TOPOLOGY PROCEEDINGS Volume 2, 1977

Pages 543–562

http://topology.auburn.edu/tp/

SOME REMARKS ON GENERALIZED BOREL MEASURES IN TOPOLOGICAL SPACES

by

W. F. PFEFFER

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOON.	0146 4194

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

SOME REMARKS ON GENERALIZED BOREL MEASURES IN TOPOLOGICAL SPACES

W. F. Pfeffer

Given a set A, we shall denote by |A| the cardinality of A and by exp A the family of all subsets of A. Throughout, α will denote an *uncountable* cardinal and β , γ , will denote *infinite* cardinals. Whenever convenient, we shall identify a cardinal with its initial ordinal. As usual, we shall denote by ω and Ω the first infinite and the first uncountable cardinals, respectively.

Definition 1. Let M be a set. A family $\mathcal{M} \subset \exp M$ is called an α -algebra in M if

(i) $(A \subset M, |A| < \alpha) \implies \cup A \in M;$ (ii) $A \in M \implies M \implies A \in M.$

It follows from (i) that $\emptyset \in \mathcal{M}$; thus by (ii), also $M \in \mathcal{M}$.

Definition 2. Let \mathcal{M} be an α -algebra in a set M. A function $\mu: \mathcal{M} \neq [0, +\infty]$ is called an α -measure on \mathcal{M} if $\mu(\emptyset) = 0$ and

 $\mu(\cup A) = \Sigma\{\mu(A) : A \in A\}$

for each disjoint family $A \subset M$ with $|A| < \alpha$.

The triple (M, M, μ) is called an α -measure space.

Definition 3. Let (M, \mathcal{M}, μ) be an α -measure space. The α -measure μ is called β -finite if there is an $A \subset \mathcal{M}$ such that $|\mathcal{A}| \leq \beta, \ \cup \mathcal{A} = M$, and $\mu(A) < +\infty$ for each $A \in \mathcal{A}$.

If $\alpha = \Omega$ and $\beta = \omega$, then the previous definitions reduce to the usual definitions of a σ -algebra, measure, and a σ -finite measure. To illustrate the situation when $\alpha > \Omega$ and $\beta > \omega$, we shall present a few examples.

Example 1. Let M be a set and let $f: M \rightarrow [0, +\infty]$. For $A \subset M$ set

 $\mu(\mathbf{A}) = \Sigma \{ \mathbf{f}(\mathbf{x}) : \mathbf{x} \in \mathbf{A} \}.$

Then μ is an α -measure on exp M for each α . If $\mu(M) = +\infty$, then μ is β -finite if and only if

 $|\{\mathbf{x} \in M: \mathbf{f}(\mathbf{x}) > \mathbf{0}\}| < \beta.$

Example 2. Let $\kappa \geq \Omega$ be a regular ordinal and let W be the set of all ordinals less than κ equipped with the order topology. Denote by # the family of all closed cofinal subsets of W and let # consist of all sets $A \subset W$ for which either A or W - A contain a set $F \in \#$. For $A \in \#$, let $\mu(A) = 1$ if A contains a set $F \in \#$, and $\mu(A) = 0$ otherwise. Clearly, # contains all open subsets of W. To show that $(W, \#, \mu)$ is a κ -measure space, it suffices to prove the following claim.

Claim. If $\mathcal{H}_{\mathcal{O}} \subset \mathcal{H}$ and $|\mathcal{H}_{\mathcal{O}}| < \kappa$, then $\cap \mathcal{H}_{\mathcal{O}} \in \mathcal{H}$.

Proof. Using the interlacing lemma (see [8], chpt. 4, prbl. E, (a), p. 131) in W, it is easy to prove the claim if $|\#_{o}| = 2$. By induction, the claim is correct if $|\#_{o}| < \omega$. Let $\omega \leq \xi < \kappa$ and suppose that the claim holds whenever $|\#_{o}| < \xi$. Let $\#_{o} = \{F_{\rho}: \rho < \xi\}$. Replacing F_{ρ} by $n\{F_{\tau}: \tau \leq \rho\}$, we may assume that $F_{\tau} \subseteq F_{\rho}$ for each $\tau \leq \rho < \xi$. Choose an $n < \kappa$. Since κ is regular, there are $n_{\tau} \in F_{\tau}$ such that $n < n_{\tau} < n_{\rho}$ for each $\tau < \rho < \xi$. If $\zeta = \sup\{\eta_{\rho}: \rho < \xi\},\$

then $\zeta \in \cap \overset{\mathcal{H}}{\to}_{O}$; for by the regularity of κ , $\zeta < \kappa$. It follows that $\cap \overset{\mathcal{H}}{\to}_{O}$ is a cofinal subset of W and the claim is proved.

Example 3. Let $|M| = \kappa$ where κ is the first measurable cardinal (see Definition 6), and let μ be a σ -additive measure on exp M such that $\mu(M) = 1$ and $\mu(\{x\}) = 0$ for each $x \in M$. Then it follows from [2], Lemma 0.4.12 that μ is a κ -measure on exp M.

Example 4. Karel Hrbacek kindly pointed out to me the following fact proved in [10], sec. 4, coroll. 1. If α is a regular cardinal, then there is a model for the Zermelo-Fraenkel set theory with the axiom of choice in which

(i) $2^{\omega} = \alpha$ and Martin's axiom A holds;

(ii) The family $\mathbf{1}$ of all Lebesgue measurable subsets of reals is an α -algebra and the Lebesgue measure is an α -measure on $\mathbf{1}$.

Throughout, X will be a T_1 space and \mathcal{G} will denote the family of all open subsets of X. The intersection of all α -algebras in X containing \mathcal{G} is again an α -algebra in X containing \mathcal{G} ; it is denoted by β_{α} and called the *Borel* α -algebra in X. Clearly, β_{Ω} is then the usual Borel σ -algebra in X. An α -measure μ on β_{α} is called a *Borel* α -measure in X if it is *locally finite*, e.g., if each $x \in X$ has a neighborhood $U \in \beta_{\alpha}$ with $\mu(U) < +\infty$.

A set $A \subset X$ is called γ -Lindelöf if each open cover of A contains a subcover of cardinality less than γ . Thus Ω -Lindelöf sets are Lindelöf, and ω -Lindelöf sets are compact. by \mathcal{F}_{γ} . Clearly, \mathcal{F}_{γ} is the family of all closed subsets of X whenever $\gamma > |X|$.

Definition 4. A Borel α -measure in X is called

- (i) diffused if $\mu(\{x\}) = 0$ for each $x \in X$;
- (ii) β -moderated if there is an $A \subset \mathcal{G}$ such that $|A| \leq \beta$, $\cup A = X$, and $\mu(A) < +\infty$ for each $A \in A$;
- (iii) Y-Radon if
 - $\mu(A) = \sup\{\mu(F): F \in \mathcal{F}_{\gamma}, F \subset A, \mu(F) < +\infty\}$ for each A $\in \beta_{\alpha}$;
 - (iv) γ -regular if it is γ -Radon and $\mu(A) = \inf{\{\mu(G): G \in \mathcal{G}, A \subset G\}}$

for each $A \in \beta_{\alpha}$.

The Borel α -measures which are ω -moderated, or ω -Radon, or ω -regular are usually called *moderated*, or *Radon*, or *regular*, respectively.

Discussion of results. It is clear that a β -moderated α -measure is β -finite, and that a β -finite, γ -regular α -measure is β -moderated. On the other hand, a σ -finite Radon measure is generally not moderated (see [4], ex. 7). It is easy to see that a moderated γ -Radon α -measure is γ -regular, yet the converse is false (e.g., giving M the discrete topology, the measure μ from Example 1 is always regular, but not necessarily moderated). We shall show that for a large family of spaces each diffused γ -regular α -measure with $\alpha \geq \gamma$ is moderated and hence σ -finite. Thus typically a non- σ -finite, γ -Radon α -measure is not γ -regular. We shall

prove, however, that a β -finite, γ -Radon α -measure with $\alpha > \beta$ and $\alpha \ge \gamma$ is β -moderated whenever the space X is meta- β -Lindelöf (see Definition 5, (i)). Under a mild set theoretic restriction, we shall also prove that in a metacompact space each β -finite, Borel α -measure with $\alpha > \beta$ is β -moderated.

Sometimes many properties of a Borel α -measure can be deduced from the well-known facts about the usual σ -additive Borel measures. To this end, we shall show that each moderated, γ -Radon α -measure is a restriction of a complete Borel measure. We shall also prove that each γ -Radon α -measure with $\alpha > \gamma^{\omega}$ degenerates to a measure from Example 1.

Proposition 1. Let $\alpha \geq \gamma$ and let ψ be a γ -Radon α -measure in X. Then there is a disjoint family ($\subset \mathcal{F}_{\gamma}$ such that

 (i) If C ∈ (, then C ≠ Ø, μ(C) < +∞, and μ(C ∩ G) > 0 for each G ∈ G with C ∩ G ≠ Ø;
 (ii) If B ∈ β_α, then

 $\mu(B) = \Sigma\{\mu(B \cap C): C \in \mathcal{C}\}.$

Proof. By Zorn's lemma there is a maximal disjoint family $\zeta \subset \mathcal{F}_{\gamma}$ satisfying condition (i). Let $B \in \beta_{\alpha}$. Since ζ is disjoint,

 $\mu(B) \geq \Sigma\{\mu(B \cap C): C \in \binom{1}{2}.$ We shall prove the reverse inequality in three steps.

(a) Let B \cap C = Ø for each C \in (and suppose that μ (B) > 0. Then there is an F \in \mathcal{F}_{γ} with F \subset B and O < μ (F) < + ∞ . If

 $H = \cup \{F \ \cap \ G: \ G \in \mathcal{G}, \ \mu (F \ \cap \ G) = 0\},$ then H is open in F and $\mu (E) = 0$ for each γ -Lindelöf set $E \subseteq H$. Since μ is γ -Radon, $\mu(H) = 0$. Letting $C_0 = F - H$, we have $C_0 \in \mathcal{F}_{\gamma}$ and $\mu(C_0) = \mu(F)$. In particular, $C_0 \neq \emptyset$ and $\mu(C_0) < +\infty$. By the definition of H, $\mu(C_0 \cap G) > 0$ for each $G \in \mathcal{G}$ with $C_0 \cap G \neq \emptyset$. It follows that $(\bigcup \{C_0\}$ is a disjoint subfamily of \mathcal{F}_{γ} satisfying condition (i); a contradiction.

(b) Let $B \in \mathcal{F}_{\gamma}$. By the local finiteness of μ , there is an open cover \mathcal{U} of B such that $|\mathcal{U}| < \gamma$ and $\mu(U) < +\infty$ for each $U \in \mathcal{U}$. Since (is disjoint, and since $\mu(C \cap U) > 0$ whenever $C \in (\mathcal{L}, U \in \mathcal{U}, \text{ and } C \cap U \neq \emptyset$, the family $\{C \in (: C \cap U \neq \emptyset\}$ is countable for each $U \in \mathcal{U}$. Thus

 $\left| \{ C \in (: B \cap C \neq \emptyset \} \right| < \gamma \cdot \omega = \gamma \leq \alpha,$ and by (a),

 $\mu(B) = \Sigma \{ \mu(B \cap C) : C \in (\} \}.$

(c) Let $B \in \beta_{\alpha}$. By (b), for each $F \in \mathcal{F}_{\gamma}$ with $F \subset B$, $\mu(F) = \Sigma\{\mu(F \cap C): C \in \mathcal{C}\} \leq \Sigma\{\mu(B \cap C): C \in \mathcal{C}\}.$

Since μ is γ -Radon, also

 $\mu(B) \leq \Sigma\{\mu(B \cap C): C \in C\}.$

In case of $\alpha = \Omega$ and $\gamma = \omega$, a version of Proposition 1 was proved by N. Bourbaki and R. Godement, who called the family (a μ -concassage (see [13], p. 46).

A set $A \subset X$ is called *locally countable* if each $x \in X$ has a neighborhood U with $|A \cap U| \leq \omega$.

Theorem 1. Let $\alpha \geq \gamma$ and let each uncountable locally countable set $A \subset X$ contain an uncountable subset $B \in \beta_{\alpha}$. If μ is a diffused, γ -regular α -measure in X, then μ is moderated.

Proof. Let (be the family from Proposition 1. If (

is countable, then μ is σ -finite and thus by γ -regularity, also moderated. Hence assume that ζ is uncountable, for each $C \in \zeta$ choose $\mathbf{x}_C \in C$, and let $\mathbf{A} = \{\mathbf{x}_C : C \in \zeta\}$. It follows from Proposition 1 and the local finiteness of μ that \mathbf{A} is locally countable. According to our assumptions, we can find an uncountable set $\mathbf{B} \subset \mathbf{A}$ with $\mathbf{B} \in \frac{\beta}{\alpha}$. Let $\mathbf{F} \in \frac{\beta}{\gamma}$ and $\mathbf{F} \subset \mathbf{B}$. Since \mathbf{F} can be covered by less that γ open sets of finite measures, it follows from Proposition 1 that $|\{C \in \zeta: C \cap \mathbf{F} \neq \emptyset\}| < \gamma \cdot \omega = \gamma$. Consequently, $|\mathbf{F}| < \gamma \leq \alpha$. Since μ is a diffused α -measure, $\mu(\mathbf{F}) = 0$. By the γ -regularity of μ , $\mu(\mathbf{B}) = 0$ and there is a $\mathbf{G} \in \boldsymbol{\zeta}$ such that $\mathbf{B} \subset \mathbf{G}$ and $\mu(\mathbf{G}) < +\infty$. For each $\mathbf{x}_C \in \mathbf{B}$, we have $\mu(C \cap \mathbf{G}) > 0$. Since \mathbf{B} is uncountable and $\boldsymbol{\zeta}$ is disjoint, this implies that $\mu(\mathbf{G}) = +\infty$; a contradiction.

Next we shall show that the condition from Theorem 1 is satisfied by a large collection of familiar spaces.

Let M be a set, and let $A \subset \exp M$. For $x \in M$, set

 $o(\mathbf{x}, A) = |\{\mathbf{A} \in A : \mathbf{x} \in \mathbf{A}\}|$

and let o(A) be the least cardinal such that

 $o(\mathbf{x}, A) < o(A)$

for each $x \in M$. The cardinal o(A) is called the *order* of A.

Definition 5. A space X is called

- (i) meta- β -Lindelöf if each open cover of X has an open refinement V with $o(V) \leq \beta$;
- (ii) α -weakly θ -refinable if each open cover of X has an open refinement $V = \bigcup \{V_t: t \in T\}$ such that $|T| < \alpha$ and for each $x \in X$ there is a $t_x \in T$ with $1 \le o(x, V_{tx}) < \omega$.

Clearly, meta- ω -Lindelöf and meta- Ω -Lindelöf spaces are, respectively, metacompact and meta-Lindelöf. Similarly, Ω weakly θ -refinable spaces are weakly θ -refinable in the sense of [1].

Proposition 2. Let X be α -weakly θ -refinable and let $A \subset X$. If there is a $\beta < \alpha$ such that each $x \in X$ has a neighborhood U with $|A \cap U| \leq \beta$, then $A \in \beta_{\alpha}$. In particular, if A is locally countable, then $A \in \beta_{\alpha}$.

Proof. Suppose that there is a $\beta < \alpha$ such that each $x \in X$ has an open neighborhood U_x with $|A \cap U_x| \leq \beta$. Let $V = \cup \{V_t: t \in T\}$ be an open refinement of $\{U_x: x \in X\}$ such that $|T| < \alpha$ and for each $x \in X$ there is a $t_x \in T$ with

 $l \le o(x, V_{t_X}) < \omega.$ Since the sets {x $\in X$: $o(x, V_t) \ge n$ }, t \in T, n = 1,2,..., are open, the sets

 $X_{t,n} = \{x \in X: o(x, V_t) = n\}$

are Borel. Clearly,

 $X = \bigcup \{X_{t,n} : t \in T, n = 1, 2, \dots \}.$

Let $\mathcal{W}_{t,n}$ consist of all sets $X_{t,n} \cap V_1 \cap \cdots \cap V_n$ where V_1, \cdots, V_n are distinct elements of \mathcal{V}_t . Then $\mathcal{W}_{t,n}$ is a disjoint family of open (in $X_{t,n}$) subsets of $X_{t,n}$ and $X_{t,n} = \bigcup_{t=1}^{W} \bigcup_{t=1}^{M} \cdots$. Moreover,

 $\mathbf{A} \cap \mathbf{W} = \{\mathbf{x}_{\mathbf{W}}^{\rho}: \rho < \kappa_{\mathbf{W}}\}$

where $\kappa_{W} \leq \beta$ for each $W \in W_{t,n}$. Thus the sets

$$\mathbf{A}_{t,n,\rho} = \{\mathbf{x}_{W}^{\rho}: W \in \mathcal{W}_{t,n}, \kappa_{W} > \rho\},\$$

t \in T, n = 1,2,..., ρ < $\beta,$ are closed in $X_{t,n},$ and therefore Borel. We have

$$\begin{split} \mathbf{A} &= \cup \{ \mathbf{A} \cap \mathbf{X}_{t,n} \colon t \in \mathbf{T}, \ n = 1, 2, \cdots \} \\ &= \cup_{t \in \mathbf{T}} \bigcup_{n=1}^{\infty} \cup \{ \mathbf{A} \cap \mathbf{W} \colon \mathbf{W} \in \mathcal{W}_{t,n} \} \\ &= \cup_{t \in \mathbf{T}} \bigcup_{n=1}^{\infty} \bigcup_{\rho < \beta} \mathbf{A}_{t,n,\rho} \\ \end{split}$$
Since $|\mathbf{T}| < \alpha, \ \omega < \alpha, \ \text{and} \ \beta < \alpha, \ \text{it follows that } \mathbf{A} \in \beta_{\alpha}. \end{split}$

The following corollary is a direct consequence of Theorem 1 and Proposition 2.

Corollary 1. Let $\alpha \ge \gamma$ and let X be α -weakly θ -refinable. If μ is a diffused, γ -regular α -measure in X, then μ is moderated.

Next two examples show that the assumptions of Proposition 2 are essential.

Example 5. For a regular ordinal $\kappa \geq \Omega$, let $(W_{\kappa}, \mathcal{M}_{\kappa}, \mu_{\kappa})$ be the κ -measure space (W, \mathcal{M}, μ) from Example 2.

Claim. Let $\kappa \geq \Omega$ be a regular ordinal. Then there is a set $A_{\kappa} \subset W_{\kappa}$ such that $A_{\kappa} \cap W_{\rho} \in M_{\rho}$ for no regular ordinal $\rho \in [\Omega, \kappa]$.

Proof. Since Ω is not a measurable cardinal (see [14], thm. (A)), there is a set $A_{\Omega} \subset W_{\Omega}$ for which $A_{\Omega} \notin \mathscr{M}_{\Omega}$. If $\rho \in (\Omega, \kappa]$ is a regular ordinal, then each closed cofinal subset of W_{ρ} contains ordinals cofinal with both ω and Ω . Thus it suffices to let A_{κ} be the union of A_{Ω} and the set of all ordinals $\zeta \in W_{\kappa}$ cofinal with Ω .

If the cardinal κ is an immediate successor of a cardinal β , then $|A_{\kappa} \cap [0,\zeta]| \leq \beta$ for each $\zeta \in W_{\kappa}$ and yet $A_{\kappa} \notin \beta_{\kappa}$; for $\beta_{\kappa} \subset M_{\kappa}$. However, since each $A \subset W_{\kappa}$ contains a discrete subset B with |B| = |A|, Theorem 1 can be still applied to W_{κ} . *Example* 6. Let κ be a weakly inaccessible ordinal, i.e., κ is a regular ordinal and $\kappa = \omega_{\tau}$ for some limit ordinal τ (see [9], chpt. IX, sec. 1, p. 309). With the notation from Example 5, let

 $X = \{\zeta, \eta\} \in W_{\varsigma} \times W_{\varsigma}^{\star} : \zeta \leq \eta\}$

where W_{K}^{\star} is the set W_{K} with the discrete topology. Clearly, X is paracompact. If

 $\mathbf{A} = \{ (\zeta, \eta) \in \mathbf{X} : \zeta \in \mathbf{A} \},\$

then for each ordinal $\rho \in [\Omega, \kappa)$,

 $A \cap (W_{\rho+1} \times \{\rho\}) = (A_{\kappa} \cap W_{\rho+1}) \times \{\rho\}$

and consequently

 $|A \cap (W_{\rho+1} \times \{\rho\})| < \kappa$.

By the claim in Example 5, $A \in \beta_{\alpha}$ for no regular cardinal $\alpha < \kappa$. It follows easily from the weak inaccessibility of κ that $\cup_{\alpha < \kappa} \beta_{\alpha}$ is a κ -algebra in X containing all open subsets of X. Therefore, $\cup_{\alpha < \kappa} \beta_{\alpha} = \beta_{\kappa}$ and $A \notin \beta_{\kappa}$.

As indicated by Example 5, the condition from Corollary 1 is not necessary. In fact, the following question seems open at this time.

Question. For $\alpha \geq \gamma$, does there exist a diffused, γ -regular α -measure which is not moderated?

Lemma 1. Let (M, M, μ) be an a-measure space with $\mu(M) < +\infty$, and let $A \subset M$. If $o(A) < \alpha$ and $\varepsilon > 0$, then

 $|\{A \in A: \mu(A) \geq \varepsilon\}| < max(O(A), \Omega).$

Proof. (a) Let $\beta = o(A)$, $\beta < \alpha$, and suppose that there is an $\varepsilon > 0$ such that the set

$$A_{+} = \{ \mathbf{A} \in A: \mu(\mathbf{A}) \geq \varepsilon \},\$$

has cardinality larger than or equal to $max(\beta, \Omega)$. First we shall show that there is a family $\int \subset A_{+}$ such that for each countable collection $\hat{D} \subset ($ we can find a $C \in ($ with $\mu(C - \cup \hat{D})$ > 0.

(b) If no such family exists, then for each $\zeta \subset A_{\perp}$ there is a countable $\int_{O} \subset \int$ such that $\mu(C - \bigcup_{O}) = 0$ for each $C \in (.$ Let $(= A_{+} \text{ and define inductively } (\tau, \tau < \beta, by)$ setting

$$C_{\tau} = A_{+} - U_{\rho < \tau} C_{\rho \sigma}$$

where $\int_{\rho o} = (\int_{\rho})_{o}$. Since $|U_{\rho < \tau} | \int_{\rho o} | \leq \tau \cdot \omega < \max(\beta, \Omega)$, the families (, and consequently (, are nonempty for each $\tau < \beta$. If $C_{\tau} = \bigcup_{\tau \in \sigma}^{\prime}$, then $\mu(C_{\tau}) \ge \varepsilon$ and $\mu(C-C_{\tau}) = 0$ for each $C \in (_{\rho} \text{ with } \tau \leq \rho < \beta$. Thus $\mu(C_{\rho}-C_{\tau}) = 0$ whenever $\tau < \rho < \beta$, and we obtain

$$\mu(\Omega_{\tau \leq \rho} \ C_{\tau}) = \mu(C_{\rho}) - \mu(C_{\rho} - \Omega_{\tau \leq \rho} \ C_{\tau})$$

$$= \mu(C_{\rho}) - \mu[\cup_{\tau \leq \rho}(C_{\rho} - C_{\tau})] = \mu(C_{\rho}) \geq \varepsilon$$

for each $\rho < \beta$. Since $\beta < \alpha$,

 $\mu\left(\cap_{\tau < \beta} \ C_{\tau}\right) \ = \ \inf_{\rho < \beta} \ \mu\left(\cap_{\tau < \rho} \ C_{\tau}\right) \ \geq \ \varepsilon.$ In particular, $\bigcap_{\tau < \beta} C_{\tau} \neq \emptyset$. If $\int_{\tau O}^{-} = \{A_{\tau}^k: k = 1, 2, \cdots\}$, then

$$\bigcap_{\tau < \beta} C_{\tau} = \bigcap_{\tau < \beta} \bigcup_{k} A_{\tau}^{k} = \bigcup_{\{k(\tau)\}} \bigcap_{\tau < \beta} A_{\tau}^{k(\tau)}$$

where the last union is taken over all transfinite sequences $\{k(\tau)\}_{\tau < \beta}$ of positive integers. Thus there are positive integers k(τ), $\tau < \beta$, and an x \in M with x $\in \bigcap_{\tau < \beta} A_{\tau}^{k(\tau)}$. Because the families (τ_{τ_0}) are mutually disjoint, $A_0^{k(\rho)} \neq A_{\tau}^{k(\tau)}$ whenever $\rho \neq \tau$. Consequently $o(\mathbf{x}, A) = \beta$, and this contradiction establishes the existence of the family C from (a).

(c) Choose E_{0} \in (and suppose that for each ρ < τ < Ω we have chosen $E_{o} \in ($ so that

 $\mu(\mathbf{E}_{0} - \cup_{\lambda < 0} \mathbf{E}_{\lambda}) > 0.$

Since $\{E_{\rho}: \rho < \tau\}$ is a countable subfamily of (, there is an $E_{\tau} \in (f$ such that

$$\mu(E_{\tau} - U_{0 \le \tau} E_{\tau}) > 0.$$

Letting $\mathbf{F}_{\tau} = \mathbf{E}_{\tau} - \bigcup_{\rho < \tau} \mathbf{E}_{\rho}$, we obtain an uncountable disjoint family $\{\mathbf{F}_{\tau}: \tau < \Omega\} \subset \mathcal{M}$ of sets with positive measures. It follows that $\mu(\mathbf{M}) = +\infty$; a contradiction.

Corollary 2. Let (M, M, μ) be an α -measure space with $\mu(M) < +\infty$, and let $A \subset M$. If $o(A) < \alpha$ and $\varepsilon > 0$, then

 $|\{\mathbf{A} \in A: \mu(\mathbf{A}) \geq \varepsilon\}| < max(o(A), \omega).$

Proof. In view of Lemma 1, it suffices to consider the case of $o(A) < \omega$. This implies that the set

 $A_{\perp} = \{ \mathbf{A} \in A : \mu(\mathbf{A}) \geq \varepsilon \}$

is countable. If $\chi_{A}^{}$ is the characteristic function of a set $A\, \subset\, M,$ then

 $\Sigma\{\chi_{\mathbf{A}}(\mathbf{x}): \mathbf{A} \in \mathcal{A}_{\perp}\} = \mathbf{O}(\mathbf{x}, \mathcal{A}_{\perp})$

for each $x \in M$. Since A_+ is countable, the function $x \rightarrow o(x, A_+)$ is measurable, and so are the sets

 $M_{n} = \{ \mathbf{x} \in M: o(\mathbf{x}, A_{+}) \leq n \},\$

n = 1,2,... The sequence $\{M_n\}$ is increasing and $\bigcup_{n=1}^{\infty} M_n = M;$ for if $x \in M$, then

 $o(\mathbf{x}, A_{\perp}) < o(A) \leq \omega$.

Thus there is an integer $p \geq 1$ such that $\mu \, (M-M_{p}) \, < \, \frac{\epsilon}{2}.$ We have

$$\Sigma\{\mu(A \cap M_p): A \in A_+\} = \Sigma\{f_{M_p}\chi_A d\mu: A \in A_+\} \leq f_{M_p} p d\mu$$
$$= p\mu(M_p) < +\infty.$$

Because $\mu(A \cap M_p) \ge \frac{\varepsilon}{2}$ for each $A \in A_+$, it follows that $|A_+| < \omega$.

Example 7. Let $\kappa \geq \Omega$ be a regular ordinal and let (W, (M, μ)) be the κ -measure space from Example 2. If $A = \{ [\rho, \kappa) : \rho < \kappa \}$, then $\mu(A) = 1$ for each $A \in A$ and $o(A) = |A| = \kappa$.

Proposition 3. Let $\alpha > \beta$ and let (M, M, μ) be an α -measure space with μ β -finite. If $A \subset M$ and $o(A) \leq \beta$, then

 $|\{\mathbf{A} \in \mathcal{A}: \boldsymbol{\mu}(\mathbf{A}) > 0\}| \leq \beta.$

Proof. Let $M = \bigcup ($ where $(\subset M, | (| \leq \beta, \text{ and } \mu(C) < +\infty)$ for each $C \in ($. For $C \in ($ and $A \in M$, let $\mu_C(A) = \mu(A \cap C)$. Clearly, μ_C is a finite α -measure on M and

$$\mu(\mathbf{A}) = \Sigma \{ \mu_{\mathbf{C}}(\mathbf{A}) : \mathbf{C} \in \boldsymbol{C} \}$$

for every $A \in \mathcal{M}$. If

$$A_{C} = \{ A \in A : \mu_{C}(A) > 0 \},\$$

then

 $\{A \in A: \mu(A) > 0\} = \bigcup \{A_C: C \in (\}, \}$

the proposition follows.

Letting $\alpha = \Omega$ in Proposition 3, we obtain the following corollary.

Corollary 3. Let (M, M, μ) be a measure space with a σ -finite measure μ . If $A \subset M$ is a point-finite family, then $\mu(A) = 0$ for all but countably many $A \in A$.

Note. Without proof, Corollary 3 was first communicated to me by Heikki Junnila. Although quite analogous, his proof of Corollary 3 (see [7]) and my proof of Lemma 1 were obtained independently. There is a simple direct proof of Corollary 3

Pfeffer

(see [12], chpt. 18, ex. (18-18)), which was found jointly by Don Chakerian and myself.

Theorem 2. Let $\alpha > \beta$, $\alpha \ge \gamma$, and let μ be a β -finite, γ -Radon α -measure in X. If X is meta- β -Lindelöf, then μ is β -moderated.

Proof. If X is meta- β -Lindelöf, then there is an open cover A of X such that $o(A) \leq \beta$ and $\mu(U) < +\infty$ for each $U \in A$. By Proposition 3,

 $|\{\mathbf{U} \in A: \mu(\mathbf{U}) > \mathbf{0}\}| \leq \beta.$

Thus if $A_{O} = \{ U \in A : \mu(U) = 0 \}$ and $G = \bigcup A_{O}$, it suffices to show that $\mu(G) < +\infty$. Let $F \in \mathcal{F}_{\gamma}$ and $F \subset G$. There is $\mathcal{V} \subset A_{O}$ such that $|\mathcal{V}| < \gamma$ and $F \subset \bigcup \mathcal{V}$. It follows that $\mu(F) = 0$ and since μ is γ -Radon, also $\mu(G) = 0$.

Definition 6. A cardinal κ is called measurable if there is a discrete space Y of cardinality κ and a diffused, Borel κ -measure μ in Y with $\mu(Y) = 1$.

The basic properties of measurable cardinals which do not involve axiomatic set theory are proved in [14]; more recent results can be found, e.g., in [2], chpt. 0, sec. 4.

The next lemma is proved by a modified technique of Haydon (see [6], Prop. 3.2).

Lemma 2. Let $\alpha > \beta$ and let μ be a β -finite, Borel α -measure in X. Let $A \subset G$ be a point-finite family such that $\mu(U) = 0$ for each $U \in A$. If X contains no discrete subspace of measurable cardinality, then $\mu(UA) = 0$.

Proof. Let $X = \bigcup ($ where $(\subset \beta_{\alpha}, | | \leq \beta, \text{ and } \mu(C) < +\infty$ for each $C \in ($. Because the sets $\{x \in X: o(x,A) \geq n\}$,

556

 $n = 1, 2, \dots, are open, the sets$

 $X_n = \{x \in X: o(x, A) = n\}$

are Borel. Clearly $\bigcup A = \bigcup_{n=1}^{\infty} X_n$, and so it suffices to show that $\mu(C \cap X_n) = 0$ for each $C \in ($ and $n = 1, 2, \dots$. Fix a $C \in ($ and an integer $n \ge 1$, and suppose that $\mu(C \cap X_n) > 0$. Consider the family V of all nonempty sets

 $v = c \cap x_n \cap v_1 \cap \cdots \cap v_n$

where U_1, \dots, U_n are distinct elements of A. Since V is a disjoint open (in C $\cap X_n$) cover of C $\cap X_n$, we can define an α -measure ν on exp V by letting

$$v(V') = \frac{\mu(UV')}{\mu(C \cap X_{n})}$$

for each $V' \subset V$. It follows from [2], lemma 0.4.12 that V contains a family V_{0} of measurable cardinality. Choosing an $x_{V} \in V$ for each $V \in V_{0}$ we obtain a discrete subspace $x_{0} = \{x_{V}: V \in V_{0}\}$ with $|x_{0}| = |V_{0}|$; a contradiction.

Theorem 3. Let $\alpha > \beta$ and let μ be a β -finite, Borel α -measure in X. If X is metacompact and contains no discrete subspace of measurable cardinality, then μ is β -moderated.

Proof. Choose a point-finite open cover A of X such that $\mu(U) < +\infty$ for each $U \in A$. By Proposition 3,

 $|\{U \in A: \mu(U) > 0\}| \leq \beta,$

and by Lemma 2,

 $\mu(\bigcup \{ U \in A: \mu(U) = 0 \}) = 0.$

The theorem follows.

We do not know whether Theorem 3 remains correct if the assumption "X contains no discrete subspace of measurable cardinality" is relaxed to "X contains no *closed* discrete

subspace of measurable cardinality." However, using techniques of Moran (see [11], prop. 4.2) one can show easily that in Theorem 3, instead of assuming that X contains no discrete subspace of measurable cardinality, we may assume that all closed discrete subspaces of X have semi-reducible cardinality (for the definition and basic properties of semireducible cardinals see [11], sec. 3).

Note. Using a slightly different technique, Theorems 2 and 3 were proved in [4] for $\alpha = \Omega$ (see [4], Lemma 3 and Remark 2).

Let μ be a Borel α -measure. Since the Borel σ -algebra $\beta = \beta_{\Omega}$ is contained in β_{α} , we can define a measure space $(X, \overline{\beta}, \overline{\mu})$ as the usual completion of the measure space (X, β, μ) (see [5], sec. 13, p. 55). The measure space $(X, \overline{\beta}, \overline{\mu})$ is said to be *associated* with the Borel α -measure μ .

Proposition 4. Let μ be a Borel α -measure in X and let $(X, \overline{\beta}, \overline{\mu})$ be the measure space associated with μ . If μ is moderated and γ -Radon with an arbitrary γ , then $\beta_{\alpha} \subset \overline{\beta}$ and $\overline{\mu}(A) = \mu(A)$ for each $A \in \beta_{\alpha}$.

Proof. (a) Let $A \in \beta_{\alpha}$ and suppose that $A \subset H$ for some $H \in \mathcal{G}$ with $\mu(H) < +\infty$. Then

$$\mu(\mathbf{A}) = \sup\{\mu(\mathbf{F}): \mathbf{F} \in \mathcal{J}_{\gamma}, \mathbf{F} \subset \mathbf{A}\}$$
$$= \inf\{\mu(\mathbf{G}): \mathbf{G} \in \mathcal{G}, \mathbf{A} \subset \mathbf{G}\}.$$

Thus there is an F_{σ} set F_{o} and a G_{δ} set G_{o} such that $F_{o} \subset A \subset G_{o}$ and $\mu(F_{o}) = \mu(A) = \mu(G_{o}) < +\infty$. It follows that $A = F_{o} \cup (A-F_{o})$ belongs to $\overline{\beta}$ and that

 $\overline{\mu}(A) = \overline{\mu}(F_{O}) = \mu(F_{O}) = \mu(A)$.

(b) Let $A \in \beta_{\alpha}$ be arbitrary. Since μ is moderated, $X = \bigcup_{n=1}^{\infty} H_n$ where $H_n \in \mathcal{G}$ and $\mu(H_n) < +\infty$, $n = 1, 2, \cdots$. By (a), $A \cap H_n \in \overline{\beta}$ and $\overline{\mu}(A \cap H_n) = \mu(A \cap H_n)$, $n = 1, 2, \cdots$. Consequently, $A \in \overline{\beta}$ and $\overline{\mu}(A) = \mu(A)$.

The following theorem generalizes an unpublished result of Gary Gruenhage.

Theorem 4. Let μ be a γ -Radon α -measure in X. If $\alpha > \prod_{n=1}^{\infty} \gamma_n$ whenever $\gamma_n < \gamma$, $n = 1, 2, \cdots$, then $\mu(B) = \Sigma\{\mu(\{x\}): x \in B\}$

for each $B \in \beta_{\alpha}$.

Proof. (a) Let X be γ -Lindelöf and let $\mu(X) < +\infty$. For each $x \in X$ and $n = 1, 2, \cdots$, choose an $F_{x,n} \in \mathcal{F}_{\gamma}$ such that $F_{x,n} \subset X - \{x\}$ and

 $\mu(F_{x,n}) > \mu(X-\{x\}) - \frac{1}{n}$.

Each open cover $\{X - F_{x,n} : x \in X\}$ of X has a subcover \mathcal{U}_n with $|\mathcal{U}_n| < \gamma$, $n = 1, 2, \cdots$. Since $\mu(X) < +\infty$, the set $A = \{x \in X: \mu(\{x\}) > 0\}$ is countable, and since

$$\begin{split} \mu\left(X-F_{x,n}\right) &< \mu\left(\{x\}\right) + \frac{1}{n} \\ \text{for each } x \in X, \ \mu\left(U-A\right) &< \frac{1}{n} \text{ for each } U \in \ \textit{U}_{n}. \end{split}$$
 Thus

$$\mu\left[\bigcap_{n=1}^{\infty}\left(U_{n}-A\right)\right] = 0$$

for every sequence $\{U_n\}$ with $U_n \in \mathcal{U}_n$, $n = 1, 2, \cdots$. We have

where the last union is taken over all sequences $\{U_n\}$ with $U_n \in \mathcal{U}_n$, $n = 1, 2, \cdots$. Because $|\mathcal{U}_n| < \gamma$, the collection of all these sequences has the cardinality less than α . Consequently, $\mu(X-A) = 0$ and

$$\mu(B) = \mu(A \cap B) = \Sigma\{\mu(\{\mathbf{x}\}): \mathbf{x} \in A \cap B\}$$
$$= \Sigma\{\mu(\{\mathbf{x}\}): \mathbf{x} \in B\}$$

for each $B \in \beta_{\alpha}$.

(b) Let X and μ be arbitrary, and let $B \in \beta_{\alpha}$. There are $F_n \in \mathcal{F}_{\gamma}$ such that $F_n \subset F_{n+1} \subset B$, $\mu(F_n) < +\infty$, $n = 1, 2, \cdots$, and lim $\mu(F_n) = \mu(B)$. Using (a), we obtain

 $\mu(B) = \lim \Sigma\{\mu(\{x\}): x \in F_n\}$

 $= \Sigma \{ \mu(\{x\}) : x \in \bigcup_{n=1}^{\infty} F_n \} \leq \Sigma \{ \mu(\{x\}) : x \in B \}.$ The equality holds trivially when $\mu(B) = +\infty$. If $\mu(B) < +\infty$, then $\mu(B - \bigcup_{n=1}^{\infty} F_n) = 0$ and the equality holds again.

Remark. The cardinality assumption in Theorem 4 is clearly satisfied when $\alpha > \gamma^{\omega}$. However, this later condition is generally stronger. For example, choose infinite cardinals κ_{ρ} so that $2^{\kappa_{\rho}} < 2^{\kappa_{\tau}}$ for each $\rho < \tau < \alpha$, and let $\gamma = \sup\{2^{\kappa_{\rho}}: \rho < \alpha\}$. If $\gamma_n < \gamma$, $n = 1, 2, \cdots$, then $\gamma_n \leq 2^{\kappa_{\rho}}$ for some $\rho < \alpha$, and consequently

$$\Pi_{n=1}^{\infty} \gamma_n \leq (2^{\kappa_{\rho}})^{\omega} = 2^{\omega \cdot \kappa_{\rho}} = 2^{\kappa_{\rho}} < \gamma \leq \gamma^{\omega}.$$

We shall close this paper by stating two theorems about α -measures which for $\alpha = \Omega$ were proved previously by Gardner, Gruenhage, and the author (see [3], corollary to Theorem 6.1, and [4], Theorem 2). Recall that a space X is:

- (i) hereditarily α -weakly θ -refinable if each subspace of X is α -weakly θ -refinable;
- (ii) locally γ-Lindelöf if each x ∈ X has a γ-Lindelöf neighborhood.

Theorem 5. Suppose that X is a regular, hereditarily α -weakly θ -refinable space which contains no discrete subspace

of measurable cardinality. Let $\alpha > \beta$ and let μ be a β -finite, Borel α -measure in X. Then μ is γ -Radon for each $\gamma > |X|$.

Theorem 6. Suppose that X is a regular, α -weakly θ refinable, locally γ -Lindelöf space which contains no discrete subspace of measurable cardinality. Let $\alpha > \beta$ and let μ be a β -finite, Borel α -measure in X. Then μ is γ -Radon if and only if it is δ -Radon for some $\delta > \omega$.

Modulo the obvious adjustments, for a finite α -measure μ the proofs of Theorems 5 and 6 are the same as those of Theorem (18.31) in [12] and Theorem 2 in [4], respectively. Since each β -finite α -measure with $\alpha > \beta$ is a sum of finite α -measures (see the proof of Proposition 3), it suffices to observe that a sum of γ -Radon α -measures is also γ -Radon.

References

- H. R. Bennett and D. J. Lutzer, A note on weak θrefinability, Gen. Topology Appl. 2 (1972), 49-54.
- M. A. Dickmann, Large infinitary languages, North-Holland, Amsterdam, 1975.
- R. J. Gardner, The regularity of Borel measures and Borel measure-compactness, Proc. of London Math. Soc. 30 (1975), 95-113.
- G. Gruenhage and W. F. Pfeffer, When inner regularity of Borel measures implies regularity, to appear in J. London Math. Soc.
- P. R. Halmos, *Measure theory*, Van Nostrand, New York, 1950.
- P. R. Haydon, On compactness in spaces of measures and measurecompact spaces, Proc. London Math. Soc. 29 (1974), 1-16.
- 7. H. J. K. Junnila, On countability of point-finite families of sets, to appear.

- J. L. Kelley, General topology, Van Nostrand, New York, 1955.
- 9. K. Kuratowski and A. Mostowski, *Set theory*, North-Holland, Amsterdam, 1968.
- D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. of Math. Logic 2 (1970), 143-178.
- W. Moran, Measures on metacompact spaces, Proc. London Math. Soc. 20 (1970), 507-524.
- W. F. Pfeffer, Integrals and measures, Marcel Dekker, New York, 1977.
- L. Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures, Oxford Univ. Press, London, 1973.
- S. Ulam, Zür Masstheorie in der allgemeinen Mengenlehre, Fund. Math. 16 (1930), 140-150.

University of California

Davis, CA 95616