TOPOLOGY PROCEEDINGS Volume 2, 1977

Pages 583–592

http://topology.auburn.edu/tp/

$\begin{array}{c} {\rm REMARKS \ ON \ lambda-COLLECTIONWISE} \\ {\rm HAUSDORFF \ SPACES} \end{array}$

by

SAHARAN SHELAH

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOON	0140 4104

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

REMARKS ON λ-COLLECTIONWISE HAUSDORFF SPACES

Saharon Shelah¹

The purpose of this note is to answer questions raised by Fleissner in [F]. Explicitly, our results are

Theorem 1. Let Σ be the statement "there is a locally countable, locally compact, normal Moore space which is $\leq \omega_1$ -collectionwise Hausdorff but not $\leq \omega_2$ -collectionwise Hausdorff." Σ is consistent with ZFC (the usual axioms for set theory). Moreover, both Σ + not CH and Σ + CH are consistent with ZFC.

Theorem 2. Let M be a model of set theory obtained by using Levy forcing to collapse a weakly compact cardinal to ω_2 . In M, let X be a locally countable space. Then X is $\leq \omega_2$ -collectionwise Hausdorff if X is $< \omega_2$ -collectionwise Hausdorff.

There are variations on Theorem 2. We may replace "locally countable" with "first countable and locally of cardinaltiy $\leq \omega_1$." Also, if we collapse a supercompact cardinal (rather than a merely weakly compact cardinal), we may strengthen the conclusion to X is collectionwise Hausdorff.

A subset Y of a topological space X is called closed, discrete if every point of X has a neighborhood containing

¹This research was done while the author was visiting the University of Wisconsin. He wishes to thank NSF grant 144-H747 for support during this visit. He also wishes to thank William Fleissner for writing this paper.

at most one point of Y. A closed discrete set $Y = \{y_i: i \in I\}$ can be screened if there is a family of disjoint open sets $\{U_i: i \in I\}$ such that $U_i \cap Y = \{y_i\}$. A space X is called collectionwise Hausdorff if every closed discrete subset of X can be screened. X is < λ -collectionwise Hausdorff if every closed discrete subset of cardinality < λ can be screened; $\leq\lambda$ -collectionwise Hausdorff is defined similarly.

On the situation of Theorem 1 for Σ + GCH, see [S'].

1. Proof of Theorem 1

For concreteness, let us start with a model of V = L. Then by Jensen's work [J], there is a subset E of ω_2 such that

a) $\alpha \in E$ implies cf $\alpha = \omega$

b) E is stationary in ω_2

c) E $\cap \delta$ is not stationary in δ for any $\delta < \omega_2$.

For each $\alpha \in E$, choose $\eta_{\alpha}: \omega \neq \alpha$ to be strictly increasing with range η_{α} cofinal in α . Set I = { $\eta_{\alpha} | m: a \in E m \in \omega$ }. The point set of our space is E U I. (Note that E and I are disjoint). Points of I are isolated; the nth neighborhood of $\alpha \in E$, B(α ,n), is { α } U { $\eta_{\alpha} | m: m > n$ }. Where we consider E as a subset of X we will call it Y; it is easy to check that Y is closed, discrete.

From b) and the Pressing Down Lemma it quickly follows that Y can not be screened, and so X is not $\leq \omega_2$ -collectionwise Hausdorff. It is straightforward to prove by induction on $\rho < \omega_2$ that { $\alpha \in Y: \alpha < \rho$ } can be screened. Thus X is $\leq \omega_1$ -collectionwise Hausdorff. Clearly X is locally countable, locally compact Moore space. This space has been described in [F'].

In L X is not normal, so our plan is to extend to a model in which X is normal. Of course, we must check that a), b), and c) are preserved. First all a) and c) assert is that certain sets exist, and so are preserved by any extension. Further we want ω_2 in the ground model to remain ω_2 in the extension so that c) has its intended meaning. This will happen because our two extensions are ccc, and ω_2 -cc and $\omega\textsc{-Baire},$ respectively. Finally we note that b) is preserved by an $\boldsymbol{\omega}_2\text{-cc}$ extension. To see this, note that the $\alpha^{\mbox{th}}$ element of C°, a club set in the extension, is contained in a set in the ground model of cardinality $\boldsymbol{\omega}_1.$ Using this fact, we can find point that are limits of elements of C° whatever C° is. Thus we can find for every club set C° in the extension a club set C in the ground model satisfying $C \subset C^{\circ}$. We conclude that a set stationary in ω_2 in the ground model remains stationary in ω_2 in the extension. Our extensions will preserve a), b), and c), and X will remain $\leq \omega_1$ -collectionwise Hausdorff and not $\leq \omega_2$ -collectionwise Hausdorff.

The first extension is the Solovay-Tennenbaum extension forcing Martin's Axiom and $c > \omega_2$, a ccc extension [ST]. We aim at showing that X is normal in this model. It is sufficient to show that disjoint subsets H and K of Y can be separated by disjoint open sets. Define P to be the set of pairs (u,v) satisfying

d) u f v = \emptyset

e) u (respectively, v) is the union of finitely many basic open sets $B(\alpha,n)$ with $\alpha \in H$ (respectively, $\alpha \in K$).

Shelah

Define $(u,v) \leq (u',v')$ if $u \supseteq u'$ and $v \supseteq v'$. That this partial order has ccc follows quickly from the Delta System Lemma. Since $c > \omega_2 = card H \cup K$, by Martin's Axiom we can define disjoint open sets U and V separating H and K.

We have shown that Σ + not CH is consistent. To show that Σ + CH is consistent, we need a Martin's Axiom-like extension which adds no subsets of ω . Analogues of Martin's Axiom have been shown consistent and investigated [T], [S], but they are not applicable in this situation because we need a notion of forcing which is not countably closed. Our plan is to make X normal by an extension which is not countably closed, but is "sufficiently" countably closed.

Let H and K be disjoint subsets of Y. We will define a partial order P(H,K) of pairs (u,v) parallel to the order P used above with Martin's Axiom. Requirement d) remains the same, but in order to make P(H,K) sufficiently countably closed, we change e) to

e') u (respectively, v) is the union of countably many basic open sets $B(\alpha,n)$ where $\alpha \in H$ (respectively, $\alpha \in K$).

Now a new problem arises. It can happen that there is a $y \in closure u \cap K$. If this occurs, (u,v) cannot be extended to (u',v') with $y \in v$, and so the generic filter need not define a separation of H and K. To prevent this we add, defining s((u,v)) to be [closure $(u \cup v)$] $\cap Y$,

e") $s((u,v)) \subseteq u \cup v$.

We now define P(H,K) to be the set of pairs (u,v) satisfying d), e') and e"). P(H,K) is not countably closed, for the "union" of a countable sequence of elements of P(H,K) will

586

satisfy d) and e'), but might not satisfy e"). A sufficient condition for (u,v) to satisfy e") is that s((u,v)) be closed in E (with the topology inherited from ω_2 with the order topology). Lemma 1, below will give us a way to insure that certain countable sequences of elements of P(H,K) will have an infimum. (In our application, the A 's will be s((u,v))'s).

Call a well ordered sequence of sets, $\{A_{\alpha};\ \alpha < \rho\},$ continuous and increasing if

f) $\alpha < \beta$ implies $A_{\alpha} \subseteq A_{\beta}$

g) δ a limit ordinal implies $A_{\delta} = \bigcup \{A_{\alpha} : \alpha < \delta\}$

Lemma 1. Suppose that E satisfies a), b), c); v is an ordinal less than ω_2 ; and $\{A_{\alpha}: \alpha < \omega_1\}$ is a continuous increasing sequence of countable sets with $\cup \{A_{\alpha}: \alpha < \omega_1\} = E \cap v$. Give $E \cap v$ the topology inherited from ω_2 with the order topology. Then

 $\{\alpha: A_{\alpha} \text{ is closed in } E \cap \nu\} \text{ contains a club set.}$ Proof. We prove the lemma by induction on ν . For $\nu < \omega_1$ or ν a successor ordinal, the induction step is trivial.

Case 1: ν is a limit ordinal of cofinality ω . Let ν_n , $n < \omega$, be increasing and cofinal in ν . By induction hypothesis, { α : $A_{\alpha} \cap \nu_n$ is closed in $E \cap \nu_n$ } contains a club set. Then { α : A_{α} is closed in $E \cap \nu$ } = $\cap \{\alpha: A_{\alpha} \cap \nu_n \text{ is closed in} E \cap \nu_n\}$ contains a club set.

Case 2: ν is a limit ordinal of cofinality ω_1 . By c) we can find $\{\nu_{\alpha}: \alpha < \omega_1\}$ continuous, increasing, cofinal in ν , and disjoint from E. If $A_{\alpha} \cap \nu$ is not closed in E $\cap \nu$, define $h(\alpha)$ to be the least ordinal such that $A_{\alpha} \cap \nu_{h(\alpha)}$ is not closed in E $\cap v$. Using the regularity of ω_1 , the hypothesis that each A_{α} is countable, and f), we can find a club set C of limit ordinals such that if $\gamma \in C$ and $\alpha < \gamma$, then $A_{\alpha} \subseteq v_{\gamma}$ and $h(\alpha)$ is either undefined or less than γ . Using g), for $\gamma \in C$, $A_{\gamma} \subseteq v_{\gamma}$, hence any limit point of A_{γ} in E is less than v_{γ} (not equal to $v_{\gamma} \notin E$). Hence $h(\gamma)$ is either undefined or $h(\gamma) < \gamma$.

If h presses down on a stationary set, then by the Pressing Down Lemma $h(\alpha) = \beta$ for some β and stationarily many α 's. Then the lemma fails for ν_{β} and $\{A_{\alpha} \cap \nu_{\beta} \colon \alpha < \omega_{1}\}$, contradicting the inductive hypothesis.

We now define our desired forcing, P_{ω_3} , by inductively defining notions of forcing P_{β} , $\beta \leq \omega_3$. Simultaneously, we will show that P_{β} is ω_2 -cc and ω -Baire (i.e. adds no ω -sequences of ordinals), so that we may require j) and k) below. Explicitly, by induction on $\beta \leq \omega_3$, we define P_{β} to be the set of p satisfying

- h) p is a function with domain β
- i) $p(\alpha) \in P(H_{\alpha}, K_{\alpha})$ where H_{α} , K_{α} are terms for disjoint subsets of Y in the forcing language for P_{α}
- j) { $(H_{\alpha}, K_{\alpha}): \alpha < \omega_3$ } enumerates all terms for disjoint subsets of Y in the language for P_{ω_3}
- k) $p(\alpha) \in L$ (the ground model) (i.e. it is not a term for an element of $P(H_{\alpha}, K_{\alpha})$, it is an element of $P(H_{\alpha}, K_{\alpha})$).
- l) $p(\alpha) = (\emptyset, \emptyset)$ for all but countably many α 's

m) $p \leq q$ if $p(\alpha) \supseteq q(\alpha)$ for all $\alpha < \beta$.

That P has ω_2 -cc follows from the continuum hypothesis, ℓ), and the Delta System Lemma. So j) is possible. Aiming towards showing that P_{β} is ω -Baire, let $\{D_n: n \in \omega\}$ be a countable set of dense open subsets of P_{β} , and p an arbitrary element of P_{β} . Let <u>N</u> be a structure containing everything relevant, e.g. <u>N</u> = $\langle V_{\omega_4}, \in P_{\beta}, | \models_{P_{\beta}}, E$, β , $\{D_n: n \in \omega\}$. Let <u>N</u>_{ρ}, $\rho < \omega_1$, be a continuous increasing sequence of countable elementary submodels of <u>N</u> satisfying $\underline{N}_{\rho} \in N_{\rho+1}$. Set $\omega_2 \cap \cup \{N_{\rho}: \rho < \omega_1\} = \nu$, an ordinal less than ω_2 . Applying Lemma 1 to E, ν , $\{E \cap N_{\rho}: \rho < \omega_1\}$, we can find ρ_n , $n \in \omega$, $\sup\{\rho_n: n \in \omega\} = \rho$, such that

n) E \cap N $_{\!\!\!0}$ is closed in E \cap v.

We define a sequence $\{{\tt p}_n:\ n\in\omega\}$ of forcing conditions satisfying

- o) $p_0 = p, p_{n+1} < p_n$
- p) $p_{n+1} \in D_n \cap N_{\rho_n}$

q) $s(p_{n+1}(\alpha)) \supseteq N_{\rho_n} \cap E$, when $p_{n+1}(\alpha) \neq (\phi, \phi)$

Define q with domain β by $q(\alpha) = \bigcup \{p_n(\alpha); n \in \omega\}$. Clearly q satisfies h), k), and ℓ), and q satisfies i) by n) and q), so $q \in P_{\beta}$. We have found q, q < p and $q \in \bigcap \{D_n:$ $n \in \omega\}$ and may conclude that P_{β} , $\beta \leq \omega_3$, is ω -Baire. This completes the simultaneous definition of P_{β} and verification of ω_2 -cc and ω -Baire.

In the extension by P_{ω_3} , X is normal. For it is sufficient to consider disjoint H and K subsets of Y, and by j) there is a generic pair of open sets separating them. The Continuum Hypothesis is preserved by the extension because it is ω -Baire.

2. Proof of Theorem 2

We imitate Baumgartner [B]. Let κ be weakly compact in

M, the ground model, and let $P(\kappa, \omega_2)$ be the Levy forcing collapsing κ to ω_2 . Let X° be the name of a locally countable, $\leq \omega_1$ -collectionwise Hausdorff space with $\{y_{\alpha}: \alpha < \kappa\}$ a closed discrete subset of X° that can not be screened. We may assume that X° $\subset V_{\kappa}$, by Π_1^1 indescribability, there is a $\lambda < \kappa$ with the same properties. Explicitly, X° $\cap V_{\lambda}$ is the name in the language for $P(\lambda, \omega_2)$ of a locally countable, $\leq \omega_1$ -collectionwise Hausdorff space with $\{y_{\alpha}: \alpha < \lambda\}$ a closed discrete subset of X° $\cap V_{\lambda}$ that can not be screened.

Let G be an M-generic ultrafilter on $P(\lambda, \omega_2)$. We will work in $M^1 = M[G]$, where $\omega_2 = \lambda$, X is $\leq \omega_1$ -collectionwise Hausdorff, and Y = $\{y_{\alpha}: \alpha < \lambda\}$ witnesses that X is not $\leq \omega_2$ -collectionwise Hausdorff. For each $\alpha < \kappa$ we choose a countable neighborhood B_{α} of y_{α} , fixed throughout this section. Set $W_{\beta} = \bigcup \{B_{\alpha}: \alpha < \beta\}$.

Lemma 2. There are S, h such that 1) S is a stationary subset of ω_2 2) $\delta \in S$ implies that cf $\delta = \omega$ 3) h: S $\neq \omega_2$, h(δ) $\geq \delta$ 4) $y_{h(\delta)} \in closure W_{\delta}$.

Proof. It suffices to find a set S satisfying 1), 2) and 5) for $\delta \in S$, closure $W_{\delta} \cap \{y_{\alpha} : \delta \leq \alpha < \omega_2\} \neq \emptyset$.

Aiming for a contradiction, we assume that there is no such set S. Specifically, we assume that there is a club set C such that for $\delta \in C_0 = \{\delta \in C: \text{ cf } \delta = \omega\}$, closure $W_{\delta} \cap \{y_{\alpha}: \delta \leq \alpha < \omega_2\} = \emptyset$. Let C' be the set of limit points of C_0 ; C' is a club set. We claim

6) for $\delta \in C'$, closure $W_{\delta} \cap \{y_{\alpha}: \delta \leq \alpha < \omega_{2}\} = \emptyset$.

TOPOLOGY PROCEEDINGS Volume 2 1977 591 There are two cases. First, if $\delta \in C'$, cf $\delta = \omega$, 6) holds because $\delta \in C_0$. Second, if $\delta \in C'$, cf $\delta > \omega$ we show 6) using the fact that X is locally countable. If there were y \in closure $W_{\delta} \cap \{y_{\alpha}: \delta \leq \alpha < \omega_2\}$, then y \in closure W_{γ} for cofinally many γ in δ , in particular for some $\gamma \in C_0$, contradiction.

Let $\langle \gamma(\nu) : \nu < \omega_2 \rangle$ be the natural, monotone increasing enumeration of C'. Define $U_{\nu} = W_{\gamma(\nu+1)}$ -closure $W_{\gamma(\nu)}$; set $\ell = \{U_{\nu} : \nu < \omega_2\}$. By definition, ℓ is a disjoint family of open sets, each containing at most ω_1 points of Y. By 6) U covers Y. Using that X is $\leq \omega_1$ -collectionwise Hausdorff, we can improve U to screen Y. This contradiction establishes Lemma 2.

Note that $P(\kappa, \omega_2) = P(\lambda, \omega_2) \oplus P'$, where P' is countably closed. Our goal is to show that P' does not add a screening of Y. Since in the extension $Y = \{y_{\alpha}: \alpha < \lambda\}$ has cardinality ω_1 , we will have shown that X^0 is not $\langle \omega_2$ -collectionwise Hausdorff, a contradiction. Towards this goal, suppose that $p \in P'$ forces that $\{V_{\alpha}: \alpha < \lambda\}$ screens Y.

Working in M^{1} , let $\underline{N} = \langle V_{\kappa+\omega}, P', ||_{P'}, p, \{y_{\alpha}: \alpha < \kappa\}, X^{\circ}, \{B_{\alpha}: \alpha < \kappa\} \rangle$. Define a continuous increasing sequence $\underline{N}_{\rho}, \rho < \omega_{2}$, of elementary submodels of \underline{N} satisfying $\omega_{1} \subset N_{0}$, card $N_{\rho} = \omega_{1}, W_{\rho} \subset N_{\rho}$. Set $\delta_{\rho} = N_{\rho} \cap \lambda$. Then $\{\delta \in \lambda: \delta = \delta_{\delta}\}$ is a club set in λ , so there is such a δ in S. Let $B_{\mathbf{h}(\delta)} \cap N_{\delta} = \mathbf{Z}_{p}: \mathbf{n} \in \omega\}$.

We define a sequence p_n , $n \in \omega$, of forcing conditions as follows. Set $p_0 = p$; let $p_{n+1} \in N_{\delta}$ decide z_n --either $z_n \notin \bigcup\{V_{\alpha}: \alpha < \lambda\}$ or $z_n \in V_{\alpha}$ for some specific α . The point is that this specific α must be in N_{δ} , and thus can not be $h(\delta)$. Set $q = \bigcup\{p_n: n \in \omega\}$; q might not be in N_{δ} , but q is in P'. Let q' \supseteq q choose $V_{h(\delta)}$. Because P' is countably closed, $V_{h(\delta)} \cap B_{h(\delta)} \in M'$. By our choice of p_n 's $V_{h(\delta)} \cap B_{h(\delta)} \cap N_{\delta} = \emptyset$. As $W_{\delta} \subset N_{\delta}$, $V_{h(\delta)} \cap B_{h(\delta)}$ is an open neighborhood of $Y_{h(\delta)}$ demonstrating that $Y_{h(\delta)} \notin$ closure W_{δ} . We chose $\delta \in S$, so this contradicts 4). This contradiction completes the proof of Theorem 2.

The proofs of the variants of Theorem 2 are parallel and so omitted.

Biblography

- [B] J. Baumgartner, A new class of order types, Ann. Math. Logic 9 (1976), 187-222.
- [F] W. Fleissner, On λ -collectionwise Hausdorff spaces, this volume.
- [F'] ____, Separation properties in Moore spaces, Fund. Math. 98 (1978), 279-286.
- [J] R. Jensen, The fine structure of the constructible hierarchy, with a note by J. Silver, Ann. Math. Logic 4 (1972), 229-308.
- [ST] R. Solovay and S. Tennenbaum, Iterated forcing and Souslin's conjecture, Ann. of Math. 94 (1971), 201-245.
- [T] F. Tall, More interesting consequences of Baumgartner's axiom, lecture presented Ohio University Conference on Set Theoretic Topology.
- [S] S. Shelah, A weak generalization of Martin's axiom to higher cardinals, to appear Israel J. Math.
- [S'] _____, in preparation.

The Hebrew University

Jerusalem