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TRIANGULABLE HYPERSPACE PAIRS

D. W. Curtis

0. Introduction

For every nondegenerate Peano continuum X, the hyper-
space 2% of nonempty closed subsets of X, topologized by the
Hausdorff metric, is homeomorphic to the Hilbert cube Q [4].

And for every proper nonempty closed subset A of X, the sub-

hyperspaces ZX(A) = {F ¢ 2%, F nNA#g@g} and 2§ = {F € 2%,
F = A} are also homeomorphic to Q [5]. A natural question

arises: how are 2X(A) and 22 situated in 2%? In this paper
we present some results on the topology of the hyperspace
pairs (2%,2%(a)) ana (2%,2}).

The first general result in this direction was obtained
in [3]: 2x(A) is a Z-set in 2% if and only if A is loecally
non-geparating in X (i.e., for every nonempty connected open
subset U of X, U\A is nonempty and connected). Of course,
the condition that 2X(A) be a Z-set in 2% is equivalent to
the existence of a pair homeomorphism between (2x,2X(A)) and
(10,11 x q,{0} x Q).

Thus for example, with I = [0,1], the hyperspace ZI(A)
is a Z-set in 2% if and only if A « 3I. What then can be

said about the topological position in 21 of a hyperspace

I 5 1
{1/2}° {1/2}

of three copies of Q x [0,1), where M1 =

such as 2T ({1/2}) = 2 Since 2.\2 is the disjoint

union Ml U M2 U M3

{(re2t:Fcio,1/2)}, M, = {F e 2': F e (1/2,11}, and M, =
{re2Y. e (0,1/2) U (1/2,1] and F 0 [0,1/2) # @ # F

(1/2,1]1}, a first guess might be that (21,211/2}) is
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homeomorphic as a pair to (T x Q,{v} x Q), where T is a union
of three arcs meeting at a common endpoint v. On closer
examination this is seen not to be the case (the closures of
M

. I I .
and M, do not contain 2{1/2}, and 2{1/2} is not a Z-set

1 2
. . I . I .

in the closure of M3). As it turns out, (2 ,2{1/2}) is not
homeomorphic to a triangulated pair (K x Q,L x Q) for any
polyhedral pair (K,L). On the other hand, the hyperspace
pair (21,21([1/3,2/3])) 18 triangulable. Let L be‘a 2-cell

and K = L U ¢ Ua, Uo where the a; are disjoint arcs

37
attached to L such that each oy N L is a boundary point of
oy and L. Then it is not difficult to show that (21,2I
({1/3,2/31)) is homeomorphic to (K x Q,L x Q). These two
examples motivated Theorem 1 below, which says that the
hyperspace pair (2X,2x(A)) is triangulable in the above sense
if and only if A is locally non-separating in X at each point
in bd A.

For those pairs (2X,2X(A)) which are triangulable,
Theorem 2 provides a simple topological classification relat-
ing to the components of X\cl(int a).

For the hyperspace pairs (2X,2§), Theorem 3 says that
2§ is a Z-set in 2% if and only if A is not a finite subset
of local cut points in X. Thus for example, 2; is a Z-set
in 2I unless A is a finite subset of int I. 1In the latter
case it can be shown that (21,2§) is not even triangulable.

It appears likely that in general, (2X,2§) is triangulable

only if 22 is a Z-set in 2X.

1. Characterization of Triangulable Pairs @%, 2X(A)

Definition. A Q-manifold pair (Y,M) is triangulable
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if there exists a polyhedral pair (K,L) such that

(Y,M) =~ (K x Q,L x Q).

Lemma 1. If (2X,2X(A)) is triangulable, then for every
netghborhood U in X of a boundary point p of A, there exists
a neighborhood V of p such that V meets only finitely many
components of U\A.

Proof. Suppose not. Then there exists a neighborhood
U of a point p € bd A, and a sequence {pn} in U\A converging
to p, such that each P, is in a distinct component of U\A.

It follows that for every neighborhood ( in 2% of {p} such
that U { «c U (i.e., for every sufficiently small neighborhood
{/ of {p}), the complement U\ZX(A) has infinitely many compo-
nents. But this is impossible if (2%,2%(a)) » (X x Q,L x Q)
for some polyhedral pair (K,L), since each point of L x Q

has a basis of neighborhoods # in K x Q such that each comple-

ment {/\L x Q has only finitely many components.

Definition. A closed subset A of a Peano continuum X
is locally non-separating in X at p € bd A if there exists at
p a neighborhood base {(p) such that for each U € {/(p), U\A

is connected.

It is routine to show that A is locally non-separating
in X (as defined in §0) if and only if A has empty interior

and is locally non-separating in X at each point.

Lemma 2. Let X be a Peano continuum and A a closed sub-
set which ie locally non-separating in X at each boundary

point. Then:
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i) X\el(int A) has a finite number of components {Gi},
i1) The closures {Ei} are pairwise disjoint,
ii1) each G, is locally connected,
iv) each Ei N A is locally non-separating in Ei'

Proof. True if int A = @. Suppose int A # g. For each
point x € bd(int A) there is an open neighborhood U in X
such that U\A is connected. Since U\A is dense in U\cl(int A});
it follows that U\cl(int A) is connected. By compactness,
bd(int A) is covered by a finite collection {Ui} of such
neighborhoods. Since X is connected, each component of
X\cl(int A) has a limit point in bd(int A). Then each compo-
nent must intersect, and therefore contain, some Ui\cl(int a).
Thus the number of components of X\cl(int A) is finite. And
since Ei\Gi c bd(int A), it follows also that Ei n Ej =g
if i # j.

Consider x € bd G; = Ei n cl(int A). As shown above, x
has arbitrarily small neighborhoods U in X such that
U\cl(int A) is connected. Since U\lcl(int A) is dense in

un Ei’ the latter set is a connected neighborhood of x in

E;. Thus EI is locally connected.

Clearly, Gi N A is nowhere dense in EI, and A is locally
non-separating in 6; at each point of A n G;. For x € bd Gy
the basic neighborhoods U n EI of x obtained above are such
that U n EI\A = U\A is connected. Thus E; N A is locally

non-separating in EI.

Definition. A strong Q-decomposition of a pair (Y,M)
is a finite cover {Yi} of Y such that:

i) each decomposition element Y, is homeomorphic to Q,
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ii) each nonempty intersection Y, n Yj is a union of
decomposition elements,
iii) Y, is a 2- i . . S
) i set in YJ whenever Y, z Yj’
iv) M is a union of decomposition elements.

Lemma 3. A compact Q-manifold pair (Y,M) is triangula-
ble if and only if it admits a strong Q-decomposition.

Proof. This is similar to the proof of Theorem 2.4 of
[2] . Let {Yi} be a strong Q-decomposition of the pair (Y,M).
We construct a simplicial complex K which is the union of a
collection {Ki} of subcomplexes in 1-1 correspondence with
the decomposition elements {Yi}, and a homeomorphism
h: Y - K x Q such that for each i, h(Yi) = Ki x Q. Then for
L = U{Ki: Yi < M}, we have (Y,M) = (K x Q,L x Q). The con-
struction is inductive, beginning with the minimal elements
of the decomposition.

To this end, we write {Yi} as a monotone union of sub-

(-1) C 4(0) (m)

C e C Y

(n-1)

collections, # = Y

if Y. Sy, e v® then v, €Y

j# 'k
Y(O) is a minimal decomposition element. Let K

= {Yi}' such that

Thus each element of

(0)

be a

collection of points in 1-1 correspondence with the elements
(0 (0),

of Y and choose a corresponding homeomorphism h
U Y(O) > K(O) x Q. Inductively, suppose there exists a
complex K® 1) and a homeomorphism (-1, y(aml) |, g (n=1)

(n-1)

X Q such that for each Yj €Y h(n_l)(Yj) = Kj x Q for

some subcomplex Kj of K(n—l). Then for each Yi € Y(n)\Y(n—lh
set Ki = cone (U{Kj: Yj ; Yi}). The cone points are chosen

(n-1) _ . c
so that each K; 1K = U{Kj. Yj Z Yi}, and Kil n Ki2 c
€ Y(n)\Y(n—l)

(n-1) .
K for each Yil,Yi2 . Now define
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(n)\Y(n—l)} U K(n-l)

k(™ - UlR;: Y, €Y , and construct the

homeomorphism h(n): U Y(n) > K(n) x Q by requiring the re-

(n-1) h(n-l),

striction of h(n) to UY to agree with and taking
h(n)(Yi) = K; x Q for each ¥, € y My 1) (the latter

is accomplished by simply applying the Z-set homeomorphism
extension theorem to each such Yi and Ki x Q). This completes

(m)

the inductive step. The complex K = K and the homeomorphism
h = h(m): Y > K x Q fulfill the requirements.
For the converse, it is obvious that if (Y,M) = (K x Q,

L x Q), it admits a strong Q-decomposition.

For closed subsets A ---,An of a nondegenerate Peano

ll
continuum X, let ZX(A1,°~-,An) = {F € ZX: F N Ai # @ for each
i}. It was shown in [5] that ZX(Al,---,An) ¥ Q. We also

require the following result from [3].

Lemma 4. For B € 2X, the hyperspace ZX(Al,---,An,B) i8
a Z-set in ZX(Al,---,An) if and only if B is locally non-

separating in X and A\B is dense in AL, for each i.

Theorem 1. The hyperspace pair (ZX,ZX(A)) 18 triangula-
ble if and only if A is locally mon-separating in X at each
boundary point.

Proof. Suppose first that (ZX,ZX(A)) is triangulable,
and suppose that A is locally separating in X at some
boundary point p. Then there exists a neighborhood U of p
such that for each neighborhood Vv « U,V\A is separated.

Consider the element {p} of 2X(A). For any neighborhood
¢ of {p} in 2% such that U ¢ cu, h2¥@) is separated, since

there exist points in X arbitrarily close to p which lie in
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different components of UMA. Thus ZX(A) is locally separating
in 2% at {pl.

We show next that there exist elements of ZX(A) arbi-
trarily close to {p} at which 2x(A) is locally non-separating
in 2x. By Lemma 1 there exists a monotone decreasing sequence
{Vn} of neighborhoods of p such that V] €U, diam v, ~ 0, and
Vn+1 meets only finitely many components of Vn\A, for each n.
Choose a finite subset F of Vn\A, consisting of one point

from each component of Vn\A meeting Vn It may be assumed

+1°
that Vn+2 n F = g. We claim that ZX(A) is locally non-
separating in 2% at elements of the form U{F2n: n > N} U {p},
for each N. Given € > 0, choose m > N such that diam V2m < g,
and choose a connected neighborhood # in 2x\2x(A) of U{an:
N < n < m} such that diam # < ¢ and (U/) n Vom = #. Define
a neighborhood V of u{FZn: n >m} U {p} as follows. Let {Gi}
be the finite collection of components of Vzm\A meeting V2m+l.
Then take // = {B € 2%: B c ule;} UV, ., and B NG, # § for
each i}. We have diam / < ¢, and # x V = {B1 UB,: B € N
and B, € V} < 2% is a neighborhood of U{an: n > N} y {p} with
diameter less than e. Clearly, # x no¥@) = 4 x (2% =
N x 1{2%: ¢ € {Gi}} is connected.

Of course, the above element U{an: n > N} u {p} of
ZX(A) is arbitrarily close to elements U{F2n: N <n < M}y
{p} of 2%(a), at which 2%(a) is locally separating in 2%.
In turn, these latter elements are arbitrarily close to
elements U{an: N<n<Myu {an: n > Nl} U {p} of ZX(A)
at which ZX(A) is locally non-separating in 2X,

Thus we may inductively choose a sequence {Si} in 2x(A)

with S1 = {p}, each Si+l arbitrarily close to Si’ and with



438 Curtis

the following alternating property: ZX(A) is locally
separating in 2x at Sl,s3,--- and locally non-separating at
§,184s%°°. By hypothesis there exists a homeomorphism

h: (2x,2x(A)) + (K x Q,L x Q), for some polyhedral pair (K,L).
€ int ¢

Then h(S x Q, for some simplex oy of L. Since

1) 1
L x Q is locally separating in K x Q at h(Sl), it follows
that L x Q is locally separating in K x Q at each point of
int o, % Q. Therefore, if 52 is close enough to Sl'

h(SZ) € int o0, x Q for some simplex o, of L properly contain-

2
ing 0q- Then L x Q is locally non-separating in K x Q at

each point of int 0, X Q and if S, is close enough to S

3 2
we must have h(S3) € int o3 xQ for some simplex 05 properly
containing Oy Continuing, we obtain an infinite ascending
sequence o0, ; g, ; O3 **° of simplices of L, contradicting
the compactness of L. Thus if (ZX,ZX(A)) is triangulable,
then A must be locally non-separating in X at each boundary
point.

Conversely, suppose that A is locally non-separating in
X at each boundary point. If A is nowhere dense then ZX(A)
is a z-set in 2%, anda (2%,2%)) = (10,11 x Q,{0} x Q). Now
suppose that int A # @§; using Lemma 2, let ( = {G;} be the
finite collection of components of X\cl(int A). Note that
bd G; = G; N bd(int A) for each i. We partition ( into four

i
subcollections as follows:

n ()
2) [2 ={G€(: GNA@Pbut Gn AN bd G is nowhere

{6Ge(:6naAa-=gl,

dense in bd G},
3) 63 = {G€ (: N AN bd G has nonempty interior in

bd G but G 1 A % bd G},
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4) (4 =1{Ge (: CNA>bd G}.

For each G € (( we consider a collection #(G) of sub-

G

spaces of 2~ as follows:

1) #e) = 125,25ma @)} if G € (,

ii) #@G) = {2,2%®md 6),2°@E T ®), 2%(bd 6, T A} if

G € ()
iii) A(G) = {2

¢ 26@nm,2%bacnam,

28(c1(ba 6\GTTA)),2%(bd G 0 T A A,cl(bd G\G n A)),
28(GT T A,cl(bd G\G N A))} if G € 3
i) #@ = 25,2%0a ©),25@ TR} if G € (.
For each nonempty subcollection J = {Gil,---,Gik} of (,
ﬂij =
with each F, € #, }. We claim that

. _ .k ) x
define #(J) = {nj=l”ij' ”ij € #(Gij)}, where Hj=1
k

5=1Fi j j
the colTection U{A#(D): B # D < Ct u {Zx(cl(int A))} of sub-

(Fe®: Fr=uy

spaces of 2% is a strong Q-decomposition of the pair (ZX,ZX(A)L
The verification is routine. 1In particular, the necessary
Z-set conditions are in most instances consequences of Lemma

2 and Lemma 4. The only exceptions are in situations like
26(bd G) ; 2x(c1(int A)), where a "fattening" of hyperspace
elements via a convex metric on X provides a small push of
2X(c1(int A)) into 2%X(cl(int A))\2%(bd G) (see the proof of
Lemma 4.2 of [5]). We conclude by Lemma 3 that (2%,2%¥(a))

is triangulable.

2. Classification of Triangulable Pairs (2X, 2X(A)

Suppose A is locally non-separating in X at each bound-
ary point, and int A # @#. We-consider the partition U:=1[i
of the collection C of components of X\cl(int A), as de-

scribed in the proof of Theorem 1. For each i, let
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Ti(X,A) be the cardinality of Ci, and define the 4-tuple
T(X,A) = (ri(X,A))§=l. It is easily seen that all possible
values for tT(X,A) are realized (for example, take cl(int A)

to be a 2-cell, with the closure G of each component of
X\cl(int A) a 2-cell meeting cl(int A) along a common boundary

arc). Note that t(X,a) = (0,0,0,0) if and only if A = X.

Theorem 2. Triangulable pairs (2%,2%(a)) and (2¥,2%(B))
are homeomorphic if and only if etther int A = § = int B or
T(X,A) = t(Y¥,B).

Proof. 1If int A = @ = int B, then (2%,2%(a)) = (10,11 x
0,10} x @ =~ (2%,2¥(8)). If t(xX,A) = 1(Y,B), the strong
Q~decompositions of the pairs (2X,2X(A)) and (2Y,2Y(B)) con-
structed in the proof of Theorem 1 are obviously isomorphic.
Then the same polyhedral pair (K,L) is associated with each
decomposition, and 2%,2%@)) = (xk x Q,L x Q) = 2¥,2% ().

Conversely, suppose (2X,2X(A)) = (2Y,2Y(B)). Then
either int A = @§ = int B or int A # # # int B. 1In the latter
case we show that t(X,A) = (11,12,13,14) is a topological in-
variant of (2X,2X(A)), hence T1(X,A) = 1(¥,B). Clearly, the
number of components of 2X\2X£A) is equal to the number of
+ 1, + T is a

nonempty subcollections of C. Thus T + T

1 2 3 4
topological invariant of (2X,2X(A)). Since the number of
components of 2X\2X(A) whose closures intersect 2X(A) only

in ¢l (int 2X(A)) = 2X(cl(int A)) is egual to the number of
nonempty subcollections of Cl’Tl is an invariant. Since the
number of components K of 2X\2X(A) for which bd f\cl(int 2X(A))

is dense in bd K is equal to the number of nonempty subcol-

lections of 64, Ty is an invariant. Finally, the number of
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components K of ZX\ZX(A) for which cl(bd K\cl(int 2%(a)) does
not contain a nonempty relatively open set in bd £ n

cl(int ZX(A)) is equal to the number of nonempty subcollec-
tions of Ci U Cé. Thus Lt T, is an invariant. Then

T, = (Tl + 12) -1 and Ty = (Tl + Ty ¥ Tyt 14) - (Tl + 12)
- T, are also invariants, thus 1(X,A) is an invariant as

claimed.

3. Characterization of Z-set Pairs (2x, 2:‘ )

Theorem 3. Let X be a nondegenerate Peano continuum and
A a nonempty closed subset. Then 2: is a Z-set in 2% if and
only if A is not a finite set of local cut points in X.

Proof. If A contains a point p which is not a local cut
point in X (i.e., {p} is locally non-separating in X), then
2{;} = ZX({P}) is a Z-set in 2x, thus 2§ < 2{;} is also a
Z-set in 2x.

Now suppose A is an infinite set. We show that ZX is a
Z-set in 2% by an argument adapted from the proof of Lemma
5.4 of [5] (in which it was shown that 2: is a z-set in 2%
whenever int A # @#). Given ¢ > 0, let P be a partition of
X with mesh less than €/3. That is, ? is a finite disjoint
collection of connected open subsets with diameters less than
e€/3 and whose closures cover X. We may further suppose that
the closure of each partition element is locally connected,
and that some partition element a contains a cluster point of
A. There exists a finite connected graph (in fact, a tree)

T in the Peano continuum o such that M = y{B: o n B # &,
o # B € P} U T is connected, and therefore a Peano continuum.

Then the hyperspace 2M is an AR, and there exists a map
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o M such that r(x) = {x} for each x € bd a. Extend

r to a map s: X = 2% by setting s(x) = {x} for each x € X\u.
Note that p({x}, s(x)) < 2¢/3 for all x. Define the map

£: 2% 2% by £(F) = U{s(x): x € F}. Then p(f,id) < 2¢/3,
and £(F) Na =T for each F € Zx.

IfA N« ¢ T, then f(F) ﬁ A for each F, hence f maps
into ZX\ZX, and ZX is a Z-set in 2X. On the other hand, if
A NocTthen ANTnao is infinite (recall that o contains
a cluster point of A), and there exists an arc J in T N o
containing infinitely many points of A. We may assume that
J is a free arc in the Peano continuum (X\a) U T = U{B:

a #B €PUT. Let a;,a, be distinct points of A n int J.

There is constructed in the proof of Lemma 5.4 of [5] a map

2(X\a) UuT =>2(X\a) U T\Z(X\a) UuT
{a;,a,}
diam J. Then the composition gf maps 2x into 2X\2

such that pl(g,id) <
x c
{aj,a,}
2%\2X, and since diam J < diam o < /3, p(gf,id) < 2¢/3 +

g:

e/3 = €. Thus Zi is a Z-set in 2X if A is infinite or if
A contains a point which is not a local cut point in X.

Conversely, suppose A = {yl,---,yn} with each y; a
local cut point in X. We show that for each sufficiently
small neighborhood (/ of the element A in 2x, U\Zi is not
(n-1) -connected. There exist disjoint connected open
neighborhoods Vi of Yy in X, i = 1,-¢+,n, such that
Vi\{yi} = V; U VI is a separation. Let d be a convex
metric on X. For each i, define a map My {F € Zx: F c“Vi}
= (-=,@) by

-d(y;,F) if F v;,

dlyy,F) if F o V] # @,

ni(F)

0 if y. € F.
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With V = {F ¢ 2X: F = U} v, and F n v, # § for each i}, a
map m: VY #»HT(—&,@) is defined by w(F) = (ni(F n Vi))T.

Note that m Y(0,+++,0) = V/ n ZX. Since the closure of each
component of Vi\{yi} must contain Yio there is for each i an

arc a; in Vi such that x =>ni({x}) defines a homeomorphism of

. n-1 n
oy onto some interval [—ti,ti]. Let g: s =>Hl[-ti,ti]\
(0,+++,0) be any essential map, and let §: Sn-l =’V\2X be the

lifting of g via the arcs {ai}. That is, §(s) = U?{xi},
where each Xy € of and 1§ = g.

For any neighborhood { of A in 2% such that ( < V, we
may ensure that & maps into ¢ by requiring that g map into a

small neighborhood of (0,+++,0). And clearly, the map

g: Sn_l :»U\2§ is not homotopic to a constant map, since com-

posing such a homotopy with 71 would provide a homotopy from

g: Sn_l =>H?(—W,W)\(0,---,0) to a constant map. Thus 2§

cannot be a Z-set in 2X.

Conjecture. The pair (2x,2§) is triangulable only if

2; is a Z~set in 2X.

It can be shown, by a strategy similar to that employed
in the proof of Theorem 1, that if A = {yl,-°°,yn} where
each Y is a local cut point of finite order, then (2X,2§)

is not triangulable.
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