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SOME REMARKS ON GENERALIZED BOREL 

MEASURES IN TOPOLOGICAL SPACES 

w. F. Pfeffer 

Given a set A, we shall denote by IAI the cardinality 

of A and by exp A the family of all subsets of A. Through~ 

out, a will denote an uncountabZe cardinal and S, y, will 

denote infinite cardinals. Whenever convenient, we shall 

identify a cardinal with its initial ordinal. As usual, we 

shall denote by wand n the first infinite and the first un

countable cardinals, respectively. 

Definition 1. Let M be a set. A family mc exp M is 

called an a-aZgebra in M if 

(i) (A em, IAI < a) => uA E /i); 

(ii) A E /i) => M - A E m. 

It follows from (i) that ~ E m; thus by (ii), also 

M E m. 

Definition 2. Let mbe an a-algebra in a set M. A 

function ~: m~ [0,+00] is called an a-measupe on m if 

~(~) = 0 and 

v(UA) = L{~(A): A E A} 

for each disjoint family A c /i) with IAI < a. 

The triple (M,m,~) is called an a-measure space. 

Definition 3. Let (M,m,V) be an a-measure space. The 

a-measure V is called S-finite if there is an A c m such that 

IAI ~ S, uA M, and V(A) < +00 for each A E A. 
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If a = ~ and S = w, then the previous definitions re

duce to the usual definitions of a a-algebra, measure, and a 

a-finite measure. To illustrate the situation when a > ~ and 

s > W, we shall present a few examples. 

Example 1. Let M be a set and let f: M ~ [0,+00]. For 

A c M set 

~(A) = E{f(x): x E A}. 

Then ~ is an a-measure on exp M for each a. If ~(M) +00, 

then ~ is S-finite if and only if 

·1 {x E r~: f (x) > O} I < S• 

Example 2. Let K > ~ be a regular ordinal and let W 

be the set of all ordinals less than K equipped with the 

order topology. Denote by # the family of all closed cofinal 

subsets of Wand let m consist of all sets A c W for which 

either A or W - A contain a set F E #. For A E m, let 

~(A) = 1 if A contains a set FEN, and ~(A) = 0 otherwise. 

Clearly, m contains all open subsets of W. To show that 

(W,m,~) is a K-measure space, it suffices to prove the fol

lowing claim. 

Claim. If #0 c # and 1# I < K, then n# E #. 
o 0 

Proof. Using the interlacing lemma (see [8], chpt. 4, 

prbl. E, (a), p. 131) in W, it is easy to prove the claim if 

\# I = 2. By induction, the claim is correct if 1#0 1 < w. 
0 

Let W < ~ < K and suppose that the claim holds whenever -

1# I < ~ . Let I{ = {F p.· p < ~} . Replacing F by0 0 p 

n{F'[: '[ 
-< p}, we may assume that F 

'[ 
c F p for each '[ -< p < ~ . 

Choose an n < K. Since K is regular, there are n'[ E F'[ such 

that n < n'[ < n for each '[ < p <~. If p 
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s = sup{n : p < ~}, p 

then s E nN ; for by the regularity of K, s < K. It follows o 

that nN is a cofinal subset of Wand the claim is proved.o 

Example 3. Let IMI = K where K is the first measurable 

cardinal (see Definition 6), and let ~ be a a-additive measure 

on exp M such that ~(M) = 1 and ~({x}) = 0 for each x E M. 

Then it follows from [2], Lemma 0.4.12 that ~ is a K-measure 

on exp M. 

Example 4. Karel Hrbacek kindly pointed out to me the 

following fact proved in [10], sec. 4, coroll. 1. If a is a 

regular cardinal, then there is a model for the Zermelo-

Fraenkel set theory with the axiom of choice in which 

(i) 2
w = a and Martin's axiom A holds; 

(ii) The family Lof all Lebesgue measurable subsets of 

reals is an a-algebra and the Lebesgue measure is an a-measure 

on L. 

Throughout, X will be a T
l 

space and § will denote the 

family of all open subsets of X. The intersection of all 

a-algebras in X containing § is again an a-algebra in X con

taining Y; it is denoted by B and called the Borel a-algebraa 

in X. Clearly, B~ is then the usual Borel a-algebra in X. 

An a-measure ~ on B is called a Borel a-measure in X if it a 

is locally finite, e.g., if each x E X has a neighborhood 

U E B with ~ (u) < +00. a 

A set A C X is called Y-Lindelof if each open cover of 

A contains a subcover of cardinality less than y. Thus~-

Lindelof £ets are Lindelof, and w-Lindelof sets are compact. 
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The family of all closed y-Lindelof subsets of X is denoted 

by J.y Clearly, ] y is the family of all closed subsets of 

X whenever y > Ixi. 

Definition 4. A Borel a-measure in X is called 

(i) diffused if ~({x}) o for each x E Xi 

(ii) S-moderated if there is an A c § such that IAI < S, 

uA = X, and ~(A) < +00 for each A E Ai 

(iii) y-Radon if 

~(A) = sup{~(F): FE] ,
Y 

F C A, ~(F) < +oo} 

for each A E B •a' 

(iv) y-regular if it is y-Radon and 

~(A) = inf{~(G): G E §, A C G} 

for each A E B • 
a 

The Borel a-measures which are w-moderated, or w-Radon, 

or w-regular are usually called moderated, or Radon, or regu

lar, respectively. 

Discussion of results. It is clear that as-moderated 

a-measure is S-finite, and that as-finite, y-regular a-

measure is S-moderated. On the other hand, a a-finite Radon 

measure is generally not moderated (see [4], ex. 7). It is 

easy to see that a moderated y-Radon a-measure is y-regular, 

yet the converse is false (e.g., giving M the discrete 

topology, the measure ~ from Example I is always regular, 

but not necessarily moderated). We shall show that for a 

large family of spaces each diffused y-regular a-measure 

with a ~ y is moderated and hence a-finite. Thus typically 

a non-a-finite, y-Radon a-measure is not y-regular. We shall 
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prove, however, that as-finite, y-Radon a-measure with 

a > S and a ~ y is S-moderated whenever the space X is meta

B-Lindelof (see Definition 5, (i». Under a mild set theo

retic restriction, we shall also prove that in a metacompact 

space each S-finite, Borel a-measure with a > S is 8-moderated. 

Sometimes many properties of a Borel a-measure can be 

deduced from the well-known facts about the usual a-additive 

Borel measures. To this end, we shall show that each moder

ated, y-Radon a-measure is a restriction of a complete Borel 

measure. We shall also prove that each y-Radon a-measure 

with a > yW degenerates to a measure from Example 1. 

Proposition 1. Let a > y and Zet ~ be a y-Radon a

measure in X. Then there is a disjoint famiZy [ c Jy such 

that 

(iJ If C E [3 then C :t- fJ3 ~(C) < +003 and ~(C n G) > 0 

for each G E Y with C n G :t- fJ; 

(iiJ If B E B 3 then a 

~ (B) L {~ (B n C): C E [}. 

Proof. By Zorn's le~ua there is a maximal disjoint 

family [ c J satisfying condition (i). Let B E B. Since 
y a 

C is disjoint, 

~(B) ~ L{~(B n C): C E [}. 

We shall prove the reverse inequality in three steps. 

(a) Let B n C = fJ for each C E [ and suppose that 

~(B) > O. Then there is an F E J with FeB and 0 < ~(F) < 
Y 

H = U{F n G: G E y, ~(F n G) = a}, 

then H is open in F and ~(E) = 0 for each y-Lindelof set 
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E C H. Since ~ is y-Radon, ~(H) = O. Letting Co = F - H, 

we have Co E J and ~(Co) = lJ (F) . In particular, Co ~ ~ andy 

11 (Co) < +00. By the definition of H, lJ(C n G) > o for each o 

G E § with C n G ~ ~. It follows that C u {Co} is a dis
0 

joint subfamily of J 
y 

satisfying condition (i); a contradic

tion. 

(b) Let B E J y . By the local finiteness of lJ, there is 

an open cover U of B such that lUI < y and ~ (U) < +00 for each 

U E U. Since Cis disjoint, and since lJ(C n U) > 0 whenever 

C E C, U E U, and C n U ~ ~, the family {C E C: C n u ~ ~} 

is countable for each U E U. Thus 

I{C E C: B nc ~ ftJ} I < y. w y < a, 

and by (a), 

lJ (B) L{11 (B n C): C E C}. 
(c) Let B E B. By (b), for each F E J with FeB,a y 

J1(F) L{11(F n C): C E (} < L{11(B n C): C E (}. 

Since J1 is y-Radon, also 

J1(B) 2. L{J1(B n C): C E C}. 

In case of a = nand y = w, a version of Proposition 1 

was proved by'N. Bourbaki and R. Godement, who called the 

family Ca 1.1-concassage (see [13], p. 46). 

A set A c X is called locally countable if each x E X 

has a neighborhood U with IA n ul 2 w. 

Theorem 1. Let a ~ y and let each uncountable locally 

countable set A c X contain an uncountable subset B E B . If a 

1.1 is a diffused~ y-regular a-measure in X~ then 11 is moder

ated. 

Proof. Let Cbe the family from Proposition 1. If C 
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is countable, then ~ is a-finite and thus by y-regularity, 

also moderated. Hence assume that Cis uncountable, for each 

C E Cchoose Xc E C, and let A = {Xc: C E C}. It follows 

from Proposition 1 and the local finiteness of ~ that A is 

locally countable. According to our assumptions, we can find 

an uncountable set B c A with B E B. Let F E J and FeB. a y 

Since F can be covered by less that y open sets of finite 

measures, it follows from Proposition 1 that I{c E [: C n F ~ 

~}I < y·w = y. Consequently, IFI < y < a. Since ~ is a dif 

fused a-measure, ~(F) = O. By the y-regularity of ~, ~(B) = 0 

and there is aGE § such that BeG and ~(G) < +00. For each 

Xc E B, we have ~(C n G) > O. Since B is uncountable and C 
is disjoint, this implies that ~(G) = +00; a contradiction. 

Next we shall show that the condition from Theorem 1 is 

satisfied by a large collection of familiar spaces. 

Let M be a set, and let A c exp M. For X E M, set 

o(x,A) = I{A E A: X E A}I 

and let o(A) be the least cardinal such that 

o(x,A) < o(A) 

for each x E M. The cardinal o(A) is called the order of A. 

Definition 5. A space X is called 

(i)	 meta-8-Lindelof if each open cover of X has an open 

refinement V with o(V) ~ 8; 

(ii)	 a-weakZy 6-refinable if each open cover of X has an 

open refinement V = U{V : t E T} such that ITI < at 

and for each x E X there is a t E T withx
 

1 < o(x,V ) < w.
 
tx
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Clearly, meta-w-Lindelof and meta-~-Lindelof spaces are, 

respectively, metacompact and meta-Lindelof. Similarly,~-

weakly 8-refinable spaces are weakly 8-refinable in the sense 

of [1]. 

Proposition 2. Let X be a-weakly 8-refinable and let 

A c X. If there is a 8 < a such that each x E X has a neigh

borhood U with IA n ul 2 8~ then A E B • In particular~ if a 

A is locally countable~ then A E B . 
a 

Proof. Suppose that there is a 8 < a such that each 

x E X has an open neighborhood U with IA n uxl 2 8. Let x 

V U{Vt : t E T} be an open refinement of {UX: x E X} such 

that ITI < a and for each x E X there is a t E T with x 

1 2 o(x,V ) < w. 
t x 

Since the sets {x E X: o(x,V ) > n}, t E T, n 1,2, • • ., aret 

open, the sets 

Xt,n = {x E X: o(x,Vt ) n} 

are Borel. Clearly, 

X = U{X : t E T, n = l,2,···}.t ,n 

Let W consist of all sets X n V n ••• n V wheret ,n t ,n l n 

Vl'···'V are distinct elements of V • Then W is a dis-n t t,n 

joint family of open (in Xt,n) subsets of Xt,n and Xt,n 

utV • Moreover,t,n 

A n w = {x~: p < K W} 

where K W 2 8 for each W E Wt,n. Thus the sets 

At,n,p = {x~: W E Wt,n' K W > p}, 

t E T, n 1,2,···, p < 8, are closed in X ' and thereforet ,n 

Borel. ~'Ve have 
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A U{ A n X : t E T, n = 1, 2 , • • • } t ,n 

U~=l U{A n W: W E Wt,n}UtET 

UtET U~=l Up<S At,n,p 

Since ITI < a, w < a, and S < a, it follows that A E B . 
a 

The following corollary is a direct consequence of 

Theorem 1 and Proposition 2. 

Corollary 1. Let a ~ y and let X be a-weakly 8-refinable. 

If ~ is a diffused, y-regular a-measure in X, then ~ is mod

erated. 

Next two examples show that the assumptions of Proposi

tion 2 are essential. 

Example 5. For a regular ordinal K ~ Q, let (W ,~ ,~ )
KKK 

be the K-measure space (W,~,~) from Example 2. 

Claim. Let K > Q be a regular ordinal. Then there is 

a set ~ C WK such that AK n Wp E ~p for no regular ordinal 

p E [Q, K] • 

Proof. Since Q is not a measurable cardinal (see [14], 

thro. (A», there is a set AQ C WQ for which AQ i ~Q. If 

p E (n,K] is a regular ordinal, then each closed cofinal 

subset of W contains ordinals cofinal with both wand Q. 
p 

Thus it suffices to let A be the union of A and the set ofK Q 

all ordinals s E W cofinal with Q.K 

If the cardinal K is an immediate successor of a cardi

nal S, then IAK n [D,s] I ~ S for each s E W and yet A i B ;K K K

for BK C ~K. However, since each A c WK contains a discrete 

subset B with IBI = IAI, Theorem 1 can be still applied to WK. 
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Example 6. Let K be a weakly inaccessible ordinal, i.e., 

K is a regular ordinal and K = w for some limit ordinal T 
T 

(see [9], chpt. IX, sec. 1, p. 309). With the notation from 

Example 5, let 

X = {~,n) E W XW * : ~ _< n}
K K 

where W* is the set W with the discrete topology. Clearly,K K 

X is paracompact. If 

A = {( ~ ,n) EX: ~ E A },
K 

then for each ordinal p E [n,K), 

A n (Wp+lx{p}) 

and consequently 

IA n (Wp+lx{p}) I < K· 

By the claim in Example 5, A E B for no regular cardinal a 

a < K. It follows easily from the weak inaccessibility of 

K that Ua<K B is a K-algebra in X containing all open suba 

sets of X. Therefore, Ua<K Ba = BK and A ( B
K

• 

As indicated by Example 5, the condition from Corollary 1 

is not necessary. In fact, the following question seems open 

at this time. 

Question. For a > y, does ther~ exist a diffused, y-

regular a-measure which is not moderated? 

Lemma 1. Let (M,m,~) be an a-measure space with 

~(M) < +00, and let A c m. If o(A) < a and E > 0, then 

I{A E A: ~(A) ~ E}I < max(o(A) ,n). 

Proof· (a) Let 8 = o(A), 8 < a, and suppose that there 

is an E > 0 such that the set 
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has cardinality larger than or equal to max(8,n). First we 

shall show that there is a family [ c A+ such that for each 

countable collection 0 c [ we can find aCE [ with ~(C - UO) 

> O. 

(b) If no such family exists, then for each [ c A+ there 

is a countable [0 c [ such that ~(C - Ufo) = 0 for each 

C E [. Let [1 = A+ and define inductively [T' T < 8, by 

setting 

C = A+ - Up<T [poT 

where C = ([) . Since Iu < [ I < T·W < max(8,n), the po pop T po 

families C , and consequently [ , are nonempty for eachT TO 

T < S. If C = U[ , then ~(C ) > E and ~(C-CT) = 0 forT TO T 

each C E [ with T < P < S. Thus ~(C -C ) = 0 whenever 
p - p T 

T < P < 8, and we obtain 

C ) ~ (C )~(nT~p T p - ~(Cp - nT~p CT) 

~(C ) - ~[UT~P(Cp-CT)] ~(C ) > E
P P 

for each p < 8. Since S < a, 

~(nT<S C
T

) = infp<S ~(nT~p CT) -> E. 

k
In particular, C 1 ~. If [ = {A : k 1,2, ••• },nT<S T TO T 

then 

nT<8 CT = nT<8 Uk A~ = U{kCT)} nT<8 A~CT) 
where the last union is taken over all transfinite sequences 

{k(T)}T<S of positive integers. Thus there are positive inte

gers k(T), T < 8, and an x E M with x E n Ak(T). Because
T<S T 

the families C are mutually disjoint, Ak(P) 1 Ak(T) when-
TO p T 

ever P 1 T. Consequently o(x,A) = S, and this contradiction 

establishes the existence of the family C from (a). 

(c) Choose EO E [ and suppose that for each P < T < n 

we have chosen E E [ so that 
p 
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l1(E - UA.<p EA.) > o.p 

Since {E : p < T} is a countable subfamily of C, there is an p 

E E C such that 
T 

l1(E T - Up<T E T) > O. 

Letting F = E - Up<T E ' we obtain an uncountable disjointT T p 

family {F : T < Q} c mof sets with positive measures. It 
T 

follows that l1(M) = +00; a contradiction. 

Corollary 2. Let (M,m,l1) be an a-measure space with 

l1(M) < +003 and let A c m. If o(A) < a and E > 03 then 

I {A E A: 11 (A) > E} I < max (0 (A) ,w) • 

Proof. In view of Lemma 1, it suffices to consider the 

case of o(A) < w. This implies that the set 

A {A E A: 11 (A) > E}
+ 

is countable. If XA is the characteristic function of a set 

A c M, then 

E{XA(x): A E A+} = o(x,A+) 

for each x E M. Since A+ is countable, the function 

x + o(x,A+) is measurable, and so are the sets 

M {x E M: o(x,A+) < n} , n 
00 

n = 1,2, • • • . The sequence {M } is increasing and M;n Un=l Mn 

for if x E M, then 

o(x,A+) < o(A) < w. 

Thus there is an integer p > 1 such that l1(M-M ) <~. We p 

have 

E{l1(A n Mp ): A E A+} E{!M XA d11: A E A+} < !MPd11 
p p 

P11(M ) < +00. p 

Because 11 (A n M ) > ~ for each A E A+, it follows thatp 

IA+I < w. 
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Example 7. Let K > ~ be a regular ordinal and let 

(W,~,~) be the K-measure space from Example 2. If A = 

{[p,K): p < K}, then ~(A) = 1 for each A E A and o(A) = 

I AI = K. 

Propos1.~tion 3. Let a > S and le t (M,ftJ, ~) be an a-

measure space with ~ S-fini te. If A c ftJ and o(A) < thenS-' 

I{A E A: ~ (A) > a} I < s. 

Proof. Let M u[ where [ c ~, 1[1 < S, and ~(C) < +00 -
for each C E [. For C E Cand A E ftJ, let ~C(A) ~ (A n C). 

Clearly, ~C is a finite a-measure on m and 

~(A) L:{PC(A):CE[} 

for every A E m. If 

then 

00 1AC = Un=l{A E A: ~C(A) ~ n} 
and so by Corollary 2, IAcl < w·s = S. Since 

{A E A: ~(A) > a} u{A : C E C},c 
the proposition follows. 

Letting a ~ in Proposition 3, we obtain the follow

ing corollary. 

Corollary 3. Let (M,m,~) be a measure space with a 

a-finite measure p. If A c ~ is a point-finite family, then 

~(A) = a for all but countably many A E A. 

Note. Without proof, Corollary 3 was first communicated 

to me by Heikki Junnila. Although quite analogous, his proof 

of Corollary 3 (see [7]) and my proof of Lemma 1 were obtained 

independently. There is a simple direct proof of Corollary 3 
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(see [12], chpt. 18, ex. (18-18)), which was found jointly 

by Don Chakerian and myself. 

Theorem 2. Let a > 8~ a ~ y~ and let ~ be a 8-finite~ 

Y-Radon a-measure in X. If X is meta-S-Lindelof~ then ~ is 

S-moderated. 

Proof. If X is meta-8-Lindelof, then there is an open 

cover A of X such that o(A) < S and ~(U) < +00 for each U E A. 

By Proposition 3, 

I{u E A: ~(U) > 0}1 .2 S. 

Thus if A 
0 

= {U E A: ~(U) o} and G uAo ' it suffices to 

show that ~(G) < +00. Let F E J and F c G. There is 
Y 

V c A such that I VI < Y and F c uv. It follows that 
0 

~(F) = o and since ~ is y-Radon, also ~(G) = O. 

Definition 6. A cardinal K is called measurable if 

there is a discrete space Y of cardinality K and a diffused, 

Borel K-measure ~ in Y with ~(Y) = 1. 

The basic properties of measurable cardinals which do 

not involve axiomatic set theory are proved in [14]; more 

recent results can be found, e.g., in [2], chpt. 0, sec. 4. 

The next lemma is proved by a modified technique of 

Haydon (see [6], Prop. 3.2). 

Lemma 2. Let a > S and let ~ be a S-finite~ Borel 

a-measure in X. Let A c ~ be a point-finite family such that 

~(U) = 0 for each U E A. If X contains no discrete subspace 

of measurable cardinality~ then ~(uA) O. 

Proof. Let X = u( where e c B , lei < S, and ~(C) < +00a 

for each C E C. Because the sets {x E X: o(x,A) > n}, 
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n = 1,2,·· ., are open, the sets 

X = {x E X: o (x,A) n}n 

are Borel. Clearly uA = U
00 

X and so it suffices to shown=l n' 

that ~(C n X ) = 0 for each C E Cand n = 1,2,···. Fix a n 

C E Cand an integer n > 1, and suppose that ~(C n X ) > O. n 

Consider the family V of all nonempty sets 

V = C n X n U n ••• n Un n l 

where Ul ,···, Un are distinct elements of A. Since V is a 

disjoint open (in C n X ) cover of C n X ' we can define an n n 

a-measure \) on exp V by letting 

\) ( V, ) ~ ( UV') 
~ (C n X 

n 
) 

for each V, c V. It follows from [2], lemma 0.4.12 that V 

contains a family V of measurable cardinality. Choosingo 

an Xv E V for each V E V we obtain a discrete subspaceo 

X {xV: V E V } with IXol = IVol; a contradiction. o o 

Theorem 3. Let a > S and let ~ be a S-finite~ Borel 

a-measure in X. If X is metacompact and contains no discrete 

subspace of measurable cardinality~ then ~ is S-moderated. 

Proof. Choose a point-finite open cover A of X such 

that ~(U) < for each U E A. By Proposition 3,+00 

I {U E A: ~ (U) > o} I < 8, 

and by Lermna 2, 

~(u{U E A: ~(U) oJ) o. 

The theorem follows. 

We do not know whether Theorem 3 remains correct if the 

assumption "X contains no discrete subspace of measurable 

cardinality" is relaxed to "X contains no closed discrete 
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subspace of measurable cardinality." However, using tech

niques of Moran (see [11], prop. 4.2) one can show easily 

that in Theorem 3, instead of assuming that X contains no 

discrete subspace of measurable cardinality, we may assume 

that all closed discrete subspaces of X have semi-reducible 

cardinality (for the definition and basic properties of semi-

reducible cardinals see [11], sec. 3). 

Note. Using a slightly different technique, Theorems 

2 and 3 were proved in [4] for a = n (see [4], Lemma 3 and 

Remark 2). 

Let ~ be a Borel a-measure. Since the Borel a-algebra 

B = Bn is contained in Ba , we can define a measure space 

(x,B,~) as the usual completion of the measure space (x,B,~) 

(see [5], sec. 13, p. 55). The measure space (x,B,~) is 

said to be associated with the Borel a-measure ~. 

Proposition 4. Let ~ be a BoreZ a-measure in X and Zet 

(X,B,~) be the measure space associated with~. If ~ is 

moderated and Y-Radon with an arbitrary Y, then B c Band a 

~(A) = ~(A) for each A E Ba · 

Proof. (a) Let A E B and suppose that A c H for some a 

H E ~ with ~(H) < +00. Then 

~(A) sup{~(F): F E Jy , F c A} 

inf{~(G): G E ~, A c G}. 

Thus there is an Fa set F and a Go set Go such that F c o o 

A c Go and ~(Fo) = ~(A) = ~(Go) < +00. It follows that 

A F U (A-F ) belongs to B and that o o
 

~(A) = ~(F ) = ~(F ) = ~(A).
 o 0 
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(b) Let A E B be arbitrary. Since ~ is moderated,a 

X = u00 
H where H E § and ~(Hn) < +00, n = 1,2, • • • . Byn=l n n 

(a) , A n H E B and 1J(A n H ) = ~(A n H ) , n = 1,2, • • • . n n n 

Consequently, A E B and "i1(A) = ~ (A) . 

The following theorem generalizes an unpublished result 

of Gary Gruenhage. 

Theorem 4. Let ~ be a Y-Radon a-measure in X. If 

> n°O h < 12tha n=l Y w enever Y Y, n = , , ••• , en n n
 

~ (B) = L{~ ( {x}): x E B}
 

for each B E B . a 

Proof. (a) Let X be y-Lindelof and let ~(X) < +00. For 

each x E X and n 1,2,···, choose an F E J such that x,n y 

F c X - {x} and x,n 
1

~(F ) > ~(X-{x}) x,n n 

Each open cover {X-F : x E X} of X has a subcover U with x,n n 

IU I < y, n = 1,2,···. Since ~ (X) < +00, the set A = 
n 

{x E X: ~({x}) > O} is countable, and since 

~(X-F ) < ~({x}) + 1 
x,n n 

for each x E X, ~(U-A) < kfor each U E Un. Thus 

~[n~=l(Un-A)] = 0 

for every sequence {Un} with Un E Un' n = 1,2,···. We have 

X - A n~=l u{U-A: U E Un} 

U{U } n~=l (Un-A) 
n 

where the last union is taken over all sequences {Un} with 

U E U n = 1 2 •••. Because IU I < y, the collection ofn n' , , n 

all these sequences has the cardinality less than a. Conse

quently, ~(X-A) = 0 and 
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11 (B) l1(A n B) = L{l1({X}): x E A n B} 

L{l1 ({x}): x E B} 

for each B E B • 
a 

(b)	 Let X and 11 be arbitrary, and let B E B. There are 
a 

F	 E J such that F C F + C B, 11 (F ) < +00, n = 1,2, ••• ,n	 y n n l n 

and	 lim ~(Fn) = l1(B). Using (a), we obtain 

ll(B) lim L{l1({X}): x E F }n 

L{ll({X}): x E U~=l F } ~ L{l1({X}): x E B}.n 

The equality holds trivially when l1(B) = +00. If l1(B) < +00, 

then	 l1(B -U~=l F ) = 0 and the equality holds again.n 

Remark. The cardinality assumption in Theorem 4 is 

clearly satisfied when a > yW. However, this later condi

tion is generally stronger. For example, choose infinite 

Kp KT
cardinals K so that 2 < 2 for each p < T < ~, and let 

p 

Y =	 sup{2
K

P: P < n}. If Yn < y, n = 1,2,···, then y < 2
K

P 
n -

for some p < n, and consequently 

K W K 
rr oo y < (2 p) 2 P < y 2. yW.

n=l	 n-

We shall close this paper by stating two theorems about 

a-measures which for a = n were proved previously by Gardner, 

Gruenhage, and the author (see [3], corollary to Theorem 6.1, 

and [4], Theorem 2). Recall that a space X is: 

(i)	 hereditarily a-weakly 8-refinable if each subspace 

of X is a-weakly 8-refinable; 

(ii)	 looally y-Lindelof if each x E X has a y-Lindelof 

neighborhood. 

Theorem 5. Suppose that X is a regular, hereditarily 

a-weakly 8-refinable space which contains no discrete subspace 
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of measurable cardinality. Let a > S and let ~ be a S-

finite, Borel a-measure in X. Then ~ is y-Radon for each 

y > Ix I. 

Theorem 6. Suppose that X is a regular, a-weakly e

refinable, locally y-Lindelof space which contains no dis

crete subspGce of measurable cardinality. Let a > S and let 

~ be a S-finite, Borel a-measure in X. Then ~ is y-Radon if 

and only if it is a-Radon for some a ~ w. 

Modulo the obvious adjustments, for a finite a-measure 

~ the proofs of Theorems 5 and 6 are the same as those of 

Thsorem (18~3l) in [12] and Theorem 2 in [4], respectively. 

Since each S-finite a-measure with a > S is a sum of finite 

a-measures (see the proof of Proposition 3), it suffices to 

observe that a sum of y-Radon a-measures is also y-Radon. 
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