TOPOLOGY PROCEEDINGS

Volume 2, 1977 Pages 401–407

http://topology.auburn.edu/tp/

ON PERFECT SUBPARACOMPACTNESS AND A METRIZATION THEOREM FOR MOORE SPACES

by

J. CHABER AND P. ZENOR

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ON PERFECT SUBPARACOMPACTNESS AND A METRIZATION THEOREM FOR MOORE SPACES

J. Chaber and P. Zenor

In this paper, we give a characterization of perfectly subparacompact spaces and we use this characterization to prove that perfectly normal subparacompact spaces which are locally connected and rim-compact are paracompact. In particular then, every perfectly normal, locally connected, and rim compact Moore space is metrizable. This generalizes the main theorem of [R,Z] and answers a question in [A,Z].

Recall that a space X is said to be subparacompact if for any open cover l' of X there exists a sequence $\{l'(j)\}_{j\geq 1}$ of open covers of X such that if $x \in X$, then there is a $j \geq 1$ so that $St(x, l'(j)) \subseteq U$ for some $U \in l'$ (see [Bu]); X is perfectly subparacompact if X is subparacompact and closed subsets are G_{δ} -sets in X. Also, X is rim-compact if for each point x of X and each open set V containing x, there is an open set W with a compact boundary so that $x \in W \subset V$.

We prove

Theorem 1. Every perfectly normal, locally connected, rim-compact, and subparacompact space is paracompact.

This yields

Corollary. Every perfectly normal, locally connected and rim-compact Moore space is metrizable.

The proof of Theorem 1 is based on the following

Theorem 2. The following conditions are equivalent for a topological space X:

- 1) X is perfectly subparacompact,
- 2) for each well-ordered open cover || of X there exists a sequence $\{V(j)\}_{j \ge 1}$ of open covers of X such that if $x \in X$, then there is a $j \ge 1$ such that St(x,V(j)) is contained in the first element of || that contains x,
- 3) for each well-ordered open cover $\mathcal{U} = \{U_{\alpha}\}_{\alpha < \gamma}$ of X there exists a sequence $\{\xi(j)\}_{j \ge 1}$ of closed collections such that $\xi(j) = \{E_{\alpha}(j)\}_{\alpha < \gamma}$ is increasing and $U_{j > 1} E_{\alpha}(j) = U_{\beta < \alpha} U_{\alpha}$ for $\alpha < \gamma$,
- 4) for each well-ordered open cover $\mathcal{U} = \{U_{\alpha}\}_{\alpha < \gamma}$ of X there exists a closed cover $\mathcal{J} = \bigcup \mathcal{J}(j)$ such that $\mathcal{J}(j) = \{F_{\alpha}(j)\}_{\alpha < \gamma}$ is discrete and $F_{\alpha}(j) \subseteq U_{\alpha} \setminus U_{\beta < \alpha} \cup U_{\beta}$ for $\alpha < \gamma$.

Theorem 2 was independently proved by H. Junnila.

In the first section, we shall prove Theorem 1 using the implication 1) \rightarrow 4) of Theorem 2. The second section contains a proof of Theorem 2. We end by giving characterizations of perfectly paracompact spaces analogous to those given in Theorem 2.

1. Proof of Theorem 1

Let X be a space satisfying the hypothesis of Theorem 1 and let ℓ' be an open cover of X. We shall prove that ℓ' has a σ -discrete open refinement.

Since X is rim-compact, we may assume that all elements of l' have compact boundaries. Furthermore, we may assume

that $l' = \{U_{\alpha}\}_{\alpha < \gamma}$ is well-ordered.

From the condition 4) of Theorem 2 it follows that there exists a closed refinement $\mathcal{F} = \bigcup_{j \geq 1} \mathcal{F}(j)$ of \mathcal{U} such that $\mathcal{F}(j) = \{F_{\alpha}(j)\}_{\alpha < \gamma}$ is discrete and $\mathcal{F}_{\alpha}(j) \subseteq \bigcup_{\alpha} \setminus \bigcup_{\beta < \alpha} \bigcup_{\beta}$.

Since \mathcal{F} refines \mathcal{U} , it is sufficient to prove that each $\mathcal{F}(j)$ can be expanded to a σ -discrete open family. This follows from the second of the next two lemmas.

Lemma 1. If a closed subset F of a regular rim-compact space X is contained in an open set U, then there is an open set V with a compact boundary such that $F \subseteq V \subseteq \overline{V} \subseteq U$.

Proof. Let W be a finite open cover of the boundary of U consisting of sets with compact boundaries and such that $F \cap \overline{UW} = \emptyset$. The set $V = U \setminus \overline{UW}$ has the desired properties.

Lemma 2. Let X be a perfectly normal locally connected and rim-compact space. If $U = \{U_{\alpha}\}_{\alpha < \gamma}$ is an open cover of X, $\mathcal{F} = \{F_{\alpha}\}_{\alpha < \gamma}$ is a discrete collection of closed subsets of X and, for $\alpha < \gamma$

(i) ${\bf F}_{\alpha} \subseteq {\bf U}_{\alpha}$ and the boundary of ${\bf U}_{\alpha}$ is compact,

(*ii*) $U_{\alpha} \cap (U_{\beta \geq \alpha} F_{\beta}) = \emptyset$,

then there exists an open collection $\mathcal{W} = \{W_{\alpha}\}_{\alpha < \gamma}$ such that $F_{\alpha} \subseteq W_{\alpha}$ and \mathcal{W} is a countable union of discrete collections.

Proof. Since X is perfectly normal, we may choose a sequence $\{G_n\}_{n\geq 1}$ of open sets such that

(iii) $\cup \mathcal{F} = \bigcap_{n=1}^{\infty} G_n \text{ and } \overline{G}_{n+1} \subseteq G_n \text{ for } n \geq 1.$

Let $W_{\alpha,n}$ be the union of all components of G_n intersecting F_{α} . Since X is locally connected, each $W_{\alpha,n}$ is open. Moreover, from the definition of $W_{\alpha,n}$ it follows that for $\alpha_1 < \alpha < \gamma$ (iv) $W_{\alpha_1,n} \cap W_{\alpha,n} = \emptyset$ implies $W_{\alpha_1,n} \cap F_{\alpha} \neq \emptyset$.

We shall show that for each $\alpha < \gamma$ there exists an integer n such that

(v) $W_{\alpha,n} \cap [U_{\beta \geq \alpha} F_{\beta}] = \emptyset$.

Assume that this is not the case and take the smallest α such that $W_{\alpha,n} \cap [U_{\beta \geq \alpha} F_{\beta}] \neq \emptyset$ for all n.

By (i) and Lemma 1 there exists an open set V with a compact boundary such that $F_{\alpha} \subseteq V \subseteq \overline{V} \subseteq U_{\alpha}$. From (ii) it follows that the boundary C of V separates F_{α} from $U_{\beta \geq \alpha} F_{\beta}$. Since each $W_{\alpha,n}$ intersects $U_{\beta \geq \alpha} F_{\beta}$ and is the union of a collection of connected sets intersecting F_{α} , the sets $W_{\alpha,n} \cap C$ are non-void. From the compactness of C and the fact that $G_{n+1} \subseteq G_n$, we have $A = \bigcap_{n \geq 1} \overline{W}_{\alpha,n} \cap C \neq \emptyset$. By (iii) and $W_{\alpha,n} \subseteq G_n$, $A \subseteq [\cup \mathcal{J}] \cap C$ but $C \cap [U_{\beta \geq \alpha} F_{\beta}] = \emptyset$. Hence there exists an $\alpha_1 < \alpha$ and an $x \in F_{\alpha_1} \cap \bigcap_{n \geq 1} \overline{W}_{\alpha,n}$.

Each $W_{\alpha,n}$ is closed in G_n and $x \in G_n$, therefore $x \in \overline{W}_{\alpha,n}$ implies $x \in W_{\alpha,n}$ and (iv) shows that α_1 does not satisfy (v) for any $n \ge 1$. This contradicts our choice of α .

For each $\alpha < \gamma,$ let $n(\alpha)$ be the first integer satisfying (v) .

From (iv), the family $W'_n = \{W_{\alpha,n}: n(\alpha) = n\}$ is pairwise disjoint. Since each $W_{\alpha,n}$ is a sum of components of G_n , W'_n is also discrete in G_n and, consequently, $W_n = \{G_{n+1} \cap W: W \in W'_n\}$ is discrete in X. Thus $W = \bigcup_{n \ge 1} W_n$ is a σ -discrete open expansion of \mathcal{F} .

2. Proof of Theorem 2

It is easy to observe that the conditions 2), 3), and 4) are equivalent and imply 1). We shall prove 1) \Rightarrow 2). In

the proof of Theorem 1 we use 1) \rightarrow 4). The proof of 2) \Rightarrow 4) is a well known reasoning from [Bi]. H. Junnila gave a direct proof of 1) \Rightarrow 4).

Proof of 1) \Rightarrow 2). Let X be a perfectly subparacompact space and let $\mathcal{U} = \{U_{\alpha}\}_{\alpha < \gamma}$ be a well-ordered open cover of X. Since X is perfect, we can find, for each $\alpha < \gamma$, a sequence $\{E_{\alpha}(j)\}_{j \in \mathbb{N}}$ of closed sets such that

(i) $U_{j \in N} E_{\alpha}(j) = U_{\beta < \alpha} U_{\beta}$ (Note, that in view of 3), we have to modify sets $E_{\alpha}(j)$ so that, for each $\alpha < \gamma$, $\{E_{\alpha}(j)\}_{j \in N}$ forma an increasing collection.)

For each m ≥ 0 let N^m denote the collection of all sequences of natural numbers of length m. If $t \in N^m$ and $i \in N$, then $(t,i) \in N^{m+1}$ denotes an extension of t by i. Put $T_u = \bigcup_{n>0} N^{2n}$ and $T_v = \bigcup_{n>0} N^{2n+1}$.

We will define, by induction on m, collections $\{ l(t) \}_{t \in \mathbf{T}_{u}}$ and $\{ l(t) \}_{t \in \mathbf{T}_{v}}$ of open covers of X such that $l(\emptyset) = l(\emptyset \in \mathbf{T}_{u})$ is the only element of N⁰ and

(ii) if $t \in T_u$, then $\{ V(t,k) \}_{k \in \mathbb{N}}$ is a sequence of open covers of X such that if $x \in X$, then there is a $k \in \mathbb{N}$ such that St(x, V(t,k)) is a subset of some element of U(t),

(iii) if $t\in T_{\mathbf{v}}$ and $j\in N,$ then ${l}'(t,j)$ = $\left\{ U_{\alpha}(t,j)\right\} _{\alpha<\gamma}$ where

$$\begin{split} & \mathtt{U}_{\alpha}(\mathtt{t},\mathtt{j}) \ = \ \mathtt{U}_{\alpha} \backslash (\mathtt{E}_{\alpha}(\mathtt{j}) \ \cup \ \overline{\mathtt{A}}_{\alpha}(\mathtt{t})) \ \text{ and } \\ & \mathtt{A}_{\alpha}(\mathtt{t}) \ = \ \{ \mathtt{x} \ \in \ \mathtt{X} \colon \ \mathtt{St}(\mathtt{x}, \bigvee(\mathtt{t})) \ \subseteq \ \mathtt{U}_{\beta < \alpha} \ \mathtt{U}_{\beta} \}. \end{split}$$

If $t \in T_v$ and V(t) is an open cover of X, then the closure of the set $A_{\alpha}(t)$ defined in (iii) is contained in $U_{\beta \leq \alpha} U_{\beta}$, for all $\alpha < \gamma$. This, together with (i), shows that l(t,j) defined in (iii) covers X for all $j \in N$.

If $t \in T_u$, then the collection $\{l'(t,k)\}_{k \in \mathbb{N}}$ satisfying (ii) can be found by subparacompactness of X.

Therefore, starting with $l'(\emptyset) = l'$, we can define the collections $\{l'(t)\}_{t \in T_u}$ and $\{l'(t)\}_{t \in T_v}$ of open covers of X satisfying (ii) and (iii).

From the fact that T_v is countable, it follows that it is sufficient to prove that if $x \in X$, then there exists a $t \in T_v$ such that St(x, V(t)) is a subset of the first element of U that contains x.

Suppose that a point $x \in X$ does not have the above property and let $\alpha_x < \gamma$ and $t \in T_v$ be such that $St(x, l'(t)) \subseteq U_{\alpha_x}$ and $St(x, l'(t)) \subseteq U_{\alpha}$ implies $\alpha \ge \alpha_x$.

By our assumption $x \in U_{\beta < \alpha_X} U_{\beta}$ and, by (i), there is a $j \in N$ such that $x \in E_{\alpha_Y}$ (j).

Consider l'(t,j). From the definition of the sets $U_{\alpha}(t,j)$, it follows that $x \notin U_{\alpha_{\mathbf{X}}}(t,j)$ (by $x \in E_{\alpha_{\mathbf{X}}}(j)$) and $x \notin U_{\alpha}(t,j)$ for $\alpha > \alpha_{\mathbf{X}}$ (by $St(x, l'(t)) \subseteq U_{\alpha_{\mathbf{X}}}$). Therefore $x \notin U_{\alpha > \alpha_{\mathbf{X}}} U_{\alpha}(t,j)$.

Since (t,j) $\in T_u$, by (ii), there exists a k and a $\beta < \gamma$ such that $St(x, l'(t, j, k)) \subseteq U_{\beta}(t, j)$. From $x \notin U_{\alpha \geq \alpha_x} U_{\alpha}(t, j)$, we have $\beta < \alpha_x$, but $U_{\beta}(t, j)$ is a subset of U_{β} and this contradicts our choice of α_y .

3. Theorem 3

The following conditions are equivalent for a ${\bf T}_1$ space X:

1) X is perfectly paracompact,

2) for each well-ordered open cover U of X there exists

a sequence $\{V(j)\}_{j\geq 1}$ of open covers of X such that if $x \in X$, then there exist a neighborhood O_x of x and a $j \geq 1$ such that $St(O_x, V(j))$ is contained in the first element of U that contains x (see [A]).

3) for each well-ordered open cover
$$\mathcal{U} = \{\mathbf{U}_{\alpha}\}_{\alpha < \gamma}$$
 of X
there exists a sequence $\{\xi(j)\}_{j \ge 1}$ of closed collections
such that $\xi(j) = \{\mathbf{E}_{\alpha}(j)\}_{\alpha < \gamma}$ is increasing and
 $\mathbf{U}_{j \ge 1}$ Int $\mathbf{E}_{\alpha}(j) = \mathbf{U}_{j \ge 1} \mathbf{E}_{\alpha}(j) = \mathbf{U}_{\beta < \alpha} \mathbf{U}_{\beta}$ for $\alpha < \gamma$.

Theorem 3 can be proved in the same way as Theorem 2. The implication 1) \Rightarrow 2)(3)) can be also obtained as a corollary to the implication 1) \Rightarrow 4) from Theorem 2 with the use of collectionwise normality of X.

References

- [AZ] K. Alster and P. L. Zenor, On the collectionwise normality of generalized manifolds, Top. Proc. 1 (1976), 125-127.
- [A] A. Arhangel'skii, New criteria for paracompactness and metrizability of an arbitrary T₁-space, Soviet Math. Dokl. 2 (1961), 1367-1369.
- [Bi] R. H. Bing, Metrization of topological spaces, Canad. Journ. of Math. 3 (1951), 175-186.
- [Bu] D. K. Burke, On subparacompact spaces, Proc. Amer. Math. Soc. 23 (1969), 655-663.
- [RZ] G. M. Reed and P. L. Zenor, Metrization of Moore spaces and generalized manifolds, Fund. Math. XCl (1976), 203-210.

Auburn University

Auburn, AL 36830