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STEENROD HOMOTOPY THEORY, HOMOTOPY 

INDEMPOTENTS, AND HOMOTOPY LIMITS 

Harold M. Hastings 1 

1.	 Introduction 

In 1940, N. E. Steenrod [26] introduced a homology 

theory SH* on compact metric pairs, which is exact on aZZ 

pairs (X,A). The continuity axiom of Cech homology is re­

placed by a short-exact sequence ([26], and J. Milnor [23]): 

(1.1) o + liml{H.+l(X )} + SH. (X) + ~1.' (X) + O. n 1. n 1. 

In (1.1), {X } is any tower (inverse sequence) of polyhedran

whose inverse limit is X. D. A. Edwards and the author [11, 

Ch. VIII] observed that any generalized homology theory 

yields a "Steenrod" homology theory on the category of towers 

of spaces; in fact, on Grothendieck's category pro-Top of in­

verse systems of spaces. See M. Artin and B. Mazur [1, Ap­

pendix] for pro-Top. Our joint work required a strong (Steen­

rod) homotopy theory of pro-spaces [11, Ch. III]. Although 

the precise definition of Steenrod homotopy theory is fairly 

complex, we can relate Cech (Artin-Mazur, [4]) and Steenrod 

[11, 12, 13] homotopy theory in §2 below. Motivated by the 

Brown-Douglas-Fillmore [2,3] theory of normal operators, D. S. 

Kahn, J. Kaminker and C. Schochet gave a different, independ­

ent development of generalized Steenrod homology theories 

[16, 17]. 

lpartially supported by NSF Grant number MCS77-0l628 
during the writing of this paper. 
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The rest of this paper is organized as follows. §§3-5 

survey Steenrod homotopy theory. Homotopy limits, largely 

following [II, Ch. IV] are described in §3. §4 recalls the 

Edwards-Geoghegan [10] result that "idempotents split in 

pro-categories." J. Dydak and P. Minc [8], and P. Freyd and 

A. Heller [14] independently obtained a non-split idempotent 

in unpointed homotopy theory. Dydak observed an important 

consequence in pro-homotopy: a map which is an equivalence 

in Cech homotopy theory but not in steenrod homotopy theory. 

We summarize these results in §5 to complete the relation 

between Cech and Steenrod homotopy theory. 

Finally, we give "geometric" (Artin-Mazur [1] type) 

formulations of a coherent completion functor (§6) and a strong 

shape functor (§7). We conclude with a "dual" construction 

of a coherent Quillen [26] + - construction in §8. 

We thank D. A. Edwards, A. Heller, G. Kozlowski, Vo 

Thanh Liem, S. Mardesic and D. Puppe for helpful conversa­

tions. 

2. Q,ch and Steenrod Homotopy Theory 

T. A. Chapman's [5] beautiful complement theorem relat­

ing the shape theory of compacta K in the pseudo-interior 

s = n;=l (-1,1) of the Hilbert cube Q = n:=l [-1,1] and the 

homeomorphism type of Q\K has the following corollary [5]: 

a category isomorphism between the shape category of such 

compacta and the weak proper homotopy category of their com­

plements. Later, Edwards and the author [11, pp. 228-232] 

obtained a similar relationship between strong shape theory 

[11, especially Ch. VI and VIII] and the more geometric proper 

ho~otopy theory, which together with Chapman's correspondence 
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homotopy theory, which together with Chapman's correspondence 

yields a commutative square 

strong shape 
(Steenrod homotopy) 
category of compacta 
K esc Q 

shape 
(Cech homotopy) 
category of compacta 
K eSc Q 

(2.1) l¢ 
proper homotopy cate­
gory of complements 
Q\K, K esc Q 

1f' 
--+ 

weak proper homotopy ] 
category of complements 
Q\K, K esc Q . 

In diagram (2.1), Steenrod homotopy theory refers to the 

strong homotopy theory of inverse systems Ho (pro-Top) of 

Edwards and the author [11, especially Ch. VIII]; Cech homotopy 

theory to the Artin-Mazur theory [1] pro-Ho (Top). The verti­

cal map ~ is Chapman's isomorphism cited above; similarly, ~' 

is the isomorphism of [11, Zoa. ait.]. The maps 1f and 1f' 

are natural quotient maps. The Cech nerve Top + pro-Ho (Top) 

yields shape theory (see, e.g. Edwards [9]); a Vietoris func­

tor Top + Ho (pro-Top) (T. Porter [24]) yields strong shape 

theory [11]. The distinction between Cech and Steenrod homo­

topy theory was first recognized by D. Christie [7], although 

he lacked D. Quillen's abstract homotopy theory [25] needed 

to define Ho (pro-Top) [11]. We shall give a more "geometric" 

version of strong shape theory (still using [11]) in §7-­

some of whose properties were obtained in a conversation with 

Kozlowski and Liem. Details and applications will be de­

scribed elsewhere. Added in proof. See joint work with A. 

Calder [30]. J. Dydak and J. Segal [31] and Y, Kodama and J. 

Ono [32] recently gave independent equivalent descriptions of 

strong shape theory. 

Although the relationship between Ho (pro-Top) and pro­
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Ho (Top) appears quite complicated [11], useful results are 

available for towers (countable inverse systems). Let Top* 

be the category of pointed spaces and maps. In 1974, J. 

Grossman [15], and Edwards and the author [11, Theorem (5.2.1)] 

independently proved the following. 

(2.2) Theorem. Let {X } and {Y } be to~ers of pointedm n 

spaces. Then there is a short-exact sequence of pointed
 

sets.
 

* -+ lim l colim {[L:X,Y]} -+ Ho(towers-Top*) ({X },{y })
n m m n m n 

:a. towers-Ho(Top*) ({X },{y }) -+ *. m n 
The functor TI is also onto in unpointed pro-homotopy. 

The appropriate derived functor liml for towers of (non­

abelian) groups was defined by Bousfield and Kan [4, p. 251]. 

Chapman and L. Siebenmann [6] asked whether every weak­

proper-homotopy-equivalence is a proper-homotopy-equivalence. 

A useful partial answer appears in [11, Theorem (5.2.9)]; 

similar results hold for pointed spaces [11, loc. cit.], and 

for proper homotopy [12]. 

(2.3) Theorem [11]. Let f: {X } -+ {Y } be a map in m n 

Ho (towers-Top) which is invertible in towers-Ho (Top). 

Then there is an isomorphism g: {X } -+ {y } in Ho (towers­m n 

Top) with g equivalent to f in towers-Ho (Top). 

(2.4) Corollary [11, Corollary 5.2.17]. The isomorphism 

classification problems in Ho (towers-Top) and towers-Ho 

(Top) are equivalent. 

(2.5) Caution: non-equivalent maps in Ho (towers-Top) 

may become equivalent in towers-Ho (Top). 
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Dydak [8] recently observed that the map f of (2.3) need 

not itself be invertible in Ho (towers-Top). This result in-

valves homotopy limits (§3) and splitting idempotents (§4), 

and will be discussed in §5. 

3.	 Homotopy Limits 

It is easy to see that even towers do not have limits 

in homotopy theory. D. Puppe gave the following example in 

a 1976 lecture in Dubrovnik. Let 

K = {K(Z,2) ~ K(Z,2) ~ ••• } , 

where "3" denotes a degree 3 map. Suppose that K had a limit 

K	 in pro-Ho (Top). Then the Barratt-Puppe sequence 

s2 ~ s2 ~ C ~ s3 ~ 

would yield an exact sequence 

_____--+~ [S 2 , K]-------t"~ [C, K] 

II	 II II 
1 im{ [S 3 , K ( Z , 2) ] , 3} ~ 1 im{ [C, K (Z, 2) ] , 3} ~ 1 im{S2 , K (Z , 2) ] , 3 } 

II	 II II 
o --------~) Z2 ---------+) 0, 

an obvious contradiction. However, homotopy Zimits exist in 

Ho (pro-Top); for a pro-space Y = {Y }, the functor 
a
 

Ho (pro-Top) (-,{Y })
a 

on Top c pro-Top is represented by ho1im{Ya} (Edwards and 

the author [II, Ch. IV]): 

Ho (pro-Top) (X,{Y }) = Ho (Top) (X,holim{Y }).a a 

The construction of [11], reminescent of J. Milnor's 

[20]	 mapping telescope, consists of replacing {Y } by a 
a 

fib~ant object (using S. Mardesic [17], and [11]) Ys and 

applying the ordinary inverse limit to y s. Other construc­

tions were given by A. K. Bousfield and D. M. Kan [4, Ch. X], 
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and R. Vogt [29]. 

4. Splitting Homotopy Idempotents 

D. A. Edwards and R. Geohegan, in their work [10] on a 

Wall obstruction on shape theory, showed that "idempotents 

split in pro-categories." Let r: X -+- X be a homotopy idem­

2potent, i.e., r ~ r. If there is a diagram 

X ~ Y 
u 

with du ~ idy and ud ~ r, then r is said to spZit. Let Y be 

the tower 

y {X ~ X ~ X r ••• }. 

d 
Then r induces maps X -+- Y in Cech homotopy theory (towers-Ho

U 
(Top) ) 

X 
d4­

Y 
u4­

X 

(all arrows 

which split r. We may replace Y by a tower of fibrations, 

and then replace u and d by strict maps (maps in Steenrod 

homotopy Ho (towers-Top» [101, see also [Ill. Suppose 

du ~ idy in Ho (towers-Top). Then r splits in Ho (towers­

Top) [10] because holim is a functor: 

holim d
 
x ~ holim X ~ 

holim Y.
 
(holim u
 

The Dydak-Minc [8], ~reyd-Heller [14] example of a non-split 

idempotent in unpointed homotopy (described in §S) thus shows 

that a weak equivalence need not be a strong equivalence [81,

compare Theorem (2.3) (Edwards and the author), above. 
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5.	 The Dydak-Minc-Freyd-Heller Example [8, 14] 

Let G be the group 

I -1	 . .)
gl,g2'··· gi gj gi = gj+l,~ < J •< 

Let f: G ~ G be the monorphism defined by 

f(gi) = gi+l· 

Then f2(g) = g~l f(g) gl' so that f is conjugate to f, and 

the induced map 

r = K(f,l): K(G,l) ~ K(G,l) 

is an unpointed homotopy idempotent [8, 14]. Dydak gives a 

straight-forward argument that r does not split--we sketch 

his argument here. If r splits, r splits through a K(H,l) • 

In the resulting diagram 
d 

K(G,l) t K(H,l) 
u 

d is	 both mono and epi on by construction, hence d is an l 

homotopy equivalence by the Whitehead theorem. This implies 

Imf = G, an evident contradiction. 

Freyd and Heller [14] have obtained a wealth of inter­

esting results about G. 

8. Pro-Finite Completions 

Artin and Mazur [1] introduced the following pro-finite 

completion in order to prove comparison theorems in etale 

homotopy theory. Let Y be a finite, pointed CW complex. The 

pro-finite completion of Y, Y, is the category whose objects 

are	 (homotopy classes of pointed) maps 

o, almost all i 
Y ~ Y ' with TIi(Y ) = a a finite, otherwise,~ 

and whose morphisms are homotopy-commutative diagrams 
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(6.1) 

/y~
 
Y ) Y

a a 
This yields a completion functor A:Ho (finite pointed com­

plexes) ~ pro-Ho (Top) as follows. Given a map X ~ Y, 

associate to each object Y ~ Y in the completion Yof Y 
a 

the composite map X ~ Y ~ Y ' an object in X. This yieldsa 

a map f: X~ Y, see [1, Appendix]. 

D. Sullivan [28] showed that pro-Ho (Top) (-,Y) is repre­

sentable, that is, 

pro-Ho (Top) (-,Y) [-, Y] • 

Later, A. K. Bousfield and D. M. Kan [4, Ch. I] introduced a 

different, rigid, completion, the R-completion {R y}, and 
s 

observed that {R y} is cofinal in an Artin-Mazur type R-com­
s 

pletion. Here R is a commutative ring with identity; we 

call {R y} rigid because the construction of {R y} yields a 
s s 

functor into Ho (pro-Top). 

In developing the "genetics of homotopy theory" [28], 

D. Sullivan remarked that a simple rigid completion functor 

could prove useful. We shall rigidify (i.e., lift to Ho 

(gpro-Top) the Artin-Mazur completion functor by a simple 

trick. Objects of gpro-Top are inverse systems of spaces 

which are filtering up to homotopy. See [30]. 

(6.2) Definition. The rigid pro-finite completion of 
A 

a (finite, pointed) complex Y is the category Y.rl.g whose 

objects are pointed maps 

=10' almost all iY ~ Y ' with ni(Y )a a finite, otherwise, 
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and whose morphisms are stpiatly aommutative diagrams 

Y 

y~a~Y8
 
in which the bottom map is a fibpation.
 

Because the pullback of a diagram
 

Y a. 

lfibration 

Y	 fibration Y
 
(3 • y
 

is also a "homotopy pullback," Y. has weak equalizers.
rJ.g
 

It follows easily that Y. is filtering up to homotopy.
rJ.g
 
Further, the functor
 

Ho (pro-Top) [-,Q . ] =[-,holim Y. ] rJ.g rJ.g
 

is clearly representable, and the Bousfield-Kan spectral
 

sequence [3, Ch. XI] shows that holim Y. ~ 'Y, see (6.1).rJ.g 

(6.3) Remapks. The rigid pro-finite completion A •rJ.g
 

induces a pefleation Ho(gpro-Top) -+ Ho(gpro-Top), i.e.,
 

(X . )A . = X . , always. In contrast, for the Bousfield­rJ.g rJ.g rJ.g 

Kan completion, Z Rp 2 and (Z )2 RP 2 are not equivalent, thus,
00 00 

Rp2 is called Z-bad [4, Ch. I]. Further, there should be an 

induced homotopy theory (closed model structure [25]) on the 

image of under which preserves fibration and co-A.	 A.rJ.g rJ.g 

fibration sequences. Sullivan's completion functor cannot 

preserve both types of sequences [28]. Note however, that 

the inverse limit lim:gpro-Top -+ Top preserves fibration 

sequences but not cofibration sequences. 

7. Strong Shape Theory 
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s. Mardesic [21] introduced the following Artin-Mazur 

approach to the shape theory. The shape of a topological 

space X, sh(x) , is the category whose objects are homotopy 

classes of maps X ~ X , where X is an ANR, and whose mor­
a a 

phisms are homotopy-commutative triangles of the form (6.1). 

Let f: X ~ Y be a continuous map. Then each map Y ~ Y in 
a 

sh(Y) induces a map X ~ Y by composition with fj this yields
a 

a shape functor 

sh: Top ~ pro-Ho(ANR) c pro-Ho(Top) • 

One can replace "ANR" by "polyhedron" (possibly infinite) 

in the Marde~i6 definit~on. 

We rigidify the Mardesic shape functor (i.e., lift sh 

to Ho (pro-Top)) by a trick analogous to (6.1), and briefly 

describe the resulting geometric strong shape theory. A 

Vietoris functor approach to strong shape theory is developed 

in Porter [24] and [11, Ch. VIII]. 

(7.1) Definition. The strong shape of a topological 

space X, s - sh(X), is the category whose objects are maps 

X ~ X , with X a polyhedron, and whose morphisms are strictlya a 

commutative triangles 

X 

X 
/PL~

) Xsa 

in which the bottom map is PL. 

(7.2) Proposition. This construction yields a functor 

s - sh: Top ~ pro-(polyhedra) c pro-Top. Further, the com­

posite .functor 1T 0 S - sh: Top ~ pro-Ho (Top) is equivalent 
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to Mapdesi6's shape functop she 

Ppoof. Observe that the equalizer of two PL maps of 

polyhedra is a polyhedron. Thus s - sh(X) has equalizers. 

The rest is easy and omitted. 

(7.3) Ppoposition. The functop s - sh induces a func­

top on homotopy categopies 

s - sh: Ho(Top) ~ Ho(ppo-Top). 

Ppoof. Let H: XxI ~ Y be a homotopy, with H = fO 

and HI = g. Form the commutative diagram in pro-Top 

s - sh(XxO)
 

s - )

sh (f)

t 

s sh(xxI) s - sh(Y)-

r 
s - sh (xxI) 

Each map ~a: XXI ~ Za in s - sh(XxI) factors as 

(~a' projI) projXxI -------~) Z xl a 

hence the map s - sh(XxO) ~ s - sh(XxI) is represented by 

the inverse system of maps 

xxO ) XxI 
I I
 
I I
 
I I
 

~ t 
{Za,xO ------~» Za,X!} 

Thus the map s - sh(XxO) ~ s - sh(XxI) is a trivial cofibra­

tion (i.e. cofibration and equivalence in Ho (pro-Top», 

similarly for XxI. (Note: we are not asserting that the 

maps Xx! ~ ZaxI factor as gXid, only that the bonding maps 

Za X! ~ ZSX! factor in this way). The conclusion follows. 

We now restrict the domain of s - sh to the category 

CM of compact metpic spaces. We may then assume s - sh takes 
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values in	 pro-(finite polyhedra). 

(7.4) Proposition. For X in CM, X ~ ~im s - sh(X).0 

Proof. It s~ffices to prove that natural map 

p: X ~ lim 0 s - sh(X) is bijective. Because any two distinct 

points of X are separated by a map of X into [0,1], P is in­

jective. Further any map X ~ Xu in s - sh(X) which misses a 

point * in Xu factors through a subpolyhedron X~ c Xu with 

* ¢ X'. The conclusion follows. 
a 

Propositions (7.2)-(7.4) are summarized in the follow­

ing diagram--which justifies calling s - sh a strong-shape 

funator-­
s - sh 

CM + - _ -, ~ pro-(finite polyhedra)
ll.m 

!	 ! 
Ho(CM) s - sh • Ho(pro-(finite polyhedra» 

!~ pro-Ho(finite polyhedra). 

(7.5) Proposition (with Koz~owski-Liem). For any aom­

paat	 metria pair (X,A), the sequenae 

s - sh(A) ~ s - sh(X) ~ s - sh(X/A) 

is a aofibration sequenae in pro-top. 

Proof. Consider the inverse system whose objects are 

commutative diagrams 

A X ------ X/A 

t 
AU Xa Xu/Au 

with (Xa,A ) a finite polyhedral pair, and whose bondinga 

maps are defined analogously with (7.1). The induced systems 

{X } and {X /A } are clearly cofinal in s - sh(X) and 
ex. ex. ex. 
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s - sh(X/A), respectively: given X ~ Xu in s - sh(X), let 

Au = Xu' and given X/A ~ P in s - sh(X/A), let Au be a u 

point, and let Xu = P . u 

Finally Kozlowski remarked that any solid-arrow diagram 

A ) P 

! !
 
X J CP 

(where CP is the cone on P) with (X,A) a compact metric pair 

admits a filler (compare Kuratowski's extension lemma for 

Cech nerves [18, p. 122]). This implies that the induced 

inverse system A is cofinal in s - sh(A). The conclusion 

follows. 

Propositions (7.2) and (7.5) imply the following (com­

pare D. A. Edwards and the author [11, Ch. VIII]). 

(7.6) Proposition. For any homology theory h. on 

pro-Top3 the composite h. 0 s - sh is a homology theory on 

CM. 

By comparing s - sh with the Vietoris functor [24], 

and using the machinery of [11, Ch. VIII], we can prqve the 

appropriate continuity formula 

(7.7) s - sh(lim{X }) ~ lim s - sh({X }) in Ho-pron n 

(Top) for s - she Formula (7.7) implies the following. 

(7.8) Proposition (compare [11, Theorem (8.2.2l)}) 

The composite functor h s - sh is a generalized Steenrod 

homology theory. 

(7.9) Remarks. (a) Formula (7.7) is analogous to the 

Steenrod-Milnor short exact sequence (l.l). 
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(b)	 The relationship between the strong shape category 

and the shape category is analogous to the relation 

between Steenrod and Cech homotopy theory, see (2.2)­

(2.5), above. 

D. S. Kahn, J. Kaminker, and C. Schochet [16] developed 

yet another independent approach to Steenrod homology theory-­

see L. Brown, R. Douglas, and P. Fillmore [2,3] and compare 

the Mardesic-J. Segal [21] natural transformation approach to 

shape theory. 

Unfortunately we do not have a purely geometric proof 

of (7. 7) • 

8. A Rlild + - Construction 

We outline a rigidification of Quillen's + - construc­

tion [26] using techniques of Edwards and the author [11], 

dual to §§3-7, above. For simplicity, let TOpp be the cate­

gory of pointed spaces with perfect fundamental groups. We 

define a functor 

such that our x+ is equivalent to Quillen's x+, and such that 

the diagram 

+ (ours)
(8.1) TOPp -----...-...-------i""-+~TOpp 

!	 ! 
+ (Quillen)HO(TOpp ) 

commutes. In fact our techniques work for pairs (X,H) where 

X is a pointed space and H a normal subgroup of TIl(X) con­

taining [TIl (X) ,nl(x)]. 

First associate to X the category + (X) whose objects 
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are	 maps X ~ Xu with and whose morphisms are commutative 

triangles 

X 

Xa~fi~Xs
 
in which the bottom map is a cofibration. It is easy to 

check that + (X) is a direct system, filtering up to homotopy 

(see [30], reverse the arrows in the Artin-Mazur definition 

[1,	 Appendix] of an (inverse) filtering category) . 

Next define 

(8.2)	 hocolim (+ (X) ) 

where hocolim is the homotopy colimit ([11, pp. 169-171] the 

dual of the homotopy limit sketched in §3 or Bousfield-Kan 

[4,	 Ch. XII]). It is easy to check that Definitions (8.2)­

(8.3) yield the required properties. Details are omitted. 
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