

http://topology.auburn.edu/tp/

# TRIANGULABLE HYPERSPACE PAIRS

by

D. W. CURTIS

**Topology Proceedings** 

| Web:    | http://topology.auburn.edu/tp/         |
|---------|----------------------------------------|
| Mail:   | Topology Proceedings                   |
|         | Department of Mathematics & Statistics |
|         | Auburn University, Alabama 36849, USA  |
| E-mail: | topolog@auburn.edu                     |
| TOONT   | 0140 4104                              |

**ISSN:** 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

### TRIANGULABLE HYPERSPACE PAIRS

#### D. W. Curtis

#### 0. Introduction

For every nondegenerate Peano continuum X, the hyperspace  $2^X$  of nonempty closed subsets of X, topologized by the Hausdorff metric, is homeomorphic to the Hilbert cube Q [4]. And for every proper nonempty closed subset A of X, the subhyperspaces  $2^X(A) = \{F \in 2^X : F \cap A \neq \emptyset\}$  and  $2^X_A = \{F \in 2^X :$  $F \supseteq A\}$  are also homeomorphic to Q [5]. A natural question arises: how are  $2^X(A)$  and  $2^X_A$  situated in  $2^X$ ? In this paper we present some results on the topology of the hyperspace pairs  $(2^X, 2^X(A))$  and  $(2^X, 2^X_A)$ .

The first general result in this direction was obtained in [3]:  $2^{X}(A)$  is a Z-set in  $2^{X}$  if and only if A is *locally non-separating in* X (i.e., for every nonempty connected open subset U of X, U\A is nonempty and connected). Of course, the condition that  $2^{X}(A)$  be a Z-set in  $2^{X}$  is equivalent to the existence of a pair homeomorphism between  $(2^{X}, 2^{X}(A))$  and  $([0,1] \times Q, \{0\} \times Q)$ .

Thus for example, with I = [0,1], the hyperspace  $2^{I}(A)$ is a Z-set in  $2^{I}$  if and only if A  $\subset \partial I$ . What then can be said about the topological position in  $2^{I}$  of a hyperspace such as  $2^{I}(\{1/2\}) = 2^{I}_{\{1/2\}}$ ? Since  $2^{I} \cdot 2^{I}_{\{1/2\}}$  is the disjoint union M<sub>1</sub> U M<sub>2</sub> U M<sub>3</sub> of three copies of Q × [0,1), where M<sub>1</sub> =  $\{F \in 2^{I}: F \subset [0,1/2)\}, M_{2} = \{F \in 2^{I}: F \subset (1/2,1]\}, \text{ and } M_{3} =$  $\{F \in 2^{I}: F \subset [0,1/2) \cup (1/2,1] \text{ and } F \cap [0,1/2) \neq \emptyset \neq F \cap$  $(1/2,1]\}, a first guess might be that <math>(2^{I}, 2^{I}_{\{1/2\}})$  is

homeomorphic as a pair to  $(T \times Q, \{v\} \times Q)$ , where T is a union of three arcs meeting at a common endpoint v. On closer examination this is seen not to be the case (the closures of  $M_1$  and  $M_2$  do not contain  $2^{I}_{\{1/2\}}$ , and  $2^{I}_{\{1/2\}}$  is not a Z-set in the closure of  $M_3$ ). As it turns out,  $(2^{I}, 2^{I}_{\{1/2\}})$  is not homeomorphic to a triangulated pair  $(K \times Q, L \times Q)$  for any polyhedral pair (K,L). On the other hand, the hyperspace pair (2<sup>I</sup>,2<sup>I</sup>([1/3,2/3])) is triangulable. Let L be a 2-cell and  $K = L \cup \alpha_1 \cup \alpha_2 \cup \alpha_3$ , where the  $\alpha_i$  are disjoint arcs attached to L such that each  $\alpha_i \ \cap$  L is a boundary point of  $\boldsymbol{\alpha}_i$  and L. Then it is not difficult to show that  $(2^{I},2^{I}$ ([1/3,2/3])) is homeomorphic to (K  $\times$  Q,L  $\times$  Q). These two examples motivated Theorem 1 below, which says that the hyperspace pair  $(2^{X}, 2^{X}(A))$  is triangulable in the above sense if and only if A is locally non-separating in X at each point in bd A.

For those pairs  $(2^X, 2^X(A))$  which are triangulable, Theorem 2 provides a simple topological classification relating to the components of X\cl(int A).

For the hyperspace pairs  $(2^X, 2^X_A)$ , Theorem 3 says that  $2^X_A$  is a Z-set in  $2^X$  if and only if A is not a finite subset of local cut points in X. Thus for example,  $2^I_A$  is a Z-set in  $2^I$  unless A is a finite subset of int I. In the latter case it can be shown that  $(2^I, 2^I_A)$  is not even triangulable. It appears likely that in general,  $(2^X, 2^X_A)$  is triangulable only if  $2^X_A$  is a Z-set in  $2^X$ .

## 1. Characterization of Triangulable Pairs (2<sup>X</sup>, 2<sup>X</sup>(A))

Definition. A Q-manifold pair (Y,M) is triangulable

if there exists a polyhedral pair (K,L) such that (Y,M)  $\approx$  (K  $\times$  Q,L  $\times$  Q).

Lemma 1. If  $(2^X, 2^X(A))$  is triangulable, then for every neighborhood U in X of a boundary point p of A, there exists a neighborhood V of p such that V meets only finitely many components of U\A.

*Proof.* Suppose not. Then there exists a neighborhood U of a point  $p \in bd A$ , and a sequence  $\{p_n\}$  in U\A converging to p, such that each  $p_n$  is in a distinct component of U\A. It follows that for every neighborhood U in  $2^X$  of  $\{p\}$  such that U  $U \subset U$  (i.e., for every sufficiently small neighborhood U of  $\{p\}$ ), the complement  $U \setminus 2^X(A)$  has infinitely many components. But this is impossible if  $(2^X, 2^X(A)) \approx (K \times Q, L \times Q)$  for some polyhedral pair (K, L), since each point of L  $\times Q$  has a basis of neighborhoods W in K  $\times Q$  such that each complement  $W \setminus L \times Q$  has only finitely many components.

Definition. A closed subset A of a Peano continuum X is locally non-separating in X at  $p \in bd$  A if there exists at p a neighborhood base U(p) such that for each  $U \in U(p)$ , U\A is connected.

It is routine to show that A is locally non-separating in X (as defined in \$0) if and only if A has empty interior and is locally non-separating in X at each point.

Lemma 2. Let X be a Peano continuum and A a closed subset which is locally non-separating in X at each boundary point. Then:

i)  $X \in (int A)$  has a finite number of components  $\{G_i\}$ ,

ii) The closures  $\{\overline{G}_i\}$  are pairwise disjoint,

iii) each  $\overline{G}_i$  is locally connected,

iv) each  $\overline{G}_i \cap A$  is locally non-separating in  $\overline{G}_i$ .

*Proof.* True if int  $A = \emptyset$ . Suppose int  $A \neq \emptyset$ . For each point  $x \in bd(int A)$  there is an open neighborhood U in X such that U\A is connected. Since U\A is dense in U\cl(int A), it follows that U\cl(int A) is connected. By compactness, bd(int A) is covered by a finite collection  $\{U_i\}$  of such neighborhoods. Since X is connected, each component of X\cl(int A) has a limit point in bd(int A). Then each component must intersect, and therefore contain, some  $U_i \setminus cl(int A)$ . Thus the number of components of X\cl(int A) is finite. And since  $\overline{G_i} \setminus G_i \subset bd(int A)$ , it follows also that  $\overline{G_i} \cap \overline{G_j} = \emptyset$  if  $i \neq j$ .

Consider  $x \in bd \ G_i = \overline{G}_i \cap cl(int A)$ . As shown above, x has arbitrarily small neighborhoods U in X such that U\cl(int A) is connected. Since U\cl(int A) is dense in U  $\cap \overline{G}_i$ , the latter set is a connected neighborhood of x in  $\overline{G}_i$ . Thus  $\overline{G}_i$  is locally connected.

Clearly,  $\overline{G_i} \cap A$  is nowhere dense in  $\overline{G_i}$ , and A is locally non-separating in  $\overline{G_i}$  at each point of A  $\cap$   $G_i$ . For  $x \in bd G_i$ the basic neighborhoods U  $\cap \overline{G_i}$  of x obtained above are such that U  $\cap \overline{G_i} \setminus A = U \setminus A$  is connected. Thus  $\overline{G_i} \cap A$  is locally non-separating in  $\overline{G_i}$ .

Definition. A strong Q-decomposition of a pair (Y,M)is a finite cover  $\{Y_i\}$  of Y such that:

i) each decomposition element  $Y_i$  is homeomorphic to Q,

434

- ii) each nonempty intersection  $Y_i \cap Y_j$  is a union of decomposition elements,
- iii)  $Y_i$  is a Z-set in  $Y_i$  whenever  $Y_i \subseteq Y_i$ ,
- iv) M is a union of decomposition elements.

Lemma 3. A compact Q-manifold pair (Y,M) is triangulable if and only if it admits a strong Q-decomposition.

*Proof.* This is similar to the proof of Theorem 2.4 of [2]. Let  $\{Y_i\}$  be a strong Q-decomposition of the pair (Y,M). We construct a simplicial complex K which is the union of a collection  $\{K_i\}$  of subcomplexes in 1-1 correspondence with the decomposition elements  $\{Y_i\}$ , and a homeomorphism h:  $Y \rightarrow K \times Q$  such that for each i,  $h(Y_i) = K_i \times Q$ . Then for  $L = \bigcup\{K_i: Y_i \subset M\}$ , we have  $(Y,M) \approx (K \times Q, L \times Q)$ . The construction is inductive, beginning with the minimal elements of the decomposition.

To this end, we write  $\{Y_i\}$  as a monotone union of subcollections,  $\emptyset = Y^{(-1)} \subset Y^{(0)} \subset \cdots \subset Y^{(m)} = \{Y_i\}$ , such that if  $Y_j \notin Y_k \in Y^{(n)}$ , then  $Y_j \in Y^{(n-1)}$ . Thus each element of  $Y^{(0)}$  is a minimal decomposition element. Let  $K^{(0)}$  be a collection of points in 1-1 correspondence with the elements of  $Y^{(0)}$ , and choose a corresponding homeomorphism  $h^{(0)}$ :  $\cup Y^{(0)} \to K^{(0)} \times Q$ . Inductively, suppose there exists a complex  $K^{(n-1)}$  and a homeomorphism  $h^{(n-1)}: \cup Y^{(n-1)} \to K^{(n-1)}$  $\times Q$  such that for each  $Y_i \in Y^{(n-1)}$ ,  $h^{(n-1)}(Y_j) = K_j \times Q$  for some subcomplex  $K_j$  of  $K^{(n-1)}$ . Then for each  $Y_i \in Y^{(n)} \setminus Y^{(n-1)}$ , set  $K_i = \text{cone } (\cup\{K_j: Y_j \notin Y_i\})$ . The cone points are chosen so that each  $K_i \cap K^{(n-1)} = \cup\{K_j: Y_j \notin Y_i\}$ , and  $K_{i1} \cap K_{i2} \subset$  $K^{(n-1)}$  for each  $Y_{i1}, Y_{i2} \in Y^{(n)} \setminus Y^{(n-1)}$ . Now define  $K^{(n)} = \bigcup \{K_i: Y_i \in Y^{(n)} \setminus Y^{(n-1)}\} \cup K^{(n-1)}$ , and construct the homeomorphism  $h^{(n)}: \bigcup Y^{(n)} \to K^{(n)} \times Q$  by requiring the restriction of  $h^{(n)}$  to  $\bigcup Y^{(n-1)}$  to agree with  $h^{(n-1)}$ , and taking  $h^{(n)}(Y_i) = K_i \times Q$  for each  $Y_i \in Y^{(n)} \setminus Y^{(n-1)}$ . (The latter is accomplished by simply applying the Z-set homeomorphism extension theorem to each such  $Y_i$  and  $K_i \times Q$ ). This completes the inductive step. The complex  $K = K^{(m)}$  and the homeomorphism  $h = h^{(m)}: Y \to K \times Q$  fulfill the requirements.

For the converse, it is obvious that if (Y,M)  $\approx$  (K  $\times$  Q, L  $\times$  Q), it admits a strong Q-decomposition.

For closed subsets  $A_1, \dots, A_n$  of a nondegenerate Peano continuum X, let  $2^X(A_1, \dots, A_n) = \{F \in 2^X : F \cap A_i \neq \emptyset \text{ for each} i\}$ . It was shown in [5] that  $2^X(A_1, \dots, A_n) \approx Q$ . We also require the following result from [3].

Lemma 4. For  $B \in 2^X$ , the hyperspace  $2^X(A_1, \dots, A_n, B)$  is a Z-set in  $2^X(A_1, \dots, A_n)$  if and only if B is locally nonseparating in X and  $A_i \setminus B$  is dense in  $A_i$ , for each i.

Theorem 1. The hyperspace pair  $(2^X, 2^X(A))$  is triangulable if and only if A is locally non-separating in X at each boundary point.

*Proof.* Suppose first that  $(2^X, 2^X(A))$  is triangulable, and suppose that A is locally separating in X at some boundary point p. Then there exists a neighborhood U of p such that for each neighborhood V  $\subset$  U,V\A is separated.

Consider the element {p} of  $2^{X}(A)$ . For any neighborhood l' of {p} in  $2^{X}$  such that  $\lfloor l' - U$ ,  $l' \setminus 2^{X}(A)$  is separated, since there exist points in X arbitrarily close to p which lie in

different components of UNA. Thus  $2^{X}(A)$  is locally separating in  $2^{X}$  at  $\{p\}$ .

We show next that there exist elements of 2<sup>X</sup>(A) arbitrarily close to  $\{p\}$  at which  $2^{X}(A)$  is locally non-separating in 2<sup>X</sup>. By Lemma 1 there exists a monotone decreasing sequence  $\{V_n\}$  of neighborhoods of p such that  $V_1 \subset U$ , diam  $V_n \neq 0$ , and  $V_{n+1}$  meets only finitely many components of  $V_n \setminus A$ , for each n. Choose a finite subset  $F_n$  of  $V_n \setminus A$ , consisting of one point from each component of  $V_n \setminus A$  meeting  $V_{n+1}$ . It may be assumed that  $V_{n+2} \cap F_n = \emptyset$ . We claim that  $2^X(A)$  is locally nonseparating in  $2^X$  at elements of the form  $\bigcup \{F_{2n}: n \ge N\} \cup \{p\}$ , for each N. Given  $\varepsilon > 0$ , choose m > N such that diam  $V_{2m} < \varepsilon$ , and choose a connected neighborhood  $\mathcal{N}$  in  $2^X \setminus 2^X(A)$  of  $\bigcup \{F_{2n}:$  $N \leq n < m$ } such that diam  $N < \epsilon$  and (UN)  $\cap V_{2m} = \emptyset$ . Define a neighborhood V of  $\bigcup \{F_{2n}: n \ge m\} \cup \{p\}$  as follows. Let  $\{G_i\}$ be the finite collection of components of  $V_{2m}$  A meeting  $V_{2m+1}$ . Then take  $\mathcal{V} = \{B \in 2^X : B \subset \bigcup \{G_i\} \cup V_{2m+1} \text{ and } B \cap G_i \neq \emptyset \text{ for }$ each i}. We have diam  $V < \varepsilon$ , and  $N \times V = \{B_1 \cup B_2 : B_1 \in N\}$ and  $B_2 \in V = 2^X$  is a neighborhood of  $\bigcup \{F_{2n} : n \ge N \} \cup \{p\}$  with diameter less than  $\varepsilon$ . Clearly,  $\mathscr{N} \times \mathscr{V} \setminus 2^X(A) = \mathscr{N} \times (\mathscr{V} \setminus 2^X(A)) =$  $N \times \Pi\{2^{G}: G \in \{G_{i}\}\}$  is connected.

Of course, the above element  $\bigcup \{F_{2n} : n \ge N\} \cup \{p\}$  of  $2^X(A)$  is arbitrarily close to elements  $\bigcup \{F_{2n} : N \le n \le M\} \cup \{p\}$  of  $2^X(A)$ , at which  $2^X(A)$  is locally separating in  $2^X$ . In turn, these latter elements are arbitrarily close to elements  $\bigcup \{F_{2n} : N \le n \le M\} \cup \bigcup \{F_{2n} : n \ge N_1\} \cup \{p\}$  of  $2^X(A)$  at which  $2^X(A)$  is locally non-separating in  $2^X$ .

Thus we may inductively choose a sequence  $\{S_i\}$  in  $2^X(A)$ with  $S_1 = \{p\}$ , each  $S_{i+1}$  arbitrarily close to  $S_i$ , and with the following alternating property:  $2^{X}(A)$  is locally separating in  $2^{X}$  at  $S_1, S_3, \cdots$  and locally non-separating at  $S_2, S_4, \cdots$ . By hypothesis there exists a homeomorphism h:  $(2^X, 2^X(A)) \rightarrow (K \times Q, L \times Q)$ , for some polyhedral pair (K,L). Then  $h(S_1) \in int \sigma_1 \times Q$ , for some simplex  $\sigma_1$  of L. Since  $L \times Q$  is locally separating in  $K \times Q$  at  $h(S_1)$ , it follows that  $L \times Q$  is locally separating in  $K \times Q$  at each point of int  $\sigma_1 \times Q$ . Therefore, if S<sub>2</sub> is close enough to S<sub>1</sub>,  $h(S_2) \in int \sigma_2 \times Q$  for some simplex  $\sigma_2$  of L properly containing  $\sigma_1.$  Then L  $\times$  Q is locally non-separating in K  $\times$  Q at each point of int  $\sigma_2 \times Q$ , and if  $S_3$  is close enough to  $S_2$ we must have  $h(S_3) \in int \sigma_3 \times Q$  for some simplex  $\sigma_3$  properly containing  $\sigma_2$ . Continuing, we obtain an infinite ascending sequence  $\sigma_1 \leq \sigma_2 \leq \sigma_3 \cdots$  of simplices of L, contradicting the compactness of L. Thus if  $(2^X, 2^X(A))$  is triangulable, then A must be locally non-separating in X at each boundary point.

Conversely, suppose that A is locally non-separating in X at each boundary point. If A is nowhere dense then  $2^{X}(A)$  is a Z-set in  $2^{X}$ , and  $(2^{X}, 2^{X}(A)) \approx ([0,1] \times Q, \{0\} \times Q)$ . Now suppose that int  $A \neq \emptyset$ ; using Lemma 2, let  $(f) = \{G_{i}\}$  be the finite collection of components of X\cl(int A). Note that bd  $G_{i} = \overline{G_{i}} \cap bd(int A)$  for each i. We partition ( into four subcollections as follows:

- 1)  $\int_1 = \{G \in f: G \cap A = \emptyset\},\$
- 2)  $\int_2 = \{G \in f: G \cap A \neq \emptyset \text{ but } \overline{G \cap A} \cap bd G \text{ is nowhere dense in bd } G\},$
- 3)  $\int_3 = \{G \in f: \overline{G \cap A} \cap bd \ G \text{ has nonempty interior in} bd \ G \text{ but } \overline{G \cap A} \neq bd \ G\},$

4) 
$$\int_{A} = \{G \in (: \overline{G \cap A} \Rightarrow bd G\}.$$

For each  $G \in ($  we consider a collection #(G) of subspaces of  $2^{\overline{G}}$  as follows:

i)  $\#(G) = \{2^{\overline{G}}, 2^{\overline{G}} (bd G)\}$  if  $G \in (C_1, C_1, C_1)$ ii)  $\#(G) = \{2^{\overline{G}}, 2^{\overline{G}} (bd G), 2^{\overline{G}} (\overline{G \cap A}), 2^{\overline{G}} (bd G, \overline{G \cap A})\}$  if  $G \in (C_2, C_2, C_1)$ iii)  $\#(G) = \{2^{\overline{G}}, 2^{\overline{G}} (\overline{G \cap A}), 2^{\overline{G}} (bd G \cap \overline{G \cap A}), 2^{\overline{G}} (c1 (bd G \setminus \overline{G \cap A})), 2^{\overline{G}} (bd G \cap \overline{G \cap A}, c1 (bd G \setminus \overline{G \cap A})), 2^{\overline{G}} (\overline{G \cap A}, c1 (bd G \setminus \overline{G \cap A}))\}$  if  $G \in (C_3, C_1)$ iv)  $\#(G) = \{2^{\overline{G}}, 2^{\overline{G}} (bd G), 2^{\overline{G}} (\overline{G \cap A})\}$  if  $G \in (C_4, C_4)$ 

For each nonempty subcollection  $\hat{\partial} = \{G_{i_1}, \dots, G_{i_k}\}$  of  $\hat{\ell}$ , define  $\#(\hat{\partial}) = \{\pi_{j=1}^k \#_{i_j}: \#_{i_j} \in \#(G_{i_j})\}$ , where  $\pi_{j=1}^k \#_{i_j} = \{F \in 2^X: F = \bigcup_{j=1}^k F_{i_j} \text{ with each } F_{i_j} \in \#_{i_j}\}$ . We claim that the collection  $\bigcup \{\#(\hat{\partial}): \emptyset \neq \hat{\partial} \subset \hat{\ell}\} \cup \{2^X(\text{cl}(\text{int } A))\}$  of subspaces of  $2^X$  is a strong Q-decomposition of the pair  $(2^X, 2^X(A))$ . The verification is routine. In particular, the necessary Z-set conditions are in most instances consequences of Lemma 2 and Lemma 4. The only exceptions are in situations like  $2^{\overline{G}}(\text{bd } G) \xrightarrow{\subset} 2^X(\text{cl}(\text{int } A))$ , where a "fattening" of hyperspace elements via a convex metric on X provides a small push of  $2^X(\text{cl}(\text{int } A))$  into  $2^X(\text{cl}(\text{int } A)) \setminus 2^{\overline{G}}(\text{bd } G)$  (see the proof of Lemma 4.2 of [5]). We conclude by Lemma 3 that  $(2^X, 2^X(A))$ is triangulable.

### 2. Classification of Triangulable Pairs (2<sup>X</sup>, 2<sup>X</sup>(A))

Suppose A is locally non-separating in X at each boundary point, and int A  $\neq \emptyset$ . We consider the partition  $\bigcup_{i=1}^{4} C_i$ of the collection C of components of X\cl(int A), as described in the proof of Theorem 1. For each i, let  $\tau_i(X,A)$  be the cardinality of  $C_i$ , and define the 4-tuple  $\tau(X,A) = (\tau_i(X,A))_{i=1}^4$ . It is easily seen that all possible values for  $\tau(X,A)$  are realized (for example, take cl(int A) to be a 2-cell, with the closure  $\overline{G}$  of each component of  $X \setminus cl(int A)$  a 2-cell meeting cl(int A) along a common boundary arc). Note that  $\tau(X,A) = (0,0,0,0)$  if and only if A = X.

Theorem 2. Triangulable pairs  $(2^X, 2^X(A))$  and  $(2^Y, 2^Y(B))$ are homeomorphic if and only if either int  $A = \emptyset = int B$  or  $\tau(X, A) = \tau(Y, B)$ .

*Proof.* If int  $A = \emptyset = \text{int } B$ , then  $(2^X, 2^X(A)) \approx ([0,1] \times Q, \{0\} \times Q) \approx (2^Y, 2^Y(B))$ . If  $\tau(X, A) = \tau(Y, B)$ , the strong Q-decompositions of the pairs  $(2^X, 2^X(A))$  and  $(2^Y, 2^Y(B))$  constructed in the proof of Theorem 1 are obviously isomorphic. Then the same polyhedral pair (K,L) is associated with each decomposition, and  $(2^X, 2^X(A)) \approx (K \times Q, L \times Q) \approx (2^Y, 2^Y(B))$ .

Conversely, suppose  $(2^{X}, 2^{X}(A)) \approx (2^{Y}, 2^{Y}(B))$ . Then either int  $A = \emptyset = \text{int } B$  or int  $A \neq \emptyset \neq \text{int } B$ . In the latter case we show that  $\tau(X, A) = (\tau_1, \tau_2, \tau_3, \tau_4)$  is a topological invariant of  $(2^{X}, 2^{X}(A))$ , hence  $\tau(X, A) = \tau(Y, B)$ . Clearly, the number of components of  $2^{X} \setminus 2^{X}(A)$  is equal to the number of nonempty subcollections of (f). Thus  $\tau_1 + \tau_2 + \tau_3 + \tau_4$  is a topological invariant of  $(2^{X}, 2^{X}(A))$ . Since the number of components of  $2^{X} \setminus 2^{X}(A)$  whose closures intersect  $2^{X}(A)$  only in cl(int  $2^{X}(A)) = 2^{X}(\text{cl(int } A))$  is equal to the number of nonempty subcollections of  $(f_1, \tau_1)$  is an invariant. Since the number of components k of  $2^{X} \setminus 2^{X}(A)$  for which bd  $k \setminus \text{cl(int } 2^{X}(A))$ is dense in bd k is equal to the number of nonempty subcollections of  $(f_4, \tau_4)$  is an invariant. Finally, the number of components k' of  $2^X \setminus 2^X(A)$  for which  $cl(bd \ k \setminus cl(int \ 2^X(A)))$  does not contain a nonempty relatively open set in  $bd \ k' \cap$  $cl(int \ 2^X(A))$  is equal to the number of nonempty subcollections of  $(\zeta_1 \cup \zeta_2)$ . Thus  $\tau_1 + \tau_2$  is an invariant. Then  $\tau_2 = (\tau_1 + \tau_2) - \tau_1$  and  $\tau_3 = (\tau_1 + \tau_2 + \tau_3 + \tau_4) - (\tau_1 + \tau_2)$  $- \tau_4$  are also invariants, thus  $\tau(X,A)$  is an invariant as claimed.

## 3. Characterization of Z-set Pairs $(2^X, 2^X_A)$

Theorem 3. Let X be a nondegenerate Peano continuum and A a nonempty closed subset. Then  $2^X_A$  is a Z-set in  $2^X$  if and only if A is not a finite set of local cut points in X.

*Proof.* If A contains a point p which is not a local cut point in X (i.e., {p} is locally non-separating in X), then  $2 {X \atop \{p\}} = 2^{X}(\{p\})$  is a Z-set in  $2^{X}$ , thus  $2^{X}_{A} \subset 2^{X}_{\{p\}}$  is also a Z-set in  $2^{X}$ .

Now suppose A is an infinite set. We show that  $2_A^X$  is a Z-set in  $2^X$  by an argument adapted from the proof of Lemma 5.4 of [5] (in which it was shown that  $2_A^X$  is a Z-set in  $2^X$  whenever int  $A \neq \emptyset$ ). Given  $\varepsilon > 0$ , let  $\mathcal{P}$  be a partition of X with mesh less than  $\varepsilon/3$ . That is,  $\mathcal{P}$  is a finite disjoint collection of connected open subsets with diameters less than  $\varepsilon/3$  and whose closures cover X. We may further suppose that the closure of each partition element is locally connected, and that some partition element  $\alpha$  contains a cluster point of A. There exists a finite connected graph (in fact, a tree) T in the Peano continuum  $\overline{\alpha}$  such that  $M = \bigcup{\overline{\beta}: \overline{\alpha} \cap \overline{\beta} \neq \emptyset}$ ,  $\alpha \neq \beta \in \mathcal{P} \cup T$  is connected, and therefore a Peano continuum. Then the hyperspace  $2^M$  is an AR, and there exists a map

r:  $\overline{\alpha} \Rightarrow 2^{M}$  such that  $r(x) = \{x\}$  for each  $x \in bd \alpha$ . Extend r to a map s:  $X \Rightarrow 2^{X}$  by setting  $s(x) = \{x\}$  for each  $x \in X \setminus \overline{\alpha}$ . Note that  $\rho(\{x\}, s(x)) < 2\varepsilon/3$  for all x. Define the map f:  $2^{X} \Rightarrow 2^{X}$  by  $f(F) = \bigcup\{s(x): x \in F\}$ . Then  $\rho(f, id) < 2\varepsilon/3$ , and  $f(F) \cap \alpha \subset T$  for each  $F \in 2^{X}$ .

If A  $\cap \alpha \neq T$ , then  $f(F) \neq A$  for each F, hence f maps into  $2^X \setminus 2^X_A$ , and  $2^X_A$  is a Z-set in  $2^X$ . On the other hand, if A  $\cap \alpha \subset T$  then A  $\cap T \cap \alpha$  is infinite (recall that  $\alpha$  contains a cluster point of A), and there exists an arc J in T  $\cap \alpha$ containing infinitely many points of A. We may assume that J is a free arc in the Peano continuum  $(X \setminus \alpha) \cup T = \cup \{\overline{\beta}:$  $\alpha \neq \beta \in \mathcal{P}\} \cup T$ . Let  $a_1, a_2$  be distinct points of A  $\cap$  int J. There is constructed in the proof of Lemma 5.4 of [5] a map g:  $2^{(X \setminus \alpha)} \cup T \Rightarrow 2^{(X \setminus \alpha)} \cup T \setminus 2^{(X \setminus \alpha)} \cup T$  such that  $\rho(g, id) <$ diam J. Then the composition gf maps  $2^X$  into  $2^X \setminus 2^X_{\{a_1, a_2\}} \subset$  $2^X \setminus 2^X_A$ , and since diam J < diam  $\alpha < \varepsilon/3$ ,  $\rho(gf, id) < 2\varepsilon/3 + \varepsilon/3 = \varepsilon$ . Thus  $2^X_A$  is a Z-set in  $2^X$  if A is infinite or if A contains a point which is not a local cut point in X.

Conversely, suppose  $A = \{y_1, \dots, y_n\}$  with each  $y_i$  a local cut point in X. We show that for each sufficiently small neighborhood l' of the element A in  $2^X$ ,  $l' \setminus 2^X_A$  is not (n-1)-connected. There exist disjoint connected open neighborhoods  $V_i$  of  $y_i$  in X,  $i = 1, \dots, n$ , such that  $V_i \setminus \{y_i\} = V_i \cup V_i^+$  is a separation. Let d be a convex metric on X. For each i, define a map  $\pi_i : \{F \in 2^X : F \subset V_i\}$  $\Rightarrow (-\infty, \infty)$  by

$$\pi_{i}(F) = \begin{cases} -d(Y_{i},F) & \text{if } F \subset V_{i}^{-}, \\ d(Y_{i},F) & \text{if } F \cap V_{i}^{+} \neq \emptyset, \\ 0 & \text{if } Y_{i} \in F. \end{cases}$$

With  $\mathcal{V} = \{ F \in 2^X : F \subset \bigcup_1^n V_i \text{ and } F \cap V_i \neq \emptyset \text{ for each } i \}$ , a map  $\pi : \mathcal{V} \Rightarrow \prod_1^n (-\infty, \infty)$  is defined by  $\pi(F) = (\pi_i(F \cap V_i))_1^n$ . Note that  $\pi^{-1}(0, \dots, 0) = \mathcal{V} \cap 2_A^X$ . Since the closure of each component of  $V_i \setminus \{ y_i \}$  must contain  $y_i$ , there is for each i an arc  $\alpha_i$  in  $V_i$  such that  $x \Rightarrow \pi_i(\{x\})$  defines a homeomorphism of  $\alpha_i$  onto some interval  $[-t_i, t_i]$ . Let  $g: s^{n-1} \Rightarrow \prod_1^n [-t_i, t_i] \setminus (0, \dots, 0)$  be any essential map, and let  $\tilde{g}: S^{n-1} \Rightarrow \mathcal{V} \setminus 2_A^X$  be the lifting of g via the arcs  $\{\alpha_i\}$ . That is,  $\tilde{g}(s) = \bigcup_1^n \{x_i\}$ , where each  $x_i \in \alpha_i$ , and  $\pi \tilde{g} = g$ .

For any neighborhood l' of A in  $2^X$  such that  $l' \subset V$ , we may ensure that  $\tilde{g}$  maps into l' by requiring that g map into a small neighborhood of  $(0, \dots, 0)$ . And clearly, the map  $\tilde{g}: S^{n-1} \Rightarrow l' \setminus 2^X_A$  is not homotopic to a constant map, since composing such a homotopy with  $\pi$  would provide a homotopy from  $g: S^{n-1} \Rightarrow \Pi^n_1(-\infty,\infty) \setminus (0,\dots,0)$  to a constant map. Thus  $2^X_A$ cannot be a Z-set in  $2^X$ .

Conjecture. The pair  $(2^X, 2^X_A)$  is triangulable only if  $2^X_A$  is a Z-set in  $2^X$ .

It can be shown, by a strategy similar to that employed in the proof of Theorem 1, that if  $A = \{y_1, \dots, y_n\}$  where each  $y_i$  is a local cut point of finite order, then  $(2^X, 2^X_A)$ is not triangulable.

#### References

- T. A. Chapman, Lectures on Hilbert cube manifolds, CBMS Regional Conference Series, Number 28 (1976), American Mathematical Society.
- D. W. Curtis, Simplicial maps which stabilize to nearhomeomorphisms, Comp. Math. 25 (1972), 117-122.
- [3] \_\_\_\_\_, Hyperspaces of noncompact metric spaces, preprint.

- [4] \_\_\_\_\_ and R. M. Schori, Hyperspaces of Peano continua are Hilbert cubes, preprint.
- [5] \_\_\_\_\_, Hyperspaces which characterize simple homotopy type, Gen. Top. and Its Applic. 6 (1976), 153-165.

Louisiana State University Baton Rouge, Louisiana 70803