TOPOLOGY PROCEEDINGS

Volume 2, 1977
Pages 431-444
http://topology.auburn.edu/tp/

TRIANGULABLE HYPERSPACE PAIRS

by
D. W. Curtis

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

TRIANGULABLE HYPERSPACE PAIRS

D. W. Curtis

0. Introduction

For every nondegenerate Peano continuum X, the hyperspace 2^{X} of nonempty closed subsets of X , topologized by the Hausdorff metric, is homeomorphic to the Hilbert cube Q [4]. And for every proper nonempty closed subset A of X, the subhyperspaces $2^{X}(A)=\left\{F \in 2^{X}: F \cap A \neq \varnothing\right\}$ and $2_{A}^{X}=\left\{F \in 2^{X}\right.$: $\mathrm{F} \supset \mathrm{A}\}$ are also homeomorphic to Q [5]. A natural question arises: how are $2^{X}(A)$ and 2_{A}^{X} situated in 2^{X} ? In this paper we present some results on the topology of the hyperspace pairs $\left(2^{X}, 2^{X}(A)\right)$ and ($\left.2^{X}, 2_{A}^{X}\right)$.

The first general result in this direction was obtained in [3]: $2^{\mathrm{X}}(\mathrm{A})$ is a Z -set in 2^{X} if and only if A is locally non-separating in X (i.e., for every nonempty connected open subset U of $X, U \backslash A$ is nonempty and connected). Of course, the condition that $2^{X}(A)$ be a $Z-s e t$ in 2^{X} is equivalent to the existence of a pair homeomorphism between $\left(2^{X}, 2^{X}(A)\right)$ and $([0,1] \times Q,\{0\} \times Q)$.

Thus for example, with $I=[0,1]$, the hyperspace $2^{I}(A)$ is a Z-set in 2^{I} if and only if $A \subset \partial I$. What then can be said about the topological position in 2^{I} of a hyperspace such as $2^{I}(\{1 / 2\})=2_{\{1 / 2\}}^{I}$? Since $2^{I} \backslash 2_{\{1 / 2\}}^{I}$ is the disjoint union $M_{1} \cup M_{2} \cup M_{3}$ of three copies of $Q \times[0,1)$, where $M_{1}=$ $\left\{F \in 2^{I}: F \subset[0,1 / 2)\right\}, M_{2}=\left\{F \in 2^{I}: F \subset(1 / 2,1]\right\}$, and $M_{3}=$ $\left\{F \in 2^{I}: F \in[0,1 / 2) \cup(1 / 2,1]\right.$ and $F \cap[0,1 / 2) \neq \emptyset \neq F \cap$ $(1 / 2,1]\}$, a first guess might be that $\left(2^{I}, 2_{\{1 / 2\}}^{I}\right)$ is
homeomorphic as a pair to ($T \times Q,\{v\} \times Q$), where T is a union of three arcs meeting at a common endpoint v. On closer examination this is seen not to be the case (the closures of M_{1} and M_{2} do not contain $2 \frac{I}{\{1 / 2\}}$, and $2 \frac{I}{\{1 / 2\}}$ is not a Z-set in the closure of $\left.M_{3}\right)$. As it turns out, $\left(2^{I}, 2_{\{1 / 2\}}^{I}\right)$ is not homeomorphic to a triangulated pair ($K \times Q, L \times Q$) for any polyhedral pair (K, L) . On the other hand, the hyperspace pair $\left(2^{I}, 2^{I}([1 / 3,2 / 3])\right)$ is triangulable. Let L be a 2 -cell and $\mathrm{K}=\mathrm{L} \cup \alpha_{1} \cup \alpha_{2} \cup \alpha_{3}$, where the α_{i} are disjoint arcs attached to L such that each $\alpha_{i} \cap L$ is a boundary point of α_{i} and L. Then it is not difficult to show that $\left(2^{I}, 2^{I}\right.$ ([1/3,2/3])) is homeomorphic to ($\mathrm{K} \times \mathrm{Q}, \mathrm{L} \times \mathrm{Q}$). These two examples motivated Theorem 1 below, which says that the hyperspace pair $\left(2^{X}, 2^{X}(A)\right)$ is triangulable in the above sense if and only if A is locally non-separating in X at each point in bd A.

For those pairs $\left(2^{\mathrm{X}}, 2^{\mathrm{X}}(\mathrm{A})\right)$ which are triangulable, Theorem 2 provides a simple topological classification relating to the components of $\mathrm{x} \backslash \mathrm{cl}($ int A$)$.

For the hyperspace pairs $\left(2^{X}, 2_{A}^{X}\right)$, Theorem 3 says that 2_{A}^{X} is a Z-set in 2^{X} if and only if A is not a finite subset of local cut points in X. Thus for example, $2{ }_{A}^{I}$ is a z-set in 2^{I} unless A is a finite subset of int I. In the latter case it can be shown that $\left(2^{I}, 2{ }_{A}^{I}\right)$ is not even triangulable. It appears $1 i k e l_{y}$ that in general, $\left(2^{X}, 2_{A}^{X}\right)$ is triangulable only if 2_{A}^{X} is a Z-set in 2^{X}.

1. Characterization of Triangulable Pairs ($\left.\mathbf{2}^{\mathbf{X}}, 2^{\mathbf{X}}(\mathbf{A})\right)$

Definition. A Q-manifold pair (Y, M) is triangulable
if there exists a polyhedral pair (K,L) such that $(Y, M) \approx(K \times Q, L \times Q)$.

Lemma 1. If $\left(2^{\mathrm{X}}, 2^{\mathrm{X}}(\mathrm{A})\right)$ is triangulable, then for every neighborhood U in X of a boundary point p of A , there exists a neighborhood V of p such that V meets only finitely many components of U\A.

Proof. Suppose not. Then there exists a neighborhood U of a point $p \in b d A$, and a sequence $\left\{p_{n}\right\}$ in $U \backslash A$ converging to p, such that each p_{n} is in a distinct component of $U \backslash A$. It follows that for every neighborhood U in 2^{X} of $\{p\}$ such that $U U \subset U$ (i.e., for every sufficiently small neighborhood U of $\{p\})$, the complement $U \backslash 2^{x}(A)$ has infinitely many components. But this is impossible if $\left(2^{X}, 2^{X}(A)\right) \approx(K \times Q, L \times Q)$ for some polyhedral pair (K, L), since each point of $L \times Q$ has a basis of neighborhoods W in $K \times Q$ such that each complement $W \backslash L \times Q$ has only finitely many components.

Definition. A closed subset A of a Peano continuum X is locally non-separating in X at $p \in b d A$ if there exists at p a neighborhood base $U(p)$ such that for each $U \in U(p), U \backslash A$ is connected.

It is routine to show that A is locally non-separating in X (as defined in $\S 0$) if and only if A has empty interior and is locally non-separating in X at each point.

Lemma 2. Let X be a Peano continuum and A a closed subset which is locally non-separating in X at each boundary point. Then:
i) $X \backslash c l(i n t A)$ has a finite number of components $\left\{G_{i}\right\}$,
ii) The closures $\left\{\overline{\mathrm{G}}_{\mathbf{i}}\right\}$ are pairwise disjoint,
iii) each \bar{G}_{i} is locally connected,
iv) each $\bar{G}_{i} \cap \mathrm{~A}$ is locally non-separating in $\overline{\mathrm{G}}_{\mathrm{i}}$.

Proof. True if int $A=\varnothing$. Suppose int $A \neq \varnothing$. For each point $x \in b d(i n t A)$ there is an open neighborhood U in X such that $U \backslash A$ is connected. Since $U \backslash A$ is dense in U\cl(int A); it follows that U\cl(int A) is connected. By compactness, bd(int A) is covered by a finite collection $\left\{U_{i}\right\}$ of such neighborhoods. Since X is connected, each component of Xicl(int A) has a limit point in bd(int A). Then each component must intersect, and therefore contain, some $U_{i} \backslash c l(i n t ~ A)$. Thus the number of components of $\mathrm{Xlcl}($ int A$)$ is finite. And since $\bar{G}_{i} \backslash G_{i} \subset \operatorname{bd}($ int $A)$, it follows also that $\bar{G}_{i} \cap \bar{G}_{j}=\varnothing$ if ifi.

Consider $x \in b d G_{i}=\bar{G}_{i} \cap c l(i n t A)$. As shown above, x has arbitrarily small neighborhoods U in X such that U\cl (int A) is connected. Since Ulcl(int A) is dense in $\mathrm{U} \cap \overline{\mathrm{G}}_{\mathrm{i}}$, the latter set is a connected neighborhood of x in $\overline{G_{i}}$. Thus $\overline{G_{i}}$ is locally connected.

Clearly, $\overline{G_{i}} \cap A$ is nowhere dense in $\overline{G_{i}}$, and A is locally non-separating in $\overline{G_{i}}$ at each point of $A \cap G_{i}$. For $x \in$ bd G_{i} the basic neighborhoods $U \cap \overline{G_{i}}$ of x obtained above are such that $U \cap \overline{G_{i}} \backslash A=U \backslash A$ is connected. Thus $\overline{G_{i}} \cap A$ is locally non-separating in $\overline{G_{i}}$.

Definition. A strong Q-decomposition of a pair (Y,M) is a finite cover $\left\{Y_{i}\right\}$ of Y such that:
i) each decomposition element Y_{i} is homeomorphic to Q,
ii) each nonempty intersection $Y_{i} \cap Y_{j}$ is a union of decomposition elements,
iii) Y_{i} is a Z-set in Y_{j} whenever $Y_{i} \underset{\neq}{\subsetneq} Y_{j}$,
iv) M is a union of decomposition elements.

Lemma 3. A compact Q-manifold pair (Y, M) is triangulable if and only if it admits a strong Q-decomposition.

Proof. This is similar to the proof of Theorem 2.4 of [2]. Let $\left\{\mathrm{Y}_{\mathrm{i}}\right\}$ be a strong Q-decomposition of the pair (Y, M). We construct a simplicial complex K which is the union of a collection $\left\{K_{i}\right\}$ of subcomplexes in $1-1$ correspondence with the decomposition elements $\left\{Y_{i}\right\}$, and a homeomorphism $h: Y \rightarrow K \times Q$ such that for each $i, h\left(Y_{i}\right)=K_{i} \times Q$. Then for $L=U\left\{K_{i}: Y_{i} \subset M\right\}$, we have $(Y, M) \approx(K \times Q, L \times Q)$. The construction is inductive, beginning with the minimal elements of the decomposition.

To this end, we write $\left\{Y_{i}\right\}$ as a monotone union of subcollections, $\varnothing=Y^{(-1)} \subset Y^{(0)} \subset \cdots \subset Y^{(m)}=\left\{Y_{i}\right\}$, such that if $Y_{j} \underset{\neq}{\subset} Y_{k} \in Y^{(n)}$, then $Y_{j} \in Y^{(n-1)}$. Thus each element of $Y^{(0)}$ is a minimal decomposition element. Let $K^{(0)}$ be a collection of points in 1-1 correspondence with the elements of $\mathrm{Y}^{(0)}$, and choose a corresponding homeomorphism $\mathrm{h}^{(0)}$: $U Y^{(0)} \rightarrow K^{(0)} \times Q$. Inductively, suppose there exists a complex $K^{(n-1)}$ and a homeomorphism $h^{(n-1)}: U^{(n-1)} \rightarrow K^{(n-1)}$ $\times Q$ such that for each $Y_{j} \in Y^{(n-1)}, h^{(n-1)}\left(Y_{j}\right)=K_{j} \times Q$ for some subcomplex K_{j} of $K^{(n-1)}$. Then for each $Y_{i} \in Y^{(n)} \backslash Y^{(n-1)}$, set $K_{i}=$ cone $\left(U\left\{K_{j}: Y_{j} \underset{\neq}{\neq} Y_{i}\right\}\right)$. The cone points are chosen so that each $K_{i} \cap K^{(n-1)}=U\left\{K_{j}: Y_{j} \not \subset Y_{i}\right\}$, and $K_{i 1} \cap K_{i_{2}} \subset$ $K^{(n-1)}$ for each $Y_{i_{1}}, Y_{i_{2}} \in Y^{(n)} Y^{(n-1)}$. Now define
$K^{(n)}=U\left\{K_{i}: Y_{i} \in Y^{(n)} Y_{Y}^{(n-1)}\right\} U K^{(n-1)}$, and construct the homeomorphism $h^{(n)}: U Y^{(n)} \rightarrow K^{(n)} \times Q$ by requiring the restriction of $h^{(n)}$ to $U Y^{(n-1)}$ to agree with $h^{(n-1)}$, and taking $h^{(n)}\left(Y_{i}\right)=K_{i} \times Q$ for each $Y_{i} \in Y^{(n)} \backslash Y^{(n-1)}$. (The latter is accomplished by simply applying the Z-set homeomorphism extension theorem to each such Y_{i} and $\left.K_{i} \times Q\right)$. This completes the inductive step. The complex $K=K^{(m)}$ and the homeomorphism $h=h^{(m)}: Y \rightarrow K \times Q$ fulfill the requirements.

For the converse, it is obvious that if (Y, M) $\approx(K \times Q$, L \times Q), it admits a strong Q-decomposition.

For closed subsets A_{1}, \cdots, A_{n} of a nondegenerate Peano continuum X, let $2^{X}\left(A_{1}, \cdots, A_{n}\right)=\left\{F \in 2^{X}: F \cap A_{i} \neq \varnothing\right.$ for each i\}. It was shown in [5] that $2^{X}\left(A_{1}, \cdots, A_{n}\right) \approx Q$. We also require the following result from [3].

Lemma 4. For $\mathrm{B} \in 2^{\mathrm{X}}$, the hyperspace $2^{\mathrm{X}}\left(\mathrm{A}_{1}, \cdots, \mathrm{~A}_{\mathrm{n}}, \mathrm{B}\right)$ is a Z -set in $2^{\mathrm{X}}\left(\mathrm{A}_{1}, \cdots, \mathrm{~A}_{\mathrm{n}}\right)$ if and only if B is locally nonseparating in X and $\mathrm{A}_{\mathrm{i}} \backslash \mathrm{B}$ is dense in A_{i}, for each i .

Theorem 1. The hyperspace pair $\left(2^{\mathrm{X}}, 2^{\mathrm{X}}(\mathrm{A})\right)$ is triangulable if and only if A is locally non-separating in X at each boundary point.

Proof. Suppose first that $\left(2^{X}, 2^{X}(A)\right)$ is triangulable, and suppose that A is locally separating in X at some boundary point p. Then there exists a neighborhood u of p such that for each neighborhood $V \subset U, V \backslash A$ is separated.

Consider the element $\{p\}$ of $2^{X}(A)$. For any neighborhood U of $\{p\}$ in 2^{X} such that $U U \subset U, U \backslash 2^{X}(A)$ is separated, since there exist points in X arbitrarily close to p which lie in
different components of $U \backslash A$. Thus $2^{X}(A)$ is locally separating in 2^{X} at $\{p\}$.

We show next that there exist elements of $2^{\mathrm{X}}(\mathrm{A})$ arbitrarily close to $\{p\}$ at which $2^{X}(A)$ is locally non-separating in 2^{X}. By Lemma 1 there exists a monotone decreasing sequence $\left\{V_{n}\right\}$ of neighborhoods of p such that $V_{1} \subset U, \operatorname{diam} V_{n} \rightarrow 0$, and $\mathrm{V}_{\mathrm{n}+1}$ meets only finitely many components of $\mathrm{V}_{\mathrm{n}} \backslash \mathrm{A}$, for each n . Choose a finite subset F_{n} of $V_{n} \backslash A$, consisting of one point from each component of $V_{n} \backslash A$ meeting V_{n+1}. It may be assumed that $V_{n+2} \cap F_{n}=\varnothing$. We claim that $2^{X}(A)$ is locally nonseparating in 2^{X} at elements of the form $U\left\{F_{2 n}: n \geq N\right\} U\{p\}$, for each N. Given $\varepsilon>0$, choose $m>N$ such that diam $V_{2 m}<\varepsilon$, and choose a connected neighborhood N in $2^{X} \backslash 2^{X}(A)$ of $U\left\{F_{2 n}\right.$: $N \leq n<m\}$ such that diam $N<\varepsilon$ and $(\cup N) \cap V_{2 m}=\varnothing$. Define a neighborhood V of $U\left\{F_{2 n}: n \geq m\right\} U\{p\}$ as follows. Let $\left\{G_{i}\right\}$ be the finite collection of components of $V_{2 m} \backslash A$ meeting $V_{2 m+1}$. Then take $V=\left\{B \in 2^{X}: B \subset \cup\left\{G_{i}\right\} \cup V_{2 m+1}\right.$ and $B \cap G_{i} \neq \emptyset$ for each i\}. We have diam $V<\varepsilon$, and $N \times V=\left\{B_{1} \cup B_{2}: B_{1} \in N\right.$ and $\left.B_{2} \in V\right\} \subset 2^{X}$ is a neighborhood of $U\left\{F_{2 n}: n \geq N\right\} U\{p\}$ with diameter less than ε. Clearly, $N \times V \backslash 2^{\mathrm{X}}(\mathrm{A})=N \times\left(V \backslash 2^{\mathrm{X}}(\mathrm{A})\right)=$ $N \times \Pi\left\{2^{G}: G \in\left\{G_{i}\right\}\right\}$ is connected.

Of course, the above element $U\left\{F_{2 n}: n \geq N\right\} U\{p\}$ of $2^{X}(A)$ is arbitrarily close to elements $U\left\{F_{2 n}: N \leq n \leq M\right\} U$ \{p\} of $2^{X}(A)$, at which $2^{X}(A)$ is locally separating in 2^{X}. In turn, these latter elements are arbitrarily close to elements $U\left\{F_{2 n}: N \leq n \leq M\right\} U U\left\{F_{2 n}: n \geq N_{1}\right\} U\{p\}$ of $2^{X}(A)$ at which $2^{X}(A)$ is locally non-separating in 2^{X}.

Thus we may inductively choose a sequence $\left\{S_{i}\right\}$ in $2^{X}(A)$ with $S_{1}=\{p\}$, each S_{i+1} arbitrarily close to S_{i}, and with
the following alternating property: $2^{X}(A)$ is locally separating in 2^{X} at S_{1}, s_{3}, \cdots and locally non-separating at S_{2}, S_{4}, \cdots. By hypothesis there exists a homeomorphism $h:\left(2^{X}, 2^{X}(A)\right) \rightarrow(K \times Q, L \times Q)$, for some polyhedral pair (K, L). Then $h\left(S_{1}\right) \in$ int $\sigma_{1} \times Q$, for some simplex σ_{1} of L. Since $L \times Q$ is locally separating in $K \times Q$ at $h\left(S_{1}\right)$, it follows that $L \times Q$ is locally separating in $K \times Q$ at each point of int $\sigma_{1} \times Q$. Therefore, if S_{2} is close enough to S_{1}, $h\left(S_{2}\right) \in$ int $\sigma_{2} \times Q$ for some simplex σ_{2} of L properly containing σ_{1}. Then $L \times Q$ is locally non-separating in $K \times Q$ at each point of int $\sigma_{2} \times Q$, and if S_{3} is close enough to S_{2} we must have $h\left(S_{3}\right) \in$ int $\sigma_{3} \times Q$ for some simplex σ_{3} properly containing σ_{2}. Continuing, we obtain an infinite ascending sequence $\sigma_{1}\left\{\sigma_{2}\left\{\sigma_{3} \cdots\right.\right.$ of simplices of L, contradicting the compactness of L. Thus if $\left(2^{X}, 2^{X}(A)\right)$ is triangulable, then A must be locally non-separating in X at each boundary point.

Conversely, suppose that A is locally non-separating in X at each boundary point. If A is nowhere dense then $2^{X}(A)$ is a 2 -set in 2^{X}, and $\left(2^{X}, 2^{X}(A)\right) \approx([0,1] \times Q,\{0\} \times Q)$. Now suppose that int $A \neq \varnothing$; using Lemma 2, let $C=\left\{G_{i}\right\}$ be the finite collection of components of $\mathrm{X} \backslash \mathrm{cl}($ int A$)$. Note that bd $G_{i}=\overline{G_{i}} \cap$ bd(int $\left.A\right)$ for each i. We partition C into four subcollections as follows:

1) $C_{1}=\{G \in C: G \cap A=\varnothing\}$,
2) $C_{2}=\{G \in C: G \cap A \neq \varnothing$ but $\overline{G \cap A} \cap$ bd G is nowhere dense in bd G\},
3) $C_{3}=\{G \in C: \overline{G \cap \bar{A}} \cap$ bd G has nonempty interior in bd G but $\overline{G \cap \bar{A}} \neq b d G\}$,
4) $C_{4}=\{G \in C: \overline{G \cap A}=b d G\}$.

For each $G \in C$ we consider a collection $H(G)$ of subspaces of $2^{\bar{G}}$ as follows:
i) $H(G)=\left\{2^{\bar{G}}, 2^{\bar{G}}(\mathrm{bd} \mathrm{G})\right\}$ if $\mathrm{G} \in C_{1}$,
ii) $H(G)=\left\{2^{\bar{G}}, 2^{\bar{G}}\left(\right.\right.$ bd G) $, 2^{\bar{G}}(\overline{G \cap A}), 2^{\bar{G}}(b d G, \overline{G \cap \bar{A}}\}$ if $G \in C_{2}$,
iii) $H(G)=\left\{2^{\bar{G}}, 2^{\bar{G}}(\overline{G \cap A}), 2^{\bar{G}}(\right.$ bd $G \cap \overline{G \cap \bar{A}})$, $2^{\bar{G}}(c l(b d \operatorname{Gl} \bar{G} \cap A)), 2^{\bar{G}}(b d G \cap \overline{G \cap A}, c l(b d G l \overline{G \cap A}))$, $\left.2^{\bar{G}}(\overline{G \cap A}, c l(b d G \backslash \overline{G \cap A}))\right\}$ if $G \in C_{3}$,
iv) $H(G)=\left\{2^{\bar{G}}, 2^{\bar{G}}(b d G), 2^{\bar{G}}(\overline{G \cap A})\right\}$ if $G \in C_{4}$.

For each nonempty subcollection $D=\left\{G_{i_{1}}, \cdots, G_{\mathbf{i}_{\mathbf{k}}}\right\}$ of C, define $H(D)=\left\{\Pi_{j=1}^{k} H_{i_{j}}: H_{i_{j}} \in H\left(G_{i_{j}}\right)\right\}$, where $\Pi_{j=1}^{k} H_{i_{j}}=$ $\left\{F \in 2^{X}: F=U_{j=1}^{k} F_{i_{j}}\right.$ with each $\left.F_{i_{j}} \in H_{i_{j}}\right\}$. We claim that the collection $u\{H(D): \varnothing \neq D \subset C\} \cup\left\{2^{X}(c l(\right.$ int $\left.A))\right\}$ of subspaces of 2^{X} is a strong Q-decomposition of the pair $\left(2^{X}, 2^{X}(A)\right)$. The verification is routine. In particular, the necessary Z-set conditions are in most instances consequences of Lemma 2 and Lemma 4. The only exceptions are in situations like $2^{\bar{G}}(\mathrm{bd} G) \underset{\neq}{\subsetneq} 2^{\mathrm{X}}(\mathrm{cl}($ int A$))$, where a "fattening" of hyperspace elements via a convex metric on X provides a small push of $2^{\mathrm{X}}(\mathrm{cl}($ int $A))$ into $2^{\mathrm{X}}(\mathrm{cl}($ int $A)) \backslash 2^{\bar{G}}$ (bd G) (see the proof of Lemma 4.2 of [5]). We conclude by Lemma 3 that ($2^{\mathrm{X}}, 2^{\mathrm{X}}(\mathrm{A})$) is triangulable.

2. Classification of Triangulable Pairs ($2^{\mathbf{X}}, 2^{X_{(A)}}$)

Suppose A is locally non-separating in X at each boundary point, and int $A \neq \varnothing$. We consider the partition $u_{i=1}^{4} C_{i}$ of the collection C of components of X\cl(int A), as described in the proof of Theorem 1. For each i, let
$\tau_{i}(X, A)$ be the cardinality of C_{i}, and define the 4 -tuple $\tau(X, A)=\left(\tau_{i}(X, A)\right)_{i=1}^{4}$. It is easily seen that all possible values for $\tau(X, A)$ are realized (for example, take cl(int A) to be a 2-cell, with the closure \bar{G} of each component of Xlcl(int A) a 2 -cell meeting $c l(i n t A)$ along a common boundary arc). Note that $\tau(X, A)=(0,0,0,0)$ if and only if $A=X$.

Theorem 2. Triangulable pairs $\left(2^{\mathrm{X}}, 2^{\mathrm{X}}(\mathrm{A})\right)$ and $\left(2^{\mathrm{Y}}, 2^{\mathrm{Y}}(\mathrm{B})\right)$ are homeomorphic if and only if either int $\mathrm{A}=\varnothing=$ int B or $\tau(X, A)=\tau(Y, B)$.

Proof. If int $A=\varnothing=$ int B, then $\left(2^{X}, 2^{X}(A)\right) \approx([0,1] \times$ $Q,\{0\} \times Q) \approx\left(2^{Y}, 2^{Y}(B)\right)$. If $\tau(X, A)=\tau(Y, B)$, the strong Q-decompositions of the pairs $\left(2^{X}, 2^{X}(A)\right)$ and $\left(2^{Y}, 2^{Y}(B)\right)$ constructed in the proof of Theorem 1 are obviously isomorphic. Then the same polyhedral pair (K, L) is associated with each decomposition, and $\left(2^{X}, 2^{X}(A)\right) \approx(K \times Q, L \times Q) \approx\left(2^{Y}, 2^{Y}(B)\right)$. Conversely, suppose $\left(2^{X}, 2^{X}(A)\right) \approx\left(2^{Y}, 2^{Y}(B)\right)$. Then either int $A=\emptyset=$ int B or int $A \neq \emptyset \neq$ int B. In the latter case we show that $\tau(X, A)=\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)$ is a topological invariant of $\left(2^{X}, 2^{X}(A)\right)$, hence $\tau(X, A)=\tau(Y, B)$. Clearly, the number of components of $2^{X_{\backslash 2}}{ }^{X}(A)$ is equal to the number of nonempty subcollections of C. Thus $\tau_{1}+\tau_{2}+\tau_{3}+\tau_{4}$ is a topological invariant of $\left(2^{X}, 2^{X}(A)\right)$. Since the number of components of $2^{X}{ }_{1}{ }^{X}(A)$ whose closures intersect $2^{X}(A)$ only in $\operatorname{cl}\left(\right.$ int $\left.2^{X}(A)\right)=2^{X}(c l($ int $A))$ is equal to the number of nonempty subcollections of C_{1}, τ_{1} is an invariant. Since the number of components K of $2^{X} \backslash 2^{X}(A)$ for which bd $K \backslash c l\left(i n t 2^{X}(A)\right)$ is dense in bd K is equal to the number of nonempty subcollections of C_{4}, τ_{4} is an invariant. Finally, the number of
components K of $2^{X} \backslash 2^{X}(A)$ for which $c l\left(b d K \backslash c l\left(i n t ~ 2^{X}(A)\right)\right.$ does not contain a nonempty relatively open set in bd $K \cap$ cl(int $\left.2^{X}(A)\right)$ is equal to the number of nonempty subcollections of $C_{1} \cup C_{2}$. Thus $\tau_{1}+\tau_{2}$ is an invariant. Then $\tau_{2}=\left(\tau_{1}+\tau_{2}\right)-\tau_{1}$ and $\tau_{3}=\left(\tau_{1}+\tau_{2}+\tau_{3}+\tau_{4}\right)-\left(\tau_{1}+\tau_{2}\right)$ - τ_{4} are also invariants, thus $\tau(X, A)$ is an invariant as claimed.

3. Characterization of Z-set Pairs ($2^{\mathbf{X}}, \mathbf{2}_{\mathbf{A}}^{\mathbf{X}}$)

Theorem 3. Let X be a nondegenerate Peano continuum and A a nonempty closed subset. Then 2_{A}^{X} is a Z -set in 2^{X} if and only if A is not a finite set of local cut points in X .

Proof. If A contains a point p which is not a local cut point in $X(i . e .,\{p\}$ is locally non-separating in X), then $2_{\{p\}}^{X}=2^{X}(\{p\})$ is a z-set in 2^{X}, thus $2_{A}^{X} \subset 2_{\{p\}}^{X}$ is also a z-set in 2^{X}.

Now suppose A is an infinite set. We show that 2_{A}^{X} is a Z-set in 2^{X} by an argument adapted from the proof of Lemma 5.4 of [5] (in which it was shown that $2{ }_{A}^{X}$ is a z-set in 2^{X} whenever int $A \neq \varnothing$). Given $\varepsilon>0$, let \mathcal{P} be a partition of X with mesh less than $\varepsilon / 3$. That is, P is a finite disjoint collection of connected open subsets with diameters less than $\varepsilon / 3$ and whose closures cover X. We may further suppose that the closure of each partition element is locally connected, and that some partition element α contains a cluster point of A. There exists a finite connected graph (in fact, a tree) T in the Peano continuum $\bar{\alpha}$ such that $M=U\{\bar{B}: \bar{\alpha} \cap \bar{\beta} \neq \varnothing$, $\alpha \neq \beta \in \mathcal{P}\} \cup T$ is connected, and therefore a Peano continuum. Then the hyperspace 2^{M} is an $A R$, and there exists a map
$r: \bar{\alpha} \Rightarrow 2^{M}$ such that $r(x)=\{x\}$ for each $x \in b d \alpha$. Extend r to a map $s: X \Rightarrow 2^{X}$ by setting $s(x)=\{x\}$ for each $x \in X \backslash \bar{\alpha}$. Note that $\rho(\{x\}, s(x))<2 \varepsilon / 3$ for all x. Define the map $f: 2^{X} \Rightarrow 2^{X}$ by $f(F)=U\{s(x): x \in F\}$. Then $\rho(f, i d)<2 \varepsilon / 3$, and $f(F) \cap \alpha \subset T$ for each $F \in 2^{X}$.

If $A \cap \alpha \notin T$, then $f(F) \notin A$ for each F, hence f maps into $2^{X} \backslash 2_{A}^{X}$, and 2_{A}^{X} is a z-set in 2^{X}. On the other hand, if A $\cap \alpha \subset T$ then $A \cap T \cap \alpha$ is infinite (recall that α contains a cluster point of A), and there exists an arc J in $T \cap \alpha$ containing infinitely many points of A. We may assume that J is a free arc in the Peano continuum ($X \backslash \alpha$) U $T=U\{\bar{B}$: $\alpha \neq \beta \in P\} \cup T$. Let a_{1}, a_{2} be distinct points of $A \cap$ int J. There is constructed in the proof of Lemma 5.4 of [5] a map $\left.g: 2^{(X \backslash \alpha)} \cup T \Rightarrow 2^{(X \backslash \alpha)} \cup T_{\backslash 2}(X \backslash \alpha) \cup T a_{1}, a_{2}\right\} \quad$ such that $\rho(g, i d)<$ diam J. Then the composition $g f$ maps 2^{X} into $2^{X} \backslash 2_{\left\{a_{1}, a_{2}\right\}}^{X} \subset$ $2^{X} \backslash 2_{A} X$ and since diam $J<\operatorname{diam} \alpha<\varepsilon / 3, \rho(g f, i d)<2 \varepsilon / 3+$ $\varepsilon / 3=\varepsilon$. Thus 2_{A}^{X} is a Z-set in 2^{X} if A is infinite or if A contains a point which is not a local cut point in X . Conversely, suppose $A=\left\{y_{1}, \cdots, y_{n}\right\}$ with each $y_{i} a$ local cut point in X. We show that for each sufficiently small neighborhood U of the eIement A in $2^{X}, U_{\backslash 2_{A}}^{X}$ is not ($n-1$)-connected. There exist disjoint connected open neighborhoods V_{i} of y_{i} in $X, i=1, \cdots, n$, such that $v_{i} \backslash\left\{y_{i}\right\}=v_{i}^{-} U v_{i}^{+}$is a separation. Let d be a convex metric on X. For each i, define a map π_{i} : $\left\{F \in 2^{X}\right.$: $\left.F \subset V_{i}\right\}$ $\Rightarrow(-\infty, \infty)$ by

$$
\pi_{i}(F)= \begin{cases}-d\left(y_{i}, F\right) & \text { if } F \subset v_{i}^{-} \\ d\left(y_{i}, F\right) & \text { if } F \cap v_{i}^{+} \neq \varnothing, \\ 0 & \text { if } y_{i} \in F .\end{cases}
$$

With $V=\left\{F \in 2^{X}: F \subset U_{l}^{n} V_{i}\right.$ and $F \cap V_{i} \neq \varnothing$ for each $\left.i\right\}$, a map $\pi: V \Rightarrow \pi_{1}^{n}(-\infty, \infty)$ is defined by $\pi(F)=\left(\pi_{i}\left(F \cap V_{i}\right)\right)_{1}^{n}$. Note that $\pi^{-l}(0, \cdots, 0)=V \cap 2_{A}^{X}$. since the closure of each component of $V_{i} \backslash\left\{y_{i}\right\}$ must contain y_{i}, there is for each i an arc α_{i} in V_{i} such that $x \Rightarrow \pi_{i}(\{x\})$ defines a homeomorphism of α_{i} onto some interval $\left[-t_{i}, t_{i}\right]$. Let $g: s^{n-1} \Rightarrow \Pi_{1}^{n}\left[-t_{i}, t_{i}\right]$ $(0, \cdots, 0)$ be any essential map, and let $\tilde{g}: s^{n-l} \Rightarrow V 2_{A}^{X}$ be the lifting of g via the arcs $\left\{\alpha_{i}\right\}$. That is, $\tilde{g}(s)=U_{1}^{n}\left\{x_{i}\right\}$, where each $x_{i} \in \alpha_{i}$, and $\pi \tilde{g}=g$.

For any neighborhood U of A in 2^{X} such that $U \subset V$, we may ensure that \tilde{g} maps into U by requiring that g map into a small neighborhood of ($0, \cdots, 0$) . And clearly, the map $\tilde{g}: s^{n-1} \Rightarrow U \backslash 2_{A}^{X}$ is not homotopic to a constant map, since composing such a homotopy with π would provide a homotopy from $g: s^{n-1} \Rightarrow \Pi_{1}^{n}(-\infty, \infty) \backslash(0, \cdots, 0)$ to a constant map. Thus 2_{A}^{X} cannot be a z -set in 2^{X}.

Conjecture. The pair $\left(2^{X}, 2_{A}^{X}\right)$ is triangulable only if 2_{A}^{X} is a Z-set in 2^{X}.

It can be shown, by a strategy similar to that employed in the proof of Theorem 1 , that if $A=\left\{y_{1}, \cdots, y_{n}\right\}$ where each y_{i} is a local cut point of finite order, then ($2 \mathrm{X}, 2_{A}^{X}$) is not triangulable.

References

[l] T. A. Chapman, Lectures on Hilbert cube manifolds, CBMS Regional Conference Series, Number 28 (1976), American Mathematical Society.
[2] D. W. Curtis, Simplicial maps which stabilize to nearhomeomorphisms, Comp. Math. 25 (1972), ll7-122.
\qquad , Hyperspaces of noncompact metric spaces, preprint.
\qquad and R. M. Schori, Hyperspaces of Peano continua are Hilbert cubes, preprint.
[5] \qquad - Hyperspaces which characterize simple homotopy type, Gen. Top. and Its Applic. 6 (1976), 153-165.

Louisiana State University
Baton Rouge, Louisiana 70803

