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ORDERED SPACES WlTH 

a-MINIMAL BASES 

H. R. Bennett and D. J. Lutzer 

1. Introduction 

A collection Cof subsets of X is minimal or ippeduaible 

if each C E Ccontains a point x(C) belonging to no other 

member of C. Thus Cis irreducible if and only if 

U 0; U Cwhenever o~ C. (It is crucial to note that 

U C= X is not required in this definition.) A collection 

which.is the union of countably many minimal collections is 

said to be a-minimal. 

Recall that a space X is quasi~developable if there is 

a sequence <~(n) of open collections (not necessarily covers) 

in X such that if U is open and p E U then for some n, 

p E St(p,~(n)) c U. In [BL] the authors obtained a result 

from which it follows that every quasi-developable space has 

a a-minimal base for its topology. C. E. Aull [Au] initiated 

the study of a-minimal bases in their own right; in particular 

he asked about conditions under which a space with a a-minimal 

base must be quasi-developable. 

This paper grew out of the surprising observation by 

Bennett and Berney [BB ] that the lexicographic square S hasl 

a a-minimal base. That example illustrates how disparate are 

the notions of a quasi-development and a a-minimal base. More 

precisely, the example shows simultaneously that (1) a space 

can be compact, Hausdorff, have a a-minimal base and yet may 

fail to be metrizable; and (2) that the existence of a 



372 Bennett and Lutzer 

a-minimal base is not a closed-hereditary property. Both of 

these assertions follow from the fact that the Alexandroff 

"double-arrow" space A (i.e., the top and bottom edges of the 

square S) is a hereditarily Lindelof and yet non-metrizable 

(closed) subspace of S whence A cannot have a a-minimal base 

[Au] • 

In this paper we study the structure of ordered spaces 

having a-minimal bases. Recall that a linearly ordered 

topoZogical space (LOTS) is a linearly ordered set equipped 

with the usual open interval topology. By a generaZized 

ordered space (GO space) we mean a linearly ordered set 

equipped with a Tl-topology having a base whose members are 

convex. It is known that the class of GO spaces coincides 

with the class of (closed) subspaces of LOTS [L 2.9]. As
l

, 

usual, we conduct our study in the class of GO spaces when­

ever possible. 

At several points in our paper we will need to invoke 

theorems from the literature. For the sake of completeness 

we list them here. 

1.1 Theorem [EL]. A GO space X is not hereditarily 

paracompact if and only if some subspace of X is homeomorphic 

lto a stationary subspace of a reguZar uncountable cardinaZ. 

Recall that a completely regular space X is a p-space 

[Ar] if there is a sequence <~(n» of collections of open 

lA cardinal is an initial ordinal and is identified with 
the set of all ordinals which precede it. Thus we write WI 
for [O,Wl[. A cardinal K is regular if it is not the sum of 
fewer, smaller cardinals. A subset S of a cardinal K is 
stationary if S n C ~ .~ whenever C is a cofinal subset of K 
which is closed in the usual topology of K. 
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subsets of ax (equivalently, in any compactification of X) 

such that if p E X then n{St(p,~(n)) In > l} c X where 

St (p, ~ (n)) = U{ G E ~ (n) IPEG} . 

1.2 Theorem [B ]. A completely regular space X isl 

metrizable if and only if X is a quasi-developable paraaompaat 

p-space. 

1.3 Theorem [vW]. A LOTS having a a-discrete dense 

subspace is a paracompact p-space. 

1.4 Pressing Down Lemma. Let S be a stationary subset 

of	 a regular uncountable cardinal K and let f: S + K satisfy 

-1f(x) < x whenever xES - {Ole Then for some y E K, f [{y}] 

is a stationary subset of K. 

1.5 Theorem [B2]. A space X is metrizable if and only 

if X is collectionwise normal, quasi-developable and has the 

property that every closed subset of X is a Go-set. 

We will use the symbol lSi to denote the cardinality of 

a set S. Our notation and terminology for ordered spaces 

will follow that of [Ll ]. For example, we write ]p,q[ = 

{x E xlp < x < c} and ]p~+[ = {x E Xlp < x}. Let N denote 

the set of natural numbers. 

2. Ordered Spaces Having (J'·Minimal Bases 

It is well known that the lexicographic square, cited 

in the Introduction as being a pathological ordered space 

having a a-minimal base, is hereditarily paracompact. That 

is no accident, as our first result shows. 
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2.1 Theorem. Any generaLized ordered space having a 

a-minimaL	 base is hereditariLy paracompact.
 

Proof. Let B = u{B(n): n ~ I} be a a-minimal base for
 

X. Supposing X is not hereditarily paracompact, it follows 

from Theorem (1.1) that there is a regular uncountable cardi­

nal K and a stationary subset S of K such that S is homeo­

morphic to a subspace of X. Since the homeomorphism can be 

taken to be either order-preserving or order-reversing, we 

may assume that SeX and that the ordering which S inherits 

from X coincides with the ordering which S inherits from K. 

We will use small Greek letters to denote points of S. The 

supremum of S is either a point or a gap in Xi in either 

case, denote it by K. 

Let T {A E S\A is a limit point of S}. Since S is
 

stationary in K, so is T. For each A E T, let ~ denote the
 

~£irst element.of T which is greater than A. Then for each 

n > 1, define T(n) {A E T\ for some B(A) E B(n), 

A E B(A) c] +,~[}. Because B is a base for X, T = u{T(n) \ 

n > I}. Therefore the set M {m E N\T(m) is stationary} is 

nonvoid. For each m E M define a function f m: T(m) -+- S as
 

follows. For A E T (m) let f (A) be the first element of S
 m


satisfying fm(A) < A and ]fm(A),A] c B(A). Since f is re­
m 

gressive, the Pressing Down Lemma (1.4) guarantees that for 

some 8(m) E S, the set T' (m) = {A E T(m) \fm(A) = 8(m)} is 

stationary in K. Because K has uncountable cofinality, there 

is ayE S such that 8(m) < y < K for each m E M. 

Let R T n [y + 1, K) and for each n > 1 let R(n) 

{A E R\ some C(A) E B(n) has A E C(A) ]y,~[}. Then R isC 

stationary in K and, because B is a base for X, 
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R = U{R(n) In ~ I}. Hence for some nO' R(n ) is stationary.
O

Because R(nO) c T(nO)' nO E M. Fix ~ E R(n ) and considerO

C(~). Since C(~) E B(nO) it is possible to find a point 

p E C(~) such that ord(p,B(n )) 1.
O

Since nO E M, the stationary set T'(n ) and the ordinal
O

B(nO) exist and we may choose elements AI' A
2 

E T'(n
O

) having 

o < Al < ~I < A2 " Because Ai E T' (nO) we have fno(A i ) 

B(nO) < y for i = 1,2 so that pEl y, 0[ elf (A. ) , A. l c
nO ]. ]. 

B(A i ) E B(n ) for i 1,2. And since A E B(A ) - B(A ),
O 2 2 1 

B(A and B(A ) are seen to be two distinct members of B(n )l ) 2 O

containing p which is impossible because ord(p,B(n )) = 1.
O

That contradiction completes the proof of the theorem. 

(a) The proof of Theorem (2.2) differs 

from the usual proofs of paracompactness in ordered spaces 

using [ELl because the property "X has a a-minimal base" is 

not closed hereditary. Thus it is not sufficient to prove 

that no stationary set in an uncountable regular cardinal 

has a a-minimal base. 

(b) There is a covering property related in the usual way 

to the existence of a a-minimal base: a space X is a-irreduc­

ibZe if every open cover of X has a a-irreducible open re­

finement. An example due to van Douwen [vDl shows that a 

LOTS can be a-irreducible and yet may fail to be paracompact 

(let D be an uncountable linearly ordered set, having a first 

element, which is discrete in the order topology; then the 

lexicographic product wI x D is the required example.) How­

ever it is easy to see that a GO space X is paracompact if 

and only if every closed subsp~ce of X is a-irreducible; 
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one utilizes Theorem (1.1) after prov~ng that no stationary 

set in an uncountable regular cardinal can be a-irreducible. 

(c) The argument in Theorem (2.2) wou~d be vastly simplified 

if one knew that X had a a-minimal base whose elements are 

convex sets. One cannot make such an assumption in the light 

of a result announced 'by Bennett and Berney in [BB ], viz.,2

if a GO space X has a a-minimal base all of whose members 

are convex, then X is quasi-developable. The proof of that 

fact follows from [L 5.11] once it is observed that anyl , 

irreducible collection of convex sets is point-finite. 

2.3 Acknowledgement. In the original version of this 

paper, and in the talk presented at the L.S.U. Conference, 

we asserted that any generalized ordered space having a 

a-minimal base must be first countable. That is not true, 

as Dan Velleman pointed out to us. His example is a certain 

subset of the lexicographic product ~ x [O,w ], where ~ isl 

the usual space of rational numbers; the relevant subspace is 

X = {(r,a): either a is a successor or a = wI}. The authors 

are grateful to Dr. Velleman for pointing out this error. 

3. Metrization of LOTS and (I-Minimal Bases 

In this section we obtain structure theorems for certain 

LOTS having a-minimal bases. Recall that a space X is per­

fect if every closed subset of X is a Go. We begin by pre­

senting an example which shows the limits of the theory. 

3.1 Example. There is a perfect LOTS having a a-minimal 

baBe whiah is not quasi-developable. 

Let D be a linearly ordered set such that (1) IDI Ci 
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'
(2) D has no end points; (3) W is cofinal in D and theo wa 
set W with the reversed ordering, is coinitial with D; (4)o 
in its order topology, D is a discrete space. For example, 

if K is the first ordinal with cardinality c, we could take 

D to be the lexicographically ordered set 

D [ [0, K) x wa] U [{ K} x (wa U w )] •
O

Let P, Q and R be the sets of irrational, rational and 

real numbers respectively. Define X to be the set 

X = (Q x D) U (P x {O,l}) 

with the lexicographic ordering. 

Let ~ be the set of all open intervals in R having both 

end points rational. For each J E ~ write J ]rJ,sJ[ and 

fix a 1-1 function f J : J -+ D. For each pair (q,J) where 

q E Q, J E 9- and q < r J and for each x E J n P define a set 

B(x,q,J) (Q n ]rJ,x[) x D U <(P n ]rJ,x[) x {O,l})U 

U {(x,D)} U {(q,fJ(x))}. 

Then B(x,q,J) is an open subset of X. Define, for each.. 
J E 9- and each q E· Q having q < r J , a collection B(q,J) 

{B(x,q,J) Ix E P n J}. We assert that each B(q,J) is irreduci­

ble. Fix x E P n J. Then (q,fJ(x)) E B(x,q,J). And if 

yEP n J with y ~ x then fJ(x) ~ fJ(y) so that (q,fJ(x)) ~ 

B(y,q,J), as required. 

We assert that the collection B = u{B(q,J) IJ E I and 

q E Q has q < r } contains a base at each point (x,O) of X.J 

For let (x,O) E U, an open set in X. Then there is an irra­

tional number y < x such that] (y,O) ,(x,O)] c U. Let J be 

any element of 9- having y < r J < x < sJ. Choose any rational 

q E ] Y , r J [ . Then B (x , q , J) E B(q , J) and B(x , q , J) c ] (y, 0) , 

(x,O)] c U. 
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An analogous construction yields a a-minimal collection 

of open sets which contains a base at each point (x,l) of X. 

And finally, the collection il = {{ (q,d)}!q E Q, d E D} is a 

minimal collection which contains a base at each point of 

Q x D. Therefore X has a a-minimal base. 

Next X is perfect. For let V be any open set in X. 

Using countable cofinality and coinitiality of D, write 

D =	 U:=l[dn,e ] where d l > d 2 > ••• and e l < e 2 < Forn 

each q E Q the set {q} x [dn,e ] is a closed discrete subset n 

of X, so that each set F (V ,q,n) = V n <{q} x [d ,en]) is a n 

closed subset of X. Since V n (Q x D) = U{F(V,q,n) Iq E Q, 

n > l} we see that V n (Q x D) is an Fa in X. Now the sub­

space P x {O,l} of X is a part of the Alexandroff double 

arrow and is therefore perfect. Hence V n (p x {O,l}) is an 

Fa-subset of (P x {O,l}>-, so that because (p x {O,l}) is 

closed in X, V n (p x {O,l} >is an F in X. Then, beinga 

the union of two F sets, V is an F in X. Hence X is per­a	 a 
feet. 

Finally, X is not quasi-developable since P x {O,l} is 

a non-metrizable subspace of X. 

We now turn to positive results concerning LOTS having 

a-minimal bases. 

3.2	 Proposition. Suppose X is a perfeat LOTS having 

a	 a-minimal base. Then X is a paraaompaat p-spaae. 

Proof. Let B = u{B(n) In ~ l} be a a-minimal base for 

X. For each B E B(n) choose a point p(B,n) E B which belongs 

to no other member of B(n). Then the set D(n) = {p(B,n) I 
B E B(n)} is a relatively closed, discrete subspace of the 
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open set U B(n). Write U B(n) = U{F(n,k) Ik ~ l} where each 

F(n,k) is closed in x, and let D(n,k) = D(n) n F(n,k). Then 

D = U{D(n,k) In,k > I} is a a-discrete closed subspace of X 

so that, in the light of van Wouwe's theorem (cf. 1.3), X 

is a paracompact p-space. 

3.3 Remarks. (a) The hypothesis in (3.2) that X is 

perfect is necessary. Consider the Michael line M [M] and 

the smallest LOTS M* containing M as a closed subspace 

[L 2.7]. It is easily seen that M* is paracompact andl , 

quasi-developable, and therefore has a a-minimal base heredi­

tarily. Yet M* is not a p-space in the light of Theorem 

(1.2) since M is a non-metrizable subspace of M*. 

(b) Of course it is true that a GO space which is per­

fect and has a a-minimal base must also have a a-discrete 

dense subspace. However, examples show that such spaces 

need not be p-spaces. For example, consider the space X of 

Example 3.1 and let Y = X - (P x {I}). Then Y is a perfect 

GO space and Y has a a-minimal base for the same reasons that 

X does. However Y cannot be a p-space because P x {O} is 

a closed subspace of Y which is not a p-space ( and since 

any closed subspace Y of p-space must be a p-space) . 

Our next result is a corollary to certain work of van 

Wouwe [vW] o.r M. J. Faber [F]. However it is possible to 

give a self-contained proof and we provide it here. 

3.4	 Proposition. Suppose X is a perfeat, denseLy 

2ordered LOTS having a a-minimaL base. Then X is metrizabLe. 

2A linearly ordered set (X,<) is denseLy ordered if 
]a,b[ 1 ~ whenever a < b in X. For example, any connected 
LOTS must be densely ordered. 
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Proof. Since X is perfect and collectionwise normal 

[S] by 1.5 it will be enough to show that X is quasi-develop­

able. As in Proposition 3.2 find E = U{E(n) In ~ I}, a 

a-discrete dense subspace of X. We may assume that 

E(n) c E(n+l) for each n > 1 and that any end points of X 

are in E(l). Let B = u{B(n) In ~ 11 be a a-minimal base for 

X (not necessarily related in any way to the dense set E) . 

Since E(n) is a closed discrete subset of the collectionwise 

normal space X there is a pairwise disjoint collection 

V(n) {V(x) Ix E E(n)} of open sets such that x E V(x) for 

each x E E(n). Being perfect, X is first countable; for 

each x E E(n) let {V(x,n,k) Ik ~ I} be a countable base of 

open neighborhoods for x with V(x,n,k) c V(x) for every 

x E E (n). Le t C(n , k) = {V (x , n , k) \ x E E (n) } . Then 

U{c(n,k) \n,k ~ I} is a a-disjoint collection of open subsets 

of X which contains a neighborhood base at each point of E. 

We now construct a a-disjoint collection which acts as 

a base at points of X-E. For each m,n ~ 1 let y(m,n) be 

the collection of all convex components of the open set 

(UB(m» - E(n). Suppose p E X - E and suppose p E U where U 

is open in X. Because piE, P is not an end-point of X so 

that there are points a, b E X with a < p < band ]a,b[ c U. 

Since X is densely ordered, ]a,p[ and ]p,b[ are nonvoid open 

sets so that for a suitably large n we may choose points 

r E ]a,p[ n E(n) and s E ]p,b[ n E(n). Fix any m for which 

p E U B(m). Let G be the convex component of (U B(m» ­

E(n) which contains p. Then G c ]r,s[ c U and G E y(m,n). 

Since each y(m,n) is clearly pairwise disjoint we see that 

the collection (U{c(n,k) Inik ~ I}) U (U{y(m,n) \m,n ~ I}) is 
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a a-disjoint base for X. 

The hypothesis that X is densely ordered guarantees that 

there are no "jumps," i.e., pairs of consecutive points( in 

X. The above theorem is valid if the jumps are not too 

nume~ous, e.g., if the jumps constitute a a-discrete subset 

of X. Example 3.1 shows the necessity of such an assumption. 

4. Open Questions 

The major open questions concerning ordered spaces having 

a-minimal bases are:
 

Suppose every closed subspace of a LOTS X has a
 

a-minimal base for its relative topology; must X be
 

metrizable? Must X be metrizable if every subspace of
 

X has a a-minimal base for its topology? What if X is
 

allowed to be a GO space instead of a LOTS?
 

The reader should be warned that one may not assume that X 

has a base B such that whenever Y c X the collection 

{B n YIB E B} is a-minimal; it is known that this additional 

hypothesis is sufficient to guarantee quasi-developability 

of X [BB ]. There is one relatively easy consequence of the2

existence of a-minimal bases for each closed subspace of a 

generalized ordered space X: such an X must be first counta­

ble. (Compare (2.3).) 
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