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ORDERED SPACES WlTH 

a-MINIMAL BASES 

H. R. Bennett and D. J. Lutzer 

1. Introduction 

A collection Cof subsets of X is minimal or ippeduaible 

if each C E Ccontains a point x(C) belonging to no other 

member of C. Thus Cis irreducible if and only if 

U 0; U Cwhenever o~ C. (It is crucial to note that 

U C= X is not required in this definition.) A collection 

which.is the union of countably many minimal collections is 

said to be a-minimal. 

Recall that a space X is quasi~developable if there is 

a sequence <~(n) of open collections (not necessarily covers) 

in X such that if U is open and p E U then for some n, 

p E St(p,~(n)) c U. In [BL] the authors obtained a result 

from which it follows that every quasi-developable space has 

a a-minimal base for its topology. C. E. Aull [Au] initiated 

the study of a-minimal bases in their own right; in particular 

he asked about conditions under which a space with a a-minimal 

base must be quasi-developable. 

This paper grew out of the surprising observation by 

Bennett and Berney [BB ] that the lexicographic square S hasl 

a a-minimal base. That example illustrates how disparate are 

the notions of a quasi-development and a a-minimal base. More 

precisely, the example shows simultaneously that (1) a space 

can be compact, Hausdorff, have a a-minimal base and yet may 

fail to be metrizable; and (2) that the existence of a 
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a-minimal base is not a closed-hereditary property. Both of 

these assertions follow from the fact that the Alexandroff 

"double-arrow" space A (i.e., the top and bottom edges of the 

square S) is a hereditarily Lindelof and yet non-metrizable 

(closed) subspace of S whence A cannot have a a-minimal base 

[Au] • 

In this paper we study the structure of ordered spaces 

having a-minimal bases. Recall that a linearly ordered 

topoZogical space (LOTS) is a linearly ordered set equipped 

with the usual open interval topology. By a generaZized 

ordered space (GO space) we mean a linearly ordered set 

equipped with a Tl-topology having a base whose members are 

convex. It is known that the class of GO spaces coincides 

with the class of (closed) subspaces of LOTS [L 2.9]. As
l

, 

usual, we conduct our study in the class of GO spaces when

ever possible. 

At several points in our paper we will need to invoke 

theorems from the literature. For the sake of completeness 

we list them here. 

1.1 Theorem [EL]. A GO space X is not hereditarily 

paracompact if and only if some subspace of X is homeomorphic 

lto a stationary subspace of a reguZar uncountable cardinaZ. 

Recall that a completely regular space X is a p-space 

[Ar] if there is a sequence <~(n» of collections of open 

lA cardinal is an initial ordinal and is identified with 
the set of all ordinals which precede it. Thus we write WI 
for [O,Wl[. A cardinal K is regular if it is not the sum of 
fewer, smaller cardinals. A subset S of a cardinal K is 
stationary if S n C ~ .~ whenever C is a cofinal subset of K 
which is closed in the usual topology of K. 
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subsets of ax (equivalently, in any compactification of X) 

such that if p E X then n{St(p,~(n)) In > l} c X where 

St (p, ~ (n)) = U{ G E ~ (n) IPEG} . 

1.2 Theorem [B ]. A completely regular space X isl 

metrizable if and only if X is a quasi-developable paraaompaat 

p-space. 

1.3 Theorem [vW]. A LOTS having a a-discrete dense 

subspace is a paracompact p-space. 

1.4 Pressing Down Lemma. Let S be a stationary subset 

of	 a regular uncountable cardinal K and let f: S + K satisfy 

-1f(x) < x whenever xES - {Ole Then for some y E K, f [{y}] 

is a stationary subset of K. 

1.5 Theorem [B2]. A space X is metrizable if and only 

if X is collectionwise normal, quasi-developable and has the 

property that every closed subset of X is a Go-set. 

We will use the symbol lSi to denote the cardinality of 

a set S. Our notation and terminology for ordered spaces 

will follow that of [Ll ]. For example, we write ]p,q[ = 

{x E xlp < x < c} and ]p~+[ = {x E Xlp < x}. Let N denote 

the set of natural numbers. 

2. Ordered Spaces Having (J'·Minimal Bases 

It is well known that the lexicographic square, cited 

in the Introduction as being a pathological ordered space 

having a a-minimal base, is hereditarily paracompact. That 

is no accident, as our first result shows. 
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2.1 Theorem. Any generaLized ordered space having a 

a-minimaL	 base is hereditariLy paracompact.
 

Proof. Let B = u{B(n): n ~ I} be a a-minimal base for
 

X. Supposing X is not hereditarily paracompact, it follows 

from Theorem (1.1) that there is a regular uncountable cardi

nal K and a stationary subset S of K such that S is homeo

morphic to a subspace of X. Since the homeomorphism can be 

taken to be either order-preserving or order-reversing, we 

may assume that SeX and that the ordering which S inherits 

from X coincides with the ordering which S inherits from K. 

We will use small Greek letters to denote points of S. The 

supremum of S is either a point or a gap in Xi in either 

case, denote it by K. 

Let T {A E S\A is a limit point of S}. Since S is
 

stationary in K, so is T. For each A E T, let ~ denote the
 

~£irst element.of T which is greater than A. Then for each 

n > 1, define T(n) {A E T\ for some B(A) E B(n), 

A E B(A) c] +,~[}. Because B is a base for X, T = u{T(n) \ 

n > I}. Therefore the set M {m E N\T(m) is stationary} is 

nonvoid. For each m E M define a function f m: T(m) -+- S as
 

follows. For A E T (m) let f (A) be the first element of S
 m


satisfying fm(A) < A and ]fm(A),A] c B(A). Since f is re
m 

gressive, the Pressing Down Lemma (1.4) guarantees that for 

some 8(m) E S, the set T' (m) = {A E T(m) \fm(A) = 8(m)} is 

stationary in K. Because K has uncountable cofinality, there 

is ayE S such that 8(m) < y < K for each m E M. 

Let R T n [y + 1, K) and for each n > 1 let R(n) 

{A E R\ some C(A) E B(n) has A E C(A) ]y,~[}. Then R isC 

stationary in K and, because B is a base for X, 
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R = U{R(n) In ~ I}. Hence for some nO' R(n ) is stationary.
O

Because R(nO) c T(nO)' nO E M. Fix ~ E R(n ) and considerO

C(~). Since C(~) E B(nO) it is possible to find a point 

p E C(~) such that ord(p,B(n )) 1.
O

Since nO E M, the stationary set T'(n ) and the ordinal
O

B(nO) exist and we may choose elements AI' A
2 

E T'(n
O

) having 

o < Al < ~I < A2 " Because Ai E T' (nO) we have fno(A i ) 

B(nO) < y for i = 1,2 so that pEl y, 0[ elf (A. ) , A. l c
nO ]. ]. 

B(A i ) E B(n ) for i 1,2. And since A E B(A ) - B(A ),
O 2 2 1 

B(A and B(A ) are seen to be two distinct members of B(n )l ) 2 O

containing p which is impossible because ord(p,B(n )) = 1.
O

That contradiction completes the proof of the theorem. 

(a) The proof of Theorem (2.2) differs 

from the usual proofs of paracompactness in ordered spaces 

using [ELl because the property "X has a a-minimal base" is 

not closed hereditary. Thus it is not sufficient to prove 

that no stationary set in an uncountable regular cardinal 

has a a-minimal base. 

(b) There is a covering property related in the usual way 

to the existence of a a-minimal base: a space X is a-irreduc

ibZe if every open cover of X has a a-irreducible open re

finement. An example due to van Douwen [vDl shows that a 

LOTS can be a-irreducible and yet may fail to be paracompact 

(let D be an uncountable linearly ordered set, having a first 

element, which is discrete in the order topology; then the 

lexicographic product wI x D is the required example.) How

ever it is easy to see that a GO space X is paracompact if 

and only if every closed subsp~ce of X is a-irreducible; 
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one utilizes Theorem (1.1) after prov~ng that no stationary 

set in an uncountable regular cardinal can be a-irreducible. 

(c) The argument in Theorem (2.2) wou~d be vastly simplified 

if one knew that X had a a-minimal base whose elements are 

convex sets. One cannot make such an assumption in the light 

of a result announced 'by Bennett and Berney in [BB ], viz.,2

if a GO space X has a a-minimal base all of whose members 

are convex, then X is quasi-developable. The proof of that 

fact follows from [L 5.11] once it is observed that anyl , 

irreducible collection of convex sets is point-finite. 

2.3 Acknowledgement. In the original version of this 

paper, and in the talk presented at the L.S.U. Conference, 

we asserted that any generalized ordered space having a 

a-minimal base must be first countable. That is not true, 

as Dan Velleman pointed out to us. His example is a certain 

subset of the lexicographic product ~ x [O,w ], where ~ isl 

the usual space of rational numbers; the relevant subspace is 

X = {(r,a): either a is a successor or a = wI}. The authors 

are grateful to Dr. Velleman for pointing out this error. 

3. Metrization of LOTS and (I-Minimal Bases 

In this section we obtain structure theorems for certain 

LOTS having a-minimal bases. Recall that a space X is per

fect if every closed subset of X is a Go. We begin by pre

senting an example which shows the limits of the theory. 

3.1 Example. There is a perfect LOTS having a a-minimal 

baBe whiah is not quasi-developable. 

Let D be a linearly ordered set such that (1) IDI Ci 
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'
(2) D has no end points; (3) W is cofinal in D and theo wa 
set W with the reversed ordering, is coinitial with D; (4)o 
in its order topology, D is a discrete space. For example, 

if K is the first ordinal with cardinality c, we could take 

D to be the lexicographically ordered set 

D [ [0, K) x wa] U [{ K} x (wa U w )] •
O

Let P, Q and R be the sets of irrational, rational and 

real numbers respectively. Define X to be the set 

X = (Q x D) U (P x {O,l}) 

with the lexicographic ordering. 

Let ~ be the set of all open intervals in R having both 

end points rational. For each J E ~ write J ]rJ,sJ[ and 

fix a 1-1 function f J : J -+ D. For each pair (q,J) where 

q E Q, J E 9- and q < r J and for each x E J n P define a set 

B(x,q,J) (Q n ]rJ,x[) x D U <(P n ]rJ,x[) x {O,l})U 

U {(x,D)} U {(q,fJ(x))}. 

Then B(x,q,J) is an open subset of X. Define, for each.. 
J E 9- and each q E· Q having q < r J , a collection B(q,J) 

{B(x,q,J) Ix E P n J}. We assert that each B(q,J) is irreduci

ble. Fix x E P n J. Then (q,fJ(x)) E B(x,q,J). And if 

yEP n J with y ~ x then fJ(x) ~ fJ(y) so that (q,fJ(x)) ~ 

B(y,q,J), as required. 

We assert that the collection B = u{B(q,J) IJ E I and 

q E Q has q < r } contains a base at each point (x,O) of X.J 

For let (x,O) E U, an open set in X. Then there is an irra

tional number y < x such that] (y,O) ,(x,O)] c U. Let J be 

any element of 9- having y < r J < x < sJ. Choose any rational 

q E ] Y , r J [ . Then B (x , q , J) E B(q , J) and B(x , q , J) c ] (y, 0) , 

(x,O)] c U. 
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An analogous construction yields a a-minimal collection 

of open sets which contains a base at each point (x,l) of X. 

And finally, the collection il = {{ (q,d)}!q E Q, d E D} is a 

minimal collection which contains a base at each point of 

Q x D. Therefore X has a a-minimal base. 

Next X is perfect. For let V be any open set in X. 

Using countable cofinality and coinitiality of D, write 

D =	 U:=l[dn,e ] where d l > d 2 > ••• and e l < e 2 < Forn 

each q E Q the set {q} x [dn,e ] is a closed discrete subset n 

of X, so that each set F (V ,q,n) = V n <{q} x [d ,en]) is a n 

closed subset of X. Since V n (Q x D) = U{F(V,q,n) Iq E Q, 

n > l} we see that V n (Q x D) is an Fa in X. Now the sub

space P x {O,l} of X is a part of the Alexandroff double 

arrow and is therefore perfect. Hence V n (p x {O,l}) is an 

Fa-subset of (P x {O,l}>-, so that because (p x {O,l}) is 

closed in X, V n (p x {O,l} >is an F in X. Then, beinga 

the union of two F sets, V is an F in X. Hence X is pera	 a 
feet. 

Finally, X is not quasi-developable since P x {O,l} is 

a non-metrizable subspace of X. 

We now turn to positive results concerning LOTS having 

a-minimal bases. 

3.2	 Proposition. Suppose X is a perfeat LOTS having 

a	 a-minimal base. Then X is a paraaompaat p-spaae. 

Proof. Let B = u{B(n) In ~ l} be a a-minimal base for 

X. For each B E B(n) choose a point p(B,n) E B which belongs 

to no other member of B(n). Then the set D(n) = {p(B,n) I 
B E B(n)} is a relatively closed, discrete subspace of the 
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open set U B(n). Write U B(n) = U{F(n,k) Ik ~ l} where each 

F(n,k) is closed in x, and let D(n,k) = D(n) n F(n,k). Then 

D = U{D(n,k) In,k > I} is a a-discrete closed subspace of X 

so that, in the light of van Wouwe's theorem (cf. 1.3), X 

is a paracompact p-space. 

3.3 Remarks. (a) The hypothesis in (3.2) that X is 

perfect is necessary. Consider the Michael line M [M] and 

the smallest LOTS M* containing M as a closed subspace 

[L 2.7]. It is easily seen that M* is paracompact andl , 

quasi-developable, and therefore has a a-minimal base heredi

tarily. Yet M* is not a p-space in the light of Theorem 

(1.2) since M is a non-metrizable subspace of M*. 

(b) Of course it is true that a GO space which is per

fect and has a a-minimal base must also have a a-discrete 

dense subspace. However, examples show that such spaces 

need not be p-spaces. For example, consider the space X of 

Example 3.1 and let Y = X - (P x {I}). Then Y is a perfect 

GO space and Y has a a-minimal base for the same reasons that 

X does. However Y cannot be a p-space because P x {O} is 

a closed subspace of Y which is not a p-space ( and since 

any closed subspace Y of p-space must be a p-space) . 

Our next result is a corollary to certain work of van 

Wouwe [vW] o.r M. J. Faber [F]. However it is possible to 

give a self-contained proof and we provide it here. 

3.4	 Proposition. Suppose X is a perfeat, denseLy 

2ordered LOTS having a a-minimaL base. Then X is metrizabLe. 

2A linearly ordered set (X,<) is denseLy ordered if 
]a,b[ 1 ~ whenever a < b in X. For example, any connected 
LOTS must be densely ordered. 
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Proof. Since X is perfect and collectionwise normal 

[S] by 1.5 it will be enough to show that X is quasi-develop

able. As in Proposition 3.2 find E = U{E(n) In ~ I}, a 

a-discrete dense subspace of X. We may assume that 

E(n) c E(n+l) for each n > 1 and that any end points of X 

are in E(l). Let B = u{B(n) In ~ 11 be a a-minimal base for 

X (not necessarily related in any way to the dense set E) . 

Since E(n) is a closed discrete subset of the collectionwise 

normal space X there is a pairwise disjoint collection 

V(n) {V(x) Ix E E(n)} of open sets such that x E V(x) for 

each x E E(n). Being perfect, X is first countable; for 

each x E E(n) let {V(x,n,k) Ik ~ I} be a countable base of 

open neighborhoods for x with V(x,n,k) c V(x) for every 

x E E (n). Le t C(n , k) = {V (x , n , k) \ x E E (n) } . Then 

U{c(n,k) \n,k ~ I} is a a-disjoint collection of open subsets 

of X which contains a neighborhood base at each point of E. 

We now construct a a-disjoint collection which acts as 

a base at points of X-E. For each m,n ~ 1 let y(m,n) be 

the collection of all convex components of the open set 

(UB(m» - E(n). Suppose p E X - E and suppose p E U where U 

is open in X. Because piE, P is not an end-point of X so 

that there are points a, b E X with a < p < band ]a,b[ c U. 

Since X is densely ordered, ]a,p[ and ]p,b[ are nonvoid open 

sets so that for a suitably large n we may choose points 

r E ]a,p[ n E(n) and s E ]p,b[ n E(n). Fix any m for which 

p E U B(m). Let G be the convex component of (U B(m» 

E(n) which contains p. Then G c ]r,s[ c U and G E y(m,n). 

Since each y(m,n) is clearly pairwise disjoint we see that 

the collection (U{c(n,k) Inik ~ I}) U (U{y(m,n) \m,n ~ I}) is 
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a a-disjoint base for X. 

The hypothesis that X is densely ordered guarantees that 

there are no "jumps," i.e., pairs of consecutive points( in 

X. The above theorem is valid if the jumps are not too 

nume~ous, e.g., if the jumps constitute a a-discrete subset 

of X. Example 3.1 shows the necessity of such an assumption. 

4. Open Questions 

The major open questions concerning ordered spaces having 

a-minimal bases are:
 

Suppose every closed subspace of a LOTS X has a
 

a-minimal base for its relative topology; must X be
 

metrizable? Must X be metrizable if every subspace of
 

X has a a-minimal base for its topology? What if X is
 

allowed to be a GO space instead of a LOTS?
 

The reader should be warned that one may not assume that X 

has a base B such that whenever Y c X the collection 

{B n YIB E B} is a-minimal; it is known that this additional 

hypothesis is sufficient to guarantee quasi-developability 

of X [BB ]. There is one relatively easy consequence of the2

existence of a-minimal bases for each closed subspace of a 

generalized ordered space X: such an X must be first counta

ble. (Compare (2.3).) 

References 

Ar	 A. V. Arhangel'skil, On a class of spaces containing all 

metric and all locally bicompact spaces, Soviet Math. 

Dokl. 4 (1963), 1051-1055. 

Au	 C. E. Aull, Quasi-developments and o8-bases, J. London
 

Math . Soc. (2), 9 (19 74), 197- 20 4 .
 



382	 Bennett and Lutzer 

B	 H. R. Bennett, A note on the metrizability of M-spaces,
l 

Proc. Japan Acad. 45 (1969), 6-9. 

B ' On quasi-developable spaces, Gen. Top. Appl.2 
1 (197l), 253-262. 

BB and E. S. Berney, Spaces with a-minimal bases,
I 

Proceedings of the LSU Conference, to appear. 

BB ' Spaces with a-minimal bases, Notices Amer.2 
Math. Soc. 24 (1977), A-259, Abstract 77T-G22. 

BL H. R. Bennett and D. Lutzer, A note on weak 8-refina

bility, Gen. Top. Appl. 2 (1972), 49-54. 

vD E. van Douwen, private communication. 

EL R. Engelking and D. Lutzer, Paracompactness in ordered 

spaces, Fundamenta Math. 93 (1976), 49-58. 

F	 M. J. Faber, Metrizability in generalized ordered 

spaces, Mathematical Centre Tracts, No. 53, Math Centrum, 

Amsterdam, 1974. 

L	 D. Lutzer, On generalized ordered spaces, Dissertationesl 
Math., v. 89. 

L ' Ordinals and paracompactness in ordered spaces,2 
Proc. Second Pittsburgh Conf., Springer-Verlag Lecture 

Notes, No. 378, 258-266. 

M E. Michael, The product of a normal space and a metric 

space need not be normal, Bull. Amer. Math. Soc. 69 

(1963), 375-376. 

S L. A. Steen, A direct proof that the interval topology 

is collectionwise normal, Prac. Amer. Math. Soc. 24 

(1970), 727-728. 

vW J. van Wouwe, On generalized ordered p- and M-spaces, 

Report 52 of Wiskundig Seminarium der Vrije Universiteit, 

Amsterdam, 1976. 

Texas Tech University 

Lubbock, Texas 79409 


	a02201.pdf



