TOPOLOGY PROCEEDINGS

Volume 2, 1977
Pages 621-630
http://topology.auburn.edu/tp/

PL HOMOLOGY 3-SPHERES AND TRIANGULATIONS OF MANIFOLDS

by
Ronald J. Stern

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

PL HOMOLOGY 3-SPHERES AND TRIANGULATIONS OF MANIFOLDS

Ronald J. Stern ${ }^{1}$

One of the least understood but important groups arising in geometric topology is θ_{3}^{H}, the abelian group obtained from the set of oriented 3-dimensional PL homology spheres using the operation of connected sum, modulo those which bound acyclic PL 4-manifolds.

In this paper we will show how the group θ_{3}^{H} and the following theorem of Rohlin play an important role in triangulating topological manifolds.
V. A. Rohlin Signature Theorem ([4], [8], [12], [15]). Every closed oriented smooth 4 -manifold M^{4} whose second Stiefel-Whitney class vanishes has signature $\sigma(M) \in \mathrm{Z}$ divisible by 16 .

By classical smoothing theory the same theorem holds for PL 4-manifolds. However, the theorem is an important undecided result for topological 4-manifolds.

Given a PL homology 3 -sphere H^{3}, then H^{3} bounds a parallelizable PL 4-manifold W^{4}. Let $\alpha\left(H^{3}\right) \in Z_{2}$ be the Kervaire-Milnor-Rohlin invariant given by

$$
\alpha\left(\mathrm{H}^{3}\right)=\alpha\left(\bar{W}^{4}\right) / 8(\bmod 2)
$$

where \bar{W}^{4} is the closed (polyhearal) homology 4-manifold $\bar{W}^{4}=W^{4} \quad \underset{H^{3}}{U} \mathrm{cH}^{3}$. That $\sigma\left(\bar{W}^{4}\right)$ is divisible by 8 follows from the fact that the cup-product pairing of \bar{W}^{4} is an even

[^0]quadratic form (see [14]). Also, an application of Rohlin's theorem and the additivity properties of the signature show that $\alpha\left(H^{3}\right)$ is independent of the bounding parallelizable manifold W^{4}, and in fact α determines a well-defined homomorphism $\alpha: \theta_{3}^{\mathrm{H}} \rightarrow Z_{2}$.

The classical example of a PL homology 3-sphere is the Poincaré homology 3 -sphere $H^{3}=\operatorname{SO}(3) / A_{5}$, where A_{5} is the even permutation group on five objects $=$ the 60 orientation preserving symmetries of the dodecahedron. In fact $\pi_{1}(X)=$ $\left\langle a, b \mid a^{3}=b^{5}=(a b)^{2}\right\rangle \neq 0$. Now H^{3} is also the boundary of the Milnor plumbing W^{4} of 8 copies of the unit tangent disk bundle of s^{2} according to the Dynkin diagram

(For this and other descriptions of H^{3} see [9]). It is then an excellent exercise for an algebraic topology class to show that $\sigma\left(\bar{W}^{4}\right)=8$, thus demonstrating that the homomorphism $\alpha: \theta_{3}^{H} \rightarrow Z_{2}$ is surjective.

We now have a short exact sequence

$$
0 \rightarrow \operatorname{ker}(\alpha) \rightarrow \theta_{3}^{H} \xrightarrow{\alpha} Z_{2} \rightarrow 0
$$

Not one concrete fact is known about θ_{3}^{H} other than the existence of the surjection $\alpha: \theta_{3}^{H} \rightarrow z_{2}$. For instance, it is not even known if θ_{3}^{H} is finitely generated.

The importance of the group ker (α) is explained by

Theorem l. (Galewski-Stern [6], [7], T. Matumoto [13]). Let M^{m} be a topological manifold with $\partial \mathrm{M}$ triangulated as a simplicial complex. If $\mathrm{m} \geq 6$, then there $i s$ an element $\tau(M) \in H^{5}(M, \partial M$; $\operatorname{ker}(\alpha))$ such that $\tau(M)=0$ if and only if
there is a simplicial triangulation K of M with $\mathrm{K} \mid \partial \mathrm{M}$ compatible with the given triangulation on $\partial \mathrm{M}$. Moreover, there are $\left|H^{4}(M, \partial M ; \operatorname{ker}(\alpha))\right|$ such triangulations on M up to concordance rez 2 M .

Two triangulations K_{o} and K_{l} of M are concordant rel ∂M if there is a triangulation K of $M \times I$ such that $K \mid(\partial M \times I)$ is compatible with the given triangulation on $\partial M \times I$ and such that $\mathrm{K} \mid \mathrm{M} \times\{\mathrm{i}\}$ is compatible with K_{i} for $\mathrm{i}=0,1$.

It should be noted that a priori there are two obstructions in Theorem l to triangulating M, but one of these obstructions vanish since

Theorem 2. (R. D. Edwards [3]). Let H^{3} be any PL homology 3-sphere. Then $\mathrm{S}^{2} \mathrm{*H}^{3}=\Sigma^{3} \mathrm{H}^{3}$ is homeomorphic to S^{6}.

The importance of even a little understanding of θ_{3}^{H} is explained by

Corollary 3. (Galewski-Stern [6], [7], T. Matumoto [13]). If there is an element $\mathrm{x} \in 0_{3}^{\mathrm{H}}$ with $\alpha(\mathrm{x})=1$ and $2 \mathrm{x}=0$, then all topological m-manifolds, $\mathrm{m} \geq 6$ (≥ 7 if $\partial M \neq \phi)$ can be triantulated as simplicial complexes.

This leads us to the following well-known conjectures.
Conjecture 1. The group θ_{3}^{H} contains an element of order two.

Conjecture 2. The group ker (α) is the zero group.

In the remainder of this paper we will first consider the relationship between the simplicial triangulation obstruction of Theorem 1 and the combinatorial triangulation
obstruction of Kirby-Siebenmann [10]. These results are implicit in [7]. We will then show how elements of θ_{3}^{H} yield exotic PL manifold structures on $I^{k} \times T^{n}, k+n \geq 5$, which are the standard PL structure on $\partial I^{k} \times T^{n}$, and how elements of ker(α) yield possibly exotic simplicial manifold structures on $I^{k} \times T^{n}, k+n \geq 5$, which are the standard $P L$ manifold structure on $\partial I^{k} \times T^{n}$. Furthermore, we will demonstrate that the exotic PL manifold structures on $\mathrm{I}^{k} \times \mathrm{T}^{\mathrm{n}}$ are nonexotic when considered as simplicial manifold structures. Here, T^{n} is the cartesian product of $S^{l} n$-times, and I^{k} is the cartesian product of the unit interval k-times.

Recall the short exact sequence

$$
0 \rightarrow \operatorname{ker}(\alpha) \rightarrow \theta_{3}^{\mathrm{H}} \xrightarrow{\alpha} \mathrm{Z}_{2} \rightarrow 0
$$

and the resulting Bockstein exact coefficient sequence

$$
\cdots \rightarrow H^{4}(M ; \underset{3}{H}) \xrightarrow[\rightarrow]{\alpha} H^{4}\left(M ; Z_{2}\right) \xrightarrow{\beta} H^{5}(M ; \operatorname{ker}(\alpha)) \rightarrow \cdots
$$

If M is a polyhedral homology m-manifold, there is an element $r(M) \in H^{4}\left(M ; \theta_{3}^{H}\right)$ such that $r(M)=0$ if and only if there is a PL m-manifold N and a PL acyclic map $f: N \rightarrow M$ (see [l], [2], [11]). If M is also a topological manifold, let $\Delta(M) \in H^{4}\left(M ; Z_{2}\right)$ denote the Kirby-Siebenmann obstruction to putting a PL manifold structure on M [10]. Theorem ll.l of [7] shows that

$$
\begin{equation*}
\alpha_{\star} r(M)=\Delta(M) \tag{4}
\end{equation*}
$$

Note that this identifies $\Delta(M)$ as a simplicial cohomology class in the case that M has a simplicial triangulation K. For then $\Delta(M)$ is represented by the cocycle α ': $C_{4}(M) \rightarrow Z_{2}$, where $C_{4}(M)$ is the free abelian group generated by the dual 4 -cells e_{σ}^{4} of the (m-4)-simplices σ of K and $\alpha^{\prime}\left(e_{\sigma}^{4}\right)=$ $\alpha(\operatorname{link}(\sigma, K)) . \quad$ In particular, a topological m-manifold M,
$m \geq 5(\geq 6$ if $\partial M \neq \phi)$ has a $P L$ manifold structure if and only if there is a simplicial triangulation K of M such that the Kervaire-Milnor-Rohlin invariant of every 3-dimensional link of K is zero.

Since the obstruction to putting a PL manifold structure on a topological manifold M and the obstruction to putting a simplicial manifold structure on M are lifting obstructions, standard obstruction theory shows that

$$
\begin{equation*}
\beta \Delta(M)=\tau(M) \tag{5}
\end{equation*}
$$

Furthermore, we have by Corollary 12.5 of [7] that if $\beta_{\star}: H^{4}\left(M ; Z_{2}\right) \rightarrow H^{5}(M ; Z)$ is the integral Bockstein homomorphism, then $\beta_{\star} \Delta(M)=0$ implies that $\tau(M)=0$.

Now to the construction of exotic triangulations on $I^{k} \times T^{n}, k+n \geq 5$. Let $S_{P L}\left(I^{k} \times T^{n}, \partial\right)$ denote the set of concordance (hence isotopy) classes of PL manifold structures on $I^{k} \times T^{n}$ extending the standard $P L$ manifold structure on $\partial I^{k} \times T^{n}$. Similarly, let $S_{T R I}\left(I^{k} \times T^{n}, \partial\right)$ denote the set of concordance classes of simplicial manifold structures on $I^{k} \times T^{n}$ extending the standard $P L$ manifold structure on $\partial I^{k} \times T^{n}$. There is a natural map $S_{P L}\left(I^{k} \times T^{n}, \partial\right) \rightarrow$ $S_{T R I}\left(I^{k} \times T^{n}, \partial\right)$. By the work of Kirby-Siebenmann [10], $\left|S_{P L}\left(I^{k} \times T^{n}, \partial\right)\right|=\left|H^{3-k}\left(T^{n} ; Z_{2}\right)\right|$ for $k+n \geq 5$; and by Theorem 1, $\left|S_{T R I}\left(I^{k} \times T^{n}, \partial\right)\right|=\left|H^{4-k}\left(T^{n} ; \operatorname{ker}(\alpha)\right)\right|$ for $k+n \geq 6$. Our goal is to construct non-trivial elements of $S_{P L}\left(I^{k} \times T^{n}, \partial\right)$ and $S_{T R I}\left(I^{k} \times T^{n}, \partial\right)$ and show that the natural map $S_{P L}\left(I^{3} \times T^{n}, \partial\right) \rightarrow S_{T R I}\left(I^{3} \times T^{n}, \partial\right)$ is the zero map for $n \geq 2$.

Let H^{3} be a PL homology 3-sphere and let $F^{3}=H^{3}-$ int I^{3}. Then $F^{3} \times I^{n}$ has as boundary a $P L$ homology
$(\mathrm{n}+2)$-sphere $\mathrm{H}^{\mathrm{n}+2}$. Hence, by doing surgery on the interior of the parallelizable manifold $F^{3} \times I^{n}$ we have that H^{n+2} bounds a contractible $\operatorname{PL}(\mathrm{n}+3)$-manifold $\mathrm{P}^{\mathrm{n}+3}$ if $\mathrm{n} \geq 2$. By identifying the I^{n} factor in $\partial P^{n+3}=H^{n+2}=\partial\left(F^{3} \times I^{n}\right)$ so as to get T^{n}, we have a PL ($n+3$) -manifold M^{n+3} with boundary $S^{2} \times T^{n}$. Note that M^{n+3} is homotopy equivalent rel ∂M^{n+3} to $I^{3} \times T^{n}$. Since any manifold which is homotopy equivalent to $I^{k} \times T^{n}$ rel $a, k+n \geq 5$, is homeomorphic to $I^{k} \times T^{n}$ rel ∂ [16], we have that M^{n+3} is homeomorphic to $I^{3} \times T^{n}$ rel ∂. The image of the PL manifold structure on $\mathrm{M}^{\mathrm{n}+3}$ under this homemorphism yields a PL manifold structure $\Gamma_{H} 3$ on $I^{3} \times T^{n}$ extending the standard $P L$ manifold structure on $\partial I^{3} \times T^{n}$, hence determines an element $\left[\Gamma_{H^{3}}\right] \in S_{P L}\left(I^{3} \times T^{n}, \partial\right)$.

Theorem 6. $\left[\Gamma_{H^{3}}\right]=0$ if and only if $\alpha\left(\mathrm{H}^{3}\right)=0$. Furthermore, the natural map $\mathrm{Z}_{2} \cong S_{\mathrm{PL}}\left(\mathrm{I}^{3} \times \mathrm{T}^{\mathrm{n}}, \partial\right) \rightarrow S_{\mathrm{TRI}}\left(\mathrm{I}^{3} \times \mathrm{T}^{\mathrm{n}}, \partial\right) \cong$ $\mathrm{n} \operatorname{ker}(\alpha)$ is the aero map.

Proof. Let M^{n+3} be as above and let $h: M^{n+3} \rightarrow I^{3} \times T^{n}$ be a homeomorphism which is the identity over $\partial I^{3} \times T^{n}$. Attach a copy of $\mathrm{I}^{3} \times \mathrm{T}^{\mathrm{n}}$ to $\mathrm{M}^{\mathrm{n}+3}$ along $\partial \mathrm{M}^{\mathrm{n}+3}$ to obtain a PL manifold M^{\prime} homeomorphic to $S^{3} \times T^{n}$. Note that M^{\prime} bounds $Q^{n+4}=\left(\mathrm{CH}^{3} \times \mathrm{T}^{\mathrm{n}}\right) \cup\{$ handles $\}$. By Theorem $2 Q^{\mathrm{n}+4}$ is simplicially triangulated topological manifold which is an s-cobordism between M^{n+3} and $I^{3} \times T^{n}$ rel ∂. By the observations following (4), $\mathrm{CH}^{3} \times \mathrm{T}^{\mathrm{n}}$ possesses a PL manifold structure extending the natural one on $H^{3} \times T^{n}$ if and only if $\alpha\left(H^{3}\right)=0$. This also follows from Theorem C of [17].

Let Q_{*}^{n+4} be the topological manifold obtained by adjoining the mapping cylinder of h to Q^{n+4} along M^{n+3}. Then
Q_{*}^{n+4} is homotopy equivalent to $I^{4} \times T^{n}$ rel $\partial Q_{*}^{n+4}=S^{3} \times T^{n}$, hence Q_{*}^{n+4} is homeomorphic to $I^{4} \times T^{n}$ rel $\partial I^{4} \times T^{n}$. This homeomorphism induces a simplicial manifold structure $\sum_{H} 3$ on $I^{4} \times T^{n}$ and a simplicial manifold concordance between $\Gamma_{H^{3}}$ and the standard structure on $I^{3} \times T^{n}$. It now follows that $\left[\Gamma_{H^{3}}\right]=0$ if and only if $\alpha\left(H^{3}\right)=0$ and that $S_{P L}\left(I^{3} \times T^{n}, \partial\right) \rightarrow S_{T R I}\left(I^{3} \times T^{n}, \partial\right)$ is the zero map for $n \geq 2$.

Perhaps Theorem 6 morally justifies Conjecture 2 above.
Note that in the proof of Theorem 6, the simplicial manifold structure $\Sigma_{H} 3$ on $I^{4} \times T^{n}$ can be assumed to be the standard PL manifold structure on $\partial \mathrm{I}^{4} \times \mathrm{T}^{\mathrm{n}}$ if $\alpha\left(\mathrm{H}^{3}\right)=0$, for we can assume that $h: M^{n+3} \rightarrow I^{3} \times T^{n}$ is a PL homeomorphism. There results for each PL homology 3-sphere H^{3} with $\alpha\left(H^{3}\right)=0$ an element $\left[\Sigma_{H^{3}}\right] \in S_{T R I}\left(I^{4} \times T^{n}, \partial\right) \cong \operatorname{ker}(\alpha)$.

Theorem 7. Let H^{3} and $\overline{\mathrm{H}}^{3}$ be PL homology 3-spheres with $\alpha\left(\mathrm{H}^{3}\right)=\alpha\left(\overline{\mathrm{H}}^{3}\right)=0$. Then $\left[\Sigma_{\mathrm{H}^{3}}\right]=\left[\Sigma_{\overline{\mathrm{H}}^{3}}\right]$ if and only if there is a PL homology cobordism between H^{3} and $\overline{\mathrm{H}}^{3}$.

Proof. Recall that $\Sigma_{H 3}$ is the simplicial manifold structure on $\mathrm{I}^{4} \times \mathrm{T}^{\mathrm{n}}$ induced by a simplicial manifold structure on the topological manifold $Q^{n+4}=\left(\mathrm{cH}^{3} \times \mathrm{T}^{\mathrm{n}}\right) \cup$ \{handles\}. Similarly, $\Sigma_{\bar{H} 3}$ is induced by a simplicial manifold structure on the topological manifold $\bar{Q}^{n+4}=\left(\bar{H}^{3} \times T^{n}\right) \cup\{$ handles $\}$. Let X^{4} be a PL homology cobordism between H^{3} and \bar{H}^{3}. Now $H^{4}=\mathrm{CH}^{3} \cup \mathrm{X}^{4} \cup \mathrm{c} \bar{H}^{4}$ is a polyhedral homology manifold having the homology of S^{4} and with $H^{4} \times R^{2}$ a topological manifold. By Theorem 1.4 of [7], $\mathrm{CH}^{4} \times \mathbf{R}^{2}$ is a topological manifold so that $P^{n+5}=\left(Q^{\mathrm{n}+4} \times \mathrm{I}\right) \cup\left(\mathrm{CH}^{4} \times \mathrm{T}^{\mathrm{n}}\right) \cup\left(\bar{Q}^{\mathrm{n}+4} \times \mathrm{I}\right)$ is a
simplicially triangulated topological manifold. By attaching PL handles to $\mathrm{X}^{4} \times \mathrm{T}^{\mathrm{n}} \subset \mathrm{P}^{\mathrm{n}+5}$ we obtain a simplicially triangulated topological manifold $Y^{n+5}=\left(Q^{n+4} \times I\right) U\left(\mathrm{CH}^{4} \times T^{n}\right)$ U \{handles\} $U\left(\bar{Q}^{n+4} \times I\right)$ homotopy equivalent to $I^{5} \times T^{n}$. An application of the PL s-cobordism theorem to the boundary PL s-cobordism in Y^{n+5} between ∂Q^{n+4} and $\partial \bar{Q}^{n+4}$, each of which we identify with $\partial \mathrm{I}^{4} \times \mathrm{T}^{\text {n }}$ via a PL homeomorphism, yields a simplicially triangulated topological manifold Y_{*}^{n+5} homotopy equivalent to $I^{5} \times T^{n}$ and with $\partial Y_{*}^{n+5}=Q^{n+4} U$ $S^{3} \times T^{n} \times I \cup \bar{Q}^{\mathrm{n}+4}$. There results a concordance between $\Sigma_{H^{3}}$ and $\Sigma_{\bar{H}^{3}}$.

Conversely, suppose $\left[\Sigma_{H^{3}}\right]=\left[\Sigma_{\bar{H}} 3\right]$. Then there is a simplicially triangulated topological manifold W^{n+5} with $\partial W^{n+5}=Q^{n+4} \cup S^{3} \times T^{n} \times I \cup Q^{n+4}$ and with a homeomorphism $\mathrm{f}: \mathrm{W}^{\mathrm{n}+5} \rightarrow \mathrm{I}^{4} \times \mathrm{T}^{\mathrm{n}} \times \mathrm{I}$ which is PL over $\partial \mathrm{I}^{4} \times \mathrm{T}^{\mathrm{n}} \times \mathrm{I}$. Let $\pi: \mathrm{CH}^{3} \times \mathrm{T}^{\mathrm{n}} \rightarrow \mathrm{I}^{4} \times \mathrm{T}^{\mathrm{n}}$ and $\bar{\pi}: \mathrm{CH}^{3} \times \mathrm{T}^{\mathrm{n}} \rightarrow \mathrm{I}^{4} \times \mathrm{T}^{\mathrm{n}}$ be homology equivalences which fiber over T^{n}. There is no obstruction to extending π and $\bar{\pi}$ to a homotopy equivalence $p: W^{n+5} \rightarrow I^{4} \times$ $T^{n} \times I$, with $p \mid f^{-1}\left(\partial I^{4} \times T^{n} \times I\right): f^{-1}\left(\partial I^{4} \times T^{n} \times I\right) \rightarrow \partial I^{4} \times$ $\mathrm{T}^{\mathrm{n}} \times \mathrm{I}$ a homotopy equivalence. Homotope p so that $p \mid f^{-1}\left(\partial I^{4} \times T^{n} \times I\right)$ is $P L$ transverse to $S^{3} \times(p t) \times$.$I .$ There results a PL cobordism X^{4} between H^{3} and \bar{H}^{3}. There is a transversality theory for maps of homology manifolds provided that the target is a PL manifold (Theorem 3.7 of [5]). So homotope p rel $f^{-1}\left(\partial I^{4} \times T^{n} \times I\right)$ to be homology transverse to $I^{4} \times$ (pt.) $\times I$. There results a homology manifold cobordism X^{5} between $c H^{3}$ and $c \bar{H}^{3}$ extending X^{4}. Now ∂X^{5} bounds the homology manifold X^{5}, so that $r\left(\partial X^{5}\right)=0$. But the only non PL 3-sphere links of ∂X^{5} are H^{3} and \bar{H}^{3}. Thus $H^{3} \#-\bar{H}^{3}$
bounds a PL acyclic 4-manifold, hence H^{3} and \bar{H}^{3} are PL homology cobordant.

To construct non-trivial elements of $S_{P L}\left(I^{k} \times T^{n}, \partial\right) \cong$ $H^{3-k}\left(T^{n} ; Z_{2}\right), k+n \geq 5$, take the non-trivial element of $S_{P L}\left(I^{3} \times T^{n-k}, \partial\right)$ constructed above and identify the opposite ends of k - interval factors of I^{3} to derive a non-trivial element of $S_{P L}\left(I^{k} \times T^{n}, \partial\right)$. Note that these elements are trivial when considered as elements of $S_{T R I}\left(I^{k} \times T^{n}, \partial\right)$. Similarly one constructs (possibly) non-trivial elements of $S_{T R I}\left(I^{k} \times T^{n}, \partial\right) \cong H^{4-k}\left(T^{n} ; \operatorname{ker}(\alpha)\right), k+n \geq 6$, from the elements of $S_{T R I}\left(I^{4} \times T^{n}, \partial\right)$ constructed above.

Bibliography

1. M. Cohen, Homeomorphism between homotopy manifolds and their resolutions, Inv. Math. 10 (1970), 239-250.
2. A. Edmonds and R. Stern, Resolutions of homology manifolds: A classification theorem, J. London Math. Soc. (2), 11 (1975), 474-480.
3. R. D. Edwards,
4. M. Freedman and R. Kirby, A geometric proof of Rohlin's theorem, preprint, 1975.
5. D. Galewski and R. Stern, The relationship between homology and topological manifolds via homology transversality, to appear in Inv. Math.
6. \qquad , Classification of simplicial triangulations of topological manifolds, Bull. Amer. Math. Soc. 82 (1976), 916-918.
7. \qquad , Classification of simplicial triangulations of topological manifolds, preprint, 1976.
8. M. Kervaire and J. Milnor, Bernoulli numbers, homotopy groups and a theorem of Rohlin, Proc. Int. Congr. Math., Edinburg, 1958, 454-458.
9. R. Kirby and M. Scharlemann, Eight faces of the dodecahedral 3-manifold, preprint, 1976.
10. R. Kirby and L. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematics Studies No. 88, Princeton University Press, Princeton, NJ.
11. N. Martin, on the difference between homology and piecewise linear block bundles, J. London Math. Soc. 6 (1973), 197-204.
12. Y. Matsumoto, An elementary proof of Rohlin's theorem, preprint, 1976.
13. \qquad , Variétés simpliciales d'homologie et variétés topologiques métrisables, Thése, Univ. de Paris-Sud, 91405 Orsay, 1976.
14. J. Milnor and J. Husemoller, Symmetric bilinear forms, Springer, 1973.
15. V. A. Rohlin, A new result in the theory of 4-dimensional manifolds, Soviet Math. Doklady 8 (1952), 22l-224 (in Russian).
16. L. Siebenmann, Disruption of low-dimensional handlebody theory by Rohlin's theorem, in Topology of Manifolds, edited by Cantrell and Edwards, Univ. of Georgia, 1970.
17. L. Siebenmann, Are non-triangulable manifolds triangulable? in Topology of Manifolds, edited by Cantrell and Edwards, University of Georgia, 1970.

University of Utah
Salt Lake City, UT 84112

[^0]: ${ }^{1}$ Supported in part by NSF grant MCS 76-06393.

