning ordered spaces having
0-minimal bases are:
Suppose every closed subspace of a LOTS X has a
oc-minimal base for its relative topology; must X be
metrizable? Must X be metrizable if every subspace of
X has a o-minimal base for its topology? What if X is
allowed to be a GO space instead of a LOTS?
The reader should be warned that one may not assume that X
has a base B such that whenever Y c X the collection
{B N Y|B €8 is o-minimal; it is known that this additional
hypothesis is sufficient to guarantee quasi-developability
of X [BBZ]’ There is one relatively easy consequence of the
existence of o-minimal bases for each closed subspace of a
generalized ordered space X: such an X must be first counta-

ble. (Compare (2.3).)
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