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ON A COLLECTION HAUSDORFF SPACES 

William G. Fleissner 

o. Introduction 

The notion of co11ectionwise Hausdorff (cwH) spaces is 

an interesting by-product of recent work on the normal Moore 

space problem. A collection Y of points of a space X is 

cZosed~ discrete if every x E X has a neighborhood U such 

that card(U n Y) < 1. We say that a closed discrete co11ec­

tion Y can be screened if it can be simultaneously separated 

by disjoint open sets. A space X is cwH «AcwH) [~AcwH] if 

every closed discrete collection Y of points of X, (IYI < A), 

[\YI ~ A], can be screened. In this paper we investigate 

when	 "X is <AcwH" implies IIX is <AcwH." 

Metric spaces are cwH. The Moore road space and the 

Jones road space are no~ ~w1 cwH. The author has argued [F ]1

that this is the "real" reason that these Moore spaces are 

not metrizab1e. Bing's example G [Bi] was the first example 

of a normal, not co11ectionwise normal space. It is not 

co11ectionwise normal for the simplest of reasons; it is not 

2.Wl cWH . 

The question arose of whether ~wlcWH spaces are cwH, or 

+in more detail, of whether ~AcwH' spaces were ~A cwH, (for 

A ~ WI). Blair [BI], assuming GCH, and Pryzmusinski [P], 

modified Bing's example G to give counterexamples. Their 

techniques in fact give <AcwH, not ~AcwH spaces for all 

regular A ~ WI. Using Pryzmusinski's technique, the author 

[F ]	 gave an example of a <AcwH, not <AcwH space, for2
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A > cfA > w. All these examples have the strongest collec­

tionwise normal properties possible, e.g. a ~ wI collection­

wise normal, not ~w2cWH space, and a ~wl collectionwise 

normal, <~ cwH, not <~ cwH space.
W2 w2 

In section 1, we give an example of a regular <AcwH, not 

~AcwH space, for A > cfA = w. Again this is the strongest 

separation property possible. 

Since cwH is a by-product of the normal Moore space 

question, it is natural to ask whether first countable normal 

spaces need be cwH. The affirmative answer is consistent 

with [F3l and independent of [MSl the usual axioms of set 

theory. An interesting open question is whether one can 

prove without extra axioms of set theory (or perhaps only 

using GCH) that first countable, normal ~wlcwH (perhaps ~c 

cwH) spaces are cwH. 

When we drop normality and retain first countability, we 

get that for large (weakly compact) cardinals A, <AcwH 

spaces are ~AcwH, (Theorem 1). For regular, not weakly com­

pact cardinals, assuming extra axioms of set theory there are 

examples of <AcwH not ~AcwH spaces [Fll. These are very nice 

spaces--tree spaces of height w+l. In the other direction, 

in the model obtained by collapsing a supercompact cardinal 

to w2 ' first countable tree spaces (i.e. of height ~wl) are 

cwH iff ~wlcwH. 

For singular cardinals, we have no results for first 

countable spaces, but we have a result for a new cardinal 

function g, related to the loacl cellularity. If A > cfA, 

x is <AcwH, and g(x) < A, then X is ~AcwH (Theorem 3). This 

function g is exactly what is needed to give as corollary 5 
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a theorem of Shelah on the coloring number of a graph. 

We conclude with a discussion of a "wide Cantor tree." 

1. A <AcwH not ~AcwH Space for cf~ =w 

Let A > cfA = w. In this section we construct a <AcwH 

not -S.AcwH space. 

The spaces of Pryzmusinski [p] and [F2 ] are products of 

discrete spaces, indexed by the desired separations, with the 

topology strengthened by isolating all but a few special 

points. The not <KcwH is demonstrated using the n-system 

lemma. 

n-System.lemma (Erdos-Rado). If K > w is a regular 

cardinal, and {Fa: a < K} is a family of finite sets, then 

there are S C K, card S = K, and a finite set R such that 

a,a E S, a ~ a, implies Fa n Fa R. (We say that R is the 

root of the n-system.) 

(Blair's examples were analogues of Bing's example G 

constructed from products of two point spaces with the <K 

box topology. This method uses a version of the n-system 

lemma with infinite Fa'S.) 

These spaces are <KcwH in the following strong sense: 

a closed discrete collection of ~'K points can be separated 

by a discrete (rather than merely disjoint) family of open 

sets. When CfA = w, this strong <AcwH implies ~AcwH. The 

prevention of strong <AcwH gives us the clue needed to con­

struct the desired space. We will use one-point compactifi­

cations in place of discrete spaces. 

Recall that A > cfA = w. For a C A, let X be thea 

00space with point set a U{oo} (where %A). Elements of a 
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are isolated; a neighborhood of contains and all but00 00 

finitely many elements of a. The point set of the desired 

space Z will be n{X : a c A, card a < A}. The topology is a 

obtained by strengthening the usual product topology by 

isolating all points but the special points ~, a E A, where 

~ is defined by ~(a) = a if a E a, ~(a) = 00 if a ¢ a. 

Lemma. Let a c A, card a = wl ' and let {U : a E a} be a 

a family of open sets of Z, with ~ Let H = closureE Va· 

( U{V : a E a}). Then card ({ a E A: a ~ H}) < A. a 

Proof· We may assume that the V 's are basic open sets 
a 

of the usual product topology. We apply the ~-system lemma 

to the supports of the Va's. We get a ~-system {supp Va: 

a E a'}, card a' = w ' with root R. Card UR < A. If a ¢ UR,l 

then every neighborhood of a meets all but finitely many 

Va's, a E a'. 

That Z is not ~AcwH follows immediately from the lemma. 

We have in fact shown that Z is not weakly AcwH in the Tall 

sense [T]. 

2. Large Cardinals 

We define, for K a cardinal, Y a set, card Y > K, and 

Y E Y: 

[y]<K = {a c Y: card a < K} 

P = {a E [y]<K: yEa}.
y 

A K-complete field on I is a subfamily of ~(I) closed under 

complementation and unions of cardinality <K. A filter is 

K-complete if it is closed under intersections of cardinality 

<K. If K is inaccessible, the K-complete field generated by 

K subsets of I has cardinality K. 
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A cardinal K is strongly (weakly) compact if a K-com­

plete filter on a K-complete field (of cardinality K) can be 

extended to an ultrafilter. 

Theorem 1. Let X be <KcwH, X(X) < K. 

a) If K is weakly compact, then X is <KcwH. 

b) If K is strongly compact, then X is cwH. 

Proof. Let y c X be closed discrete, card Y = K in 

case a). We must screen Y. For each y E Y, let {B(y,v): 

v < X(X)} be a neighborhood base for y. For each a E [y]<K, 

let Sa be a set of basic open sets screening a. Such an S a 

exists because X is <KcwH. 

Let A be the K-complete field on [y]<K generated by 

{p : y E y} U {{a: B(y,v) E S }: y E Y, v < X(X)}. In case y a 

a), card A = K. Let F be the K-complete filter generated by 

{P : y E y}, let U be a K-complete ultrafilter extending F. y 

For each y there is v(y) such that {a: B(y,v(y» E Sa} E U 

because P E U and U is K-complete. Then {B(y,v(y»: y E y}
Y 

screens Y. 

The author conjectures that these "compactness w.r.t. 

cwH" properties for first countable spaces are preserved by 

the Levy collapse. However, he can only prove, using the 

technique of [Ba 7.4, 7.10] (see [F4]): 

Theorem 2. Let M be a model obtained by Levy collapsing 

a supercompact cardinal to w2 . In M, a first countable tree 

space (i.e., of height ~wl) is cwH iff <w2CWH. 

(This theorem has also been obtained by Shelah and Litman. 

For a stronger conclusion, see Theorem 2 of [Sh3].) 
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3. Singular Cardinals: ewH and Coloring Numbers of Graphs 

In this section we introduce a cardinal function g, and 

use it to give a sufficient condition for <AcwH to imply 

<AcwH for singular cardinals. We apologize for introducing 

such a strange function (van Douwen suggests that g stands 

for gek [= crazy, Dutch]). In [F2] we used local cellularity, 

but proving Shelah's theorem as a corollary seems to require 

using g rather than local cellularity. 

(Actually g is more closely related to the local Souslin 

number than the local cellularity. The local Souslin number 

of a space X is the least cardinal K such that every point 

of X has a neighborhood in which every family of disjoint 

open sets has cardinality strictly less than K.) 

Definition. Let X be a space, Y c X a closed discrete 

collection of points, and lj = {U : y E y} a family of openy
 

sets with y E Uy . We say V partly screens lj at z, and write
 

V < lj, if V {V : y E Z} is a family of disjoint open sets
 y
 

with y EVe U , z E Z c Y, and every V meets Uz. We de­y y y 

fine g(X) as the least cardinal such that for all closed 

discrete Y c X there is an open family lj such that if V < lj, 

then card V < g(X). 

This definition involves three alternating quantifiers, 

so we give some examples. 

A. X is cwH iff g(X) = 2. 

B. If X is a tree space of height w+l, g(X) < w.-
C. If X has local Souslin number K, g{X) < K.-
D. If X is regular and g(X) < w, then g(x) = 2. 

E. Let K be an uncountable cardinal. We topologize 
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x = {(n,a): n < w < a < K} U K as follows. Points 

(n,a) are isolated. A neighborhood of mEw con­

tains all but finitely many (m,a) 's; a neighborhood 

of S E K - w contains all but finitely many (n,S) 's. 

x is regular, g(X) = w, the local Souslin number of 

X is K+. 

Theorem 3. If A is singular, X is <AcwH, and g(X) < A, 

then X is <AcwH. 

Proof. Let Y c X be closed discrete, card Y = A > 

cfA = o. The obvious thing to do is to split Y into 0 

pieces, each of cardinality less than A, screen each piece, 

and try to arrange that the interaction of the various 

screenings is reparable. This in fact is our plan. It will 

be more convenient to consider the union of the first a 

pieces than the ath piece. We define a standard decomposi­

tion to be a set {Y : a < o} satisfyinga
 

i) Y c Y if S > a.
a S
 
ii) Y = U{Y : a < v} if v is a limit ordinal.
v a
 

iii) Y = U{Y : a < o} •
 a
 

iv) card Y
 a 

It is not hard to verify (see Lemma 1 of [F3 ]) that to screen 

Y it is sufficient to find a standard decomposition {Y : a 
a < o} and an increasing family W= {W : a < o} of open sets a 

satisfying 

(1) Y cW , Y . = (closure W ) n Y. a a a a 

Because of the examples discussed in Section 1, we must 

use our hypothesis g(X) < A somehow. Let lj = {Uy: y E y} be 

such that 
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(2) if V < ti, then card V < g (X) • 

Our plan is to set W U{U : y E Y }. Let A c: Y. If A is a. ~- y a. 

a subset of Ya.' then (closure U{Uy : Y E A} ) n Y, which we 

define to be A*, must also be a subset of Y . With these a. 

conventions, (1) can be rewritten 

(3) Y~ = Yo.. 

, Our plan is to take any standard decomposition, say 

AD = {AO: a. < oJ, and improve it ~+l times, where, without 
a. 

loss of generality ~ = Co is regular and greater than both 

g(X) and o. We will define standard decompositions AS, 

S < ~, AB = {AS: a. < o} such that a.
 

l4) Card Ao. = Co.
 

(5) AS* c AS+l AV U{AS: S < v}, if v is a limita. a.' a a.
 

ordinal
 

(6) A~* = A~ for all a. < o. a. a. 

In order to establish (5) it is tempting to simply set 

l l lAS+ AS*, but this does not guarantee that AS+ = U{AS+ : a. a. v a. 

a. < v} for limit ordinals v. However, to establish (4) and 

(5) it is sufficient to show 

(7) if g(X) < card A < A, then card A = card A*. 

For then by (7), there is a map F ('AS) from c onto AS*. a. a. a 

Set A6+l = U{F(A6)"C : y < oJ, where F"S = {F(s): s E S} is a. y a. 

the image of Sunder F. 

We turn to the proof of (7). Aiming for a contradiction, 

suppose A c: B c A*, g(x) < card A < card B < A. Recall that 

X is <AcwH, so there is V = {Vb: b E B}, a family of disjoint 

open sets screening B. Because B c: closure U{U : a E A}, for a 

each b there is a (b) such that Vb ~ 9. By the pigeon-n Ua(b) 

hole principle, some a# is a(b) for more than card A b's. 
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But this contradicts (2). 

We now prove (6). Again aiming for a contradiction, 

let z E A~* - A~. Note that by (5), z , A~* for any a < ~, 

so that for all a < ~, U - (closure U{U : y E A~}) is az y 
nonempty open set. For the same reason, for every a < ~ 

there is v, a < v < ~ and a E A'J with U - (closure U{U :a a y 

y E AV
} an open set meeting U Thus, since ~ = cf~ > g (X) ,a z • 

we can inductively define V < ti, card V = g (X) • This again 

contradicts (2) establishing (6) and completing the proof 

of Theorem 3. 

Definition. A graph G consists of a set V of vertices 

and a set E of unordered pairs of elements of V, called edges. 

The chromatic number of G is the least cardinal X, such that 

the vertices can be painted colors with no two vertices of 

the same color connected by an edge. The coloring number of 

G, introduced by T. Rado , is the least cardinal K such that 

there is a well ordering < of V such that for all a E V 

card {( a, b) E E: b < a} < K. 

The chromatic number is not greater than the coloring 

number: use the hypothesized well ordering to inductively 

paint the vertices. The two notions are not the same: con­

sider a checkerboard. 

In [Sh ] Shelah proved, among other things, Corollary 5l 

below. In this paper we present a simpler but less general 

proof.* An alternative proof is to repeat the proof of 

Theorem 3, setting A* = A U {b E V: card {(b,a) E E: a E A} 

> K}. We feel that Theorem 4 is of interest itself. 

* [Sh2 l is simpler and more general than [Shll. 



454 Fleissner 

Corollary 5 follows immediately from Theorems 3 and 4. 

Definition. For G a graph, with vertices V and edges 

E, and K an infinite cardinal, let X(G,K) be the space 

described below. The point set of X(G,K) is VUE. Points 

of E are isolated. N is a neighborhood of a E V iff N con­

tains all but less than K edges connected to ai i.e. 

card ({b: (a, b) E E - N}) < K. 

This definition immediately gives g(X(G,K» < K. 

Theopem 4. X(G,K) is AcwH iff evepy subgpaph of G 

spanned by less than A veptices has coloping numbep <K. 

Ppoof. If. Clearly we may assume that Y, the closed 

discrete set that we are to separate, is a subset of V. Let 

< be the hypothesized well ordering of Y. Set u = {y} U y 

{(y,z) E E: y < z}. {u : y E y} screens Y. y 

Only if. Let Y c V, card Y < A. Let {u : y E y} screen 
y 

Y. The obvious thing to do is to set y < z iff (z,y) E u ' z 

but this fails in several ways to be a well-ordering. But 

we can use < to define the desired <". 

First, we set y <I z iff there is a chain y = YO < YI < 

< Y = z. Every element has less than K < predecessors,n 

so every element has at most K <I predecessors. We choose an 

element yo E Y, well order by <" it and its predecessors 

type less than or equal K. If we are not done, we choose 

YI E Y - field <", well order YI and its predecessors not in 

field <" type less than or equal K, and "add" this well 

ordering to <". Continuing in this way, we obtain the de­

sired well-ordering. 
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CoroZZary 5 (Shelah). A graph C of singular cardinaltiy 

A has coloring number ~K iff every subgraph spanned by <A 

vertices has coloring number <K. 

4. A Wide Cantor Tree 

Recall that the Cantor tree T (described, for example, 

in [R]) is ~wcwH, not ~wlcWH and has a countable dense set 

I of isolated points. The points of I are (or are indexed 

by) finite sequences of O's and lis, equivalently, by finite 

sequences of ordinals less than w. We ask whether there is 

an analogous space with ~w in place of w. 

To be more specific, let I' be the set of finite se­

quences a such that a(n) < ~n. Points at the top of the wide 

tree will be functions f from w to ~w satisfying f(n) < ~n. 

Points of I' will be isolated. The nth basic open neighbor­

hood of a point f at the top of the tree will be if} U 

{flm: m > n}. 

We cannot add all the functions, for then our space 

would contain the Cantor tree, and thus not be ~wl cwH. Our 

question is, then, is there a set S of ~w+l functions such 

that if we add the functions of S to the top of the tree, 

the space is ~~w cwH. In a letter to the author Shelah 

wrote that he and Litman had showed that the yes answer is 

independent of and consistent with ZFC + GCH. 

(The author confesses that he did not realize that 

Theorem 2 clearly applies in this situation to give the 

nonexistence of such a tree. The other direction is not so 

obvious, but still not difficult. V = L, specifically, 

Jensen's Gap-l Two Cardinal Theorem, implies that such a 
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tree exists). 
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