TOPOLOGY PROCEEDINGS Volume 2, 1977

Pages 621–630

http://topology.auburn.edu/tp/

PL HOMOLOGY 3-SPHERES AND TRIANGULATIONS OF MANIFOLDS

by

Ronald J. Stern

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOON	0140 4104

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

PL HOMOLOGY 3-SPHERES AND TRIANGULATIONS OF MANIFOLDS

Ronald J. Stern¹

One of the least understood but important groups arising in geometric topology is θ_3^H , the abelian group obtained from the set of oriented 3-dimensional PL homology spheres using the operation of connected sum, modulo those which bound acyclic PL 4-manifolds.

In this paper we will show how the group θ_3^H and the following theorem of Rohlin play an important role in triangulating topological manifolds.

V. A. Rohlin Signature Theorem ([4], [8], [12], [15]). Every closed oriented smooth 4-manifold M^4 whose second Stiefel-Whitney class vanishes has signature $\sigma(M) \in Z$ divisible by 16.

By classical smoothing theory the same theorem holds for PL 4-manifolds. However, the theorem is an important undecided result for topological 4-manifolds.

Given a PL homology 3-sphere H^3 , then H^3 bounds a parallelizable PL 4-manifold W^4 . Let $\alpha(H^3) \in Z_2$ be the Kervaire-Milnor-Rohlin invariant given by

 $\alpha(H^3) = \alpha(\overline{W}^4)/8 \pmod{2}$

where \overline{W}^4 is the closed (polyhedral) homology 4-manifold $\overline{w}^4 = w^4 \bigcup_{H^3} cH^3$. That $\sigma(\overline{w}^4)$ is divisible by 8 follows from the fact that the cup-product pairing of \overline{w}^4 is an even

¹Supported in part by NSF grant MCS 76-06393.

quadratic form (see [14]). Also, an application of Rohlin's theorem and the additivity properties of the signature show that $\alpha(\text{H}^3)$ is independent of the bounding parallelizable manifold W^4 , and in fact α determines a well-defined homomorphism $\alpha: \theta_3^{\text{H}} \neq \text{Z}_2$.

The classical example of a PL homology 3-sphere is the Poincaré homology 3-sphere $H^3 = SO(3)/A_5$, where A_5 is the even permutation group on five objects = the 60 orientation preserving symmetries of the dodecahedron. In fact $\pi_1(X) =$ $\langle a,b | a^3 = b^5 = (ab)^2 \rangle \neq 0$. Now H^3 is also the boundary of the Milnor plumbing W^4 of 8 copies of the unit tangent disk bundle of S^2 according to the Dynkin diagram

(For this and other descriptions of H^3 see [9]). It is then an excellent exercise for an algebraic topology class to show that $\sigma(\overline{w}^4) = 8$, thus demonstrating that the homomorphism $\alpha: \theta_3^H \neq Z_2$ is surjective.

We now have a short exact sequence

 $0 \rightarrow \ker(\alpha) \rightarrow \theta_3^H \xrightarrow{\alpha} Z_2 \rightarrow 0$ Not one concrete fact is known about θ_3^H other than the existence of the surjection $\alpha: \theta_3^H \rightarrow Z_2$. For instance, it is not even known if θ_3^H is finitely generated.

The importance of the group $ker(\alpha)$ is explained by

Theorem 1. (Galewski-Stern [6], [7], T. Matumoto [13]). Let M^{m} be a topological manifold with ∂M triangulated as a simplicial complex. If $m \ge 6$, then there is an element $\tau(M) \in H^{5}(M, \partial M; \ker(\alpha))$ such that $\tau(M) = 0$ if and only if there is a simplicial triangulation K of M with $K \mid \partial M$ compatible with the given triangulation on ∂M . Moreover, there are $\mid H^{4}(M, \partial M; ker(\alpha)) \mid$ such triangulations on M up to concordance rel ∂M .

Two triangulations K_0 and K_1 of M are *concordant rel* ∂M if there is a triangulation K of M×I such that K ($\partial M \times I$) is compatible with the given triangulation on $\partial M \times I$ and such that K $M \times \{i\}$ is compatible with K, for i = 0, 1.

It should be noted that *a priori* there are two obstructions in Theorem 1 to triangulating M, but one of these obstructions vanish since

Theorem 2. (R. D. Edwards [3]). Let H^3 be any PL homology 3-sphere. Then $S^{2*}H^3 = \Sigma^3 H^3$ is homeomorphic to S^6 .

The importance of even a little understanding of θ_3^H is explained by

Corollary 3. (Galewski-Stern [6], [7], T. Matumoto [13]). If there is an element $\mathbf{x} \in \theta_3^H$ with $\alpha(\mathbf{x}) = 1$ and $2\mathbf{x} = 0$, then all topological m-manifolds, $m \ge 6$ (≥ 7 if $\partial M \neq \phi$) can be triantulated as simplicial complexes.

This leads us to the following well-known conjectures.

Conjecture 1. The group θ_3^H contains an element of order two.

Conjecture 2. The group $ker(\alpha)$ is the zero group.

In the remainder of this paper we will first consider the relationship between the simplicial triangulation obstruction of Theorem 1 and the combinatorial triangulation obstruction of Kirby-Siebenmann [10]. These results are implicit in [7]. We will then show how elements of θ_3^H yield exotic PL manifold structures on $I^k \times T^n$, $k + n \ge 5$, which are the standard PL structure on $\partial I^k \times T^n$, and how elements of ker(α) yield *possibly* exotic simplicial manifold structures on $I^k \times T^n$, $k + n \ge 5$, which are the standard PL manifold structure on $\partial I^k \times T^n$. Furthermore, we will demonstrate that the exotic PL manifold structures on $I^k \times T^n$ are nonexotic when considered as simplicial manifold structures. Here, T^n is the cartesian product of S^1 n-times, and I^k is the cartesian product of the unit interval k-times.

Recall the short exact sequence

 $0 \rightarrow \ker(\alpha) \rightarrow \theta_{3}^{\text{H}} \stackrel{\alpha}{\rightarrow} z_{2} \rightarrow 0$

and the resulting Bockstein exact coefficient sequence

 $\dots \rightarrow H^{4}(M; \frac{H}{3}) \xrightarrow{\alpha} * H^{4}(M; \mathbb{Z}_{2}) \xrightarrow{\beta} H^{5}(M; \ker(\alpha)) \rightarrow \dots$ If M is a polyhedral homology m-manifold, there is an element $r(M) \in H^{4}(M; \theta_{3}^{H})$ such that r(M) = 0 if and only if there is a PL m-manifold N and a PL acyclic map f: N \rightarrow M (see [1], [2], [11]). If M is also a topological manifold, let $\Delta(M) \in H^{4}(M; \mathbb{Z}_{2})$ denote the Kirby-Siebenmann obstruction to putting a PL manifold structure on M [10]. Theorem 11.1 of [7] shows that

(4) $\alpha_{+}r(M) = \Delta(M)$

Note that this identifies $\Lambda(M)$ as a simplicial cohomology class in the case that M has a simplicial triangulation K. For then $\Lambda(M)$ is represented by the cocycle $\alpha': C_4(M) \rightarrow Z_2$, where $C_4(M)$ is the free abelian group generated by the dual 4-cells e_{σ}^4 of the (m-4)-simplices σ of K and $\alpha'(e_{\sigma}^4) =$ $\alpha(\text{link}(\sigma,K))$. In particular, a topological m-manifold M, $m \ge 5$ (≥ 6 if $\partial M \ne \phi$) has a PL manifold structure if and only if there is a simplicial triangulation K of M such that the Kervaire-Milnor-Rohlin invariant of every 3-dimensional link of K is zero.

Since the obstruction to putting a PL manifold structure on a topological manifold M and the obstruction to putting a simplicial manifold structure on M are lifting obstructions, standard obstruction theory shows that

(5)
$$\beta \Delta (M) = \tau (M)$$

Furthermore, we have by Corollary 12.5 of [7] that if $\beta_*: \operatorname{H}^4(M; \mathbb{Z}_2) \rightarrow \operatorname{H}^5(M; \mathbb{Z})$ is the integral Bockstein homomorphism, then $\beta_* \Delta(M) = 0$ implies that $\tau(M) = 0$.

Now to the construction of exotic triangulations on $I^{k} \times T^{n}$, $k + n \geq 5$. Let $S_{pL}(I^{k} \times T^{n}$, ϑ) denote the set of concordance (hence isotopy) classes of PL manifold structures on $I^{k} \times T^{n}$ extending the standard PL manifold structure on $\vartheta I^{k} \times T^{n}$. Similarly, let $S_{TRI}(I^{k} \times T^{n}, \vartheta)$ denote the set of concordance classes of simplicial manifold structures on $I^{k} \times T^{n}$ extending the standard PL manifold structure on $\vartheta I^{k} \times T^{n}$ extending the standard PL manifold structure on $\vartheta I^{k} \times T^{n}$. There is a natural map $S_{PL}(I^{k} \times T^{n}, \vartheta) + S_{TRI}(I^{k} \times T^{n}, \vartheta)$. By the work of Kirby-Siebenmann [10], $|S_{PL}(I^{k} \times T^{n}, \vartheta)| = |H^{3-k}(T^{n}; z_{2})|$ for $k + n \geq 5$; and by Theorem 1, $|S_{TRI}(I^{k} \times T^{n}, \vartheta)| = |H^{4-k}(T^{n}; \ker(\alpha))|$ for $k + n \geq 6$. Our goal is to construct non-trivial elements of $S_{PL}(I^{k} \times T^{n}, \vartheta)$ and $S_{TRI}(I^{k} \times T^{n}, \vartheta)$ and show that the natural map $S_{PL}(I^{3} \times T^{n}, \vartheta) \rightarrow S_{TRI}(I^{3} \times T^{n}, \vartheta)$ is the zero map for $n \geq 2$.

Let H^3 be a PL homology 3-sphere and let $F^3 = H^3$ int I^3 . Then $F^3 \times I^n$ has as boundary a PL homology $(n+2) - \text{sphere } H^{n+2}. \text{ Hence, by doing surgery on the interior of the parallelizable manifold <math>F^3 \times I^n$ we have that H^{n+2} bounds a contractible PL(n+3)-manifold P^{n+3} if $n \geq 2$. By identifying the I^n factor in $\partial P^{n+3} = H^{n+2} = \partial (F^3 \times I^n)$ so as to get T^n , we have a PL(n+3)-manifold M^{n+3} with boundary $S^2 \times T^n$. Note that M^{n+3} is homotopy equivalent rel ∂M^{n+3} to $I^3 \times T^n$. Since any manifold which is homotopy equivalent to $I^k \times T^n$ rel ∂ , $k + n \geq 5$, is homeomorphic to $I^k \times T^n$ rel ∂ . The image of the PL manifold structure on M^{n+3} under this homeomorphism yields a PL manifold structure Γ_{H3} on $I^3 \times T^n$, hence determines an element $[\Gamma_{H3}] \in \mathcal{S}_{PL}(I^3 \times T^n, \partial)$.

Theorem 6. $[\Gamma_{H3}] = 0$ if and only if $\alpha(H^3) = 0$. Furthermore, the natural map $Z_2 \cong S_{PL}(I^3 \times T^n, \partial) \rightarrow S_{TRI}(I^3 \times T^n, \partial) \cong$ n ker(α) is the zero map.

Proof. Let M^{n+3} be as above and let h: $M^{n+3} \rightarrow I^3 \times T^n$ be a homeomorphism which is the identity over $\partial I^3 \times T^n$. Attach a copy of $I^3 \times T^n$ to M^{n+3} along ∂M^{n+3} to obtain a PL manifold M' homeomorphic to $S^3 \times T^n$. Note that M' bounds $Q^{n+4} = (cH^3 \times T^n) \cup \{\text{handles}\}$. By Theorem 2 Q^{n+4} is simplicially triangulated topological manifold which is an s-cobordism between M^{n+3} and $I^3 \times T^n$ rel ∂ . By the observations following (4), $cH^3 \times T^n$ possesses a PL manifold structure extending the natural one on $H^3 \times T^n$ if and only if $\alpha(H^3) = 0$. This also follows from Theorem C of [17].

Let Q_{\star}^{n+4} be the topological manifold obtained by adjoining the mapping cylinder of h to Q^{n+4} along M^{n+3} . Then

 Q_{\star}^{n+4} is homotopy equivalent to $I^4 \times T^n$ rel $\partial Q_{\star}^{n+4} = S^3 \times T^n$, hence Q_{\star}^{n+4} is homeomorphic to $I^4 \times T^n$ rel $\partial I^4 \times T^n$. This homeomorphism induces a simplicial manifold structure Σ_{H^3} on $I^4 \times T^n$ and a simplicial manifold concordance between Γ_{H^3} and the standard structure on $I^3 \times T^n$. It now follows that $[\Gamma_{H^3}] = 0$ if and only if $\alpha(H^3) = 0$ and that $S_{PL}(I^3 \times T^n, \partial) \rightarrow S_{TRI}(I^3 \times T^n, \partial)$ is the zero map for $n \geq 2$.

Perhaps Theorem 6 morally justifies Conjecture 2 above. Note that in the proof of Theorem 6, the simplicial manifold structure Σ_{H^3} on $I^4 \times T^n$ can be assumed to be the standard PL manifold structure on $\partial I^4 \times T^n$ if $\alpha(H^3) = 0$, for we can assume that h: $M^{n+3} \rightarrow I^3 \times T^n$ is a PL homeomorphism. There results for each PL homology 3-sphere H^3 with $\alpha(H^3) = 0$ an element $[\Sigma_{H^3}] \in S_{TRI}(I^4 \times T^n, \partial) \cong ker(\alpha)$.

Theorem 7. Let H^3 and \overline{H}^3 be PL homology 3-spheres with $\alpha(H^3) = \alpha(\overline{H}^3) = 0$. Then $[\Sigma_{H^3}] = [\Sigma_{\overline{H}^3}]$ if and only if there is a PL homology cobordism between H^3 and \overline{H}^3 .

Proof. Recall that Σ_{H3} is the simplicial manifold structure on $I^4 \times T^n$ induced by a simplicial manifold structure on the topological manifold $Q^{n+4} = (cH^3 \times T^n) \cup \{\text{handles}\}$. Similarly, $\Sigma_{\overline{H3}}$ is induced by a simplicial manifold structure on the topological manifold $\overline{Q}^{n+4} = (c\overline{H}^3 \times T^n) \cup \{\text{handles}\}$. Let X^4 be a PL homology cobordism between H^3 and \overline{H}^3 . Now $H^4 = cH^3 \cup X^4 \cup c\overline{H}^4$ is a polyhedral homology manifold having the homology of S^4 and with $H^4 \times \mathbf{R}^2$ a topological manifold. By Theorem 1.4 of [7], $cH^4 \times \mathbf{R}^2$ is a topological manifold so that $P^{n+5} = (Q^{n+4} \times I) \cup (cH^4 \times T^n) \cup (\overline{Q}^{n+4} \times I)$ is a simplicially triangulated topological manifold. By attaching PL handles to $X^4 \times T^n \subset P^{n+5}$ we obtain a simplicially triangulated topological manifold $Y^{n+5} = (Q^{n+4} \times I) \cup (cH^4 \times T^n) \cup \{\text{handles}\} \cup (\overline{Q}^{n+4} \times I) \text{ homotopy equivalent to } I^5 \times T^n$. An application of the PL s-cobordism theorem to the boundary PL s-cobordism in Y^{n+5} between ∂Q^{n+4} and $\partial \overline{Q}^{n+4}$, each of which we identify with $\partial I^4 \times T^n$ via a PL homeomorphism, yields a simplicially triangulated topological manifold Y_*^{n+5} homotopy equivalent to $I^5 \times T^n$ and with $\partial Y_*^{n+5} = Q^{n+4} \cup S^3 \times T^n \times I \cup \overline{Q}^{n+4}$. There results a concordance between Σ_{H3} and $\Sigma_{\overline{H3}}$.

Conversely, suppose $[\Sigma_{u3}] = [\Sigma_{\overline{u3}}]$. Then there is a simplicially triangulated topological manifold Wⁿ⁺⁵ with $\partial w^{n+5} = o^{n+4} \cup s^3 \times T^n \times I \cup Q^{n+4}$ and with a homeomorphism f: $W^{n+5} \rightarrow I^4 \times T^n \times I$ which is PL over $\partial I^4 \times T^n \times I$. Let $\pi: cH^3 \times T^n \rightarrow I^4 \times T^n$ and $\overline{\pi}: c\overline{H}^3 \times T^n \rightarrow I^4 \times T^n$ be homology equivalences which fiber over Tⁿ. There is no obstruction to extending π and $\overline{\pi}$ to a homotopy equivalence p: $W^{n+5} \rightarrow I^4 \times$ $\mathbf{T}^{n} \times \mathbf{I}$, with $p \mid f^{-1}(\partial \mathbf{I}^{4} \times \mathbf{T}^{n} \times \mathbf{I})$; $f^{-1}(\partial \mathbf{I}^{4} \times \mathbf{T}^{n} \times \mathbf{I}) \rightarrow \partial \mathbf{I}^{4} \times \mathbf{I}^{n}$ $T^{n} \times I$ a homotopy equivalence. Homotope p so that $p|f^{-1}(\partial I^4 \times T^n \times I)$ is PL transverse to $S^3 \times (pt.) \times I$. There results a PL cobordism X^4 between H^3 and \overline{H}^3 . There is a transversality theory for maps of homology manifolds provided that the target is a PL manifold (Theorem 3.7 of [5]). So homotope p rel $f^{-1}(\partial I^4 \times T^n \times I)$ to be homology transverse to $I^4 \times (pt.) \times I$. There results a homology manifold cobordism x^5 between cH³ and cH³ extending x^4 . Now ∂x^5 bounds the homology manifold x^5 , so that $r(\partial x^5) = 0$. But the only non PL 3-sphere links of ∂x^5 are H^3 and \overline{H}^3 . Thus $H^3 \# -\overline{H}^3$

bounds a PL acyclic 4-manifold, hence H^3 and \overline{H}^3 are PL homology cobordant.

To construct non-trivial elements of $S_{pL}(I^k \times T^n, \partial) \cong H^{3-k}(T^n; Z_2)$, $k + n \ge 5$, take the non-trivial element of $S_{pL}(I^3 \times T^{n-k}, \partial)$ constructed above and identify the opposite ends of k- interval factors of I^3 to derive a non-trivial element of $S_{pL}(I^k \times T^n, \partial)$. Note that these elements are trivial when considered as elements of $S_{TRI}(I^k \times T^n, \partial)$. Similarly one constructs (possibly) non-trivial elements of $S_{TRI}(I^k \times T^n, \partial) \cong H^{4-k}(T^n; \ker(\alpha))$, $k + n \ge 6$, from the elements of $S_{TRI}(I^4 \times T^n, \partial)$ constructed above.

Bibliography

- 1. M. Cohen, Homeomorphism between homotopy manifolds and their resolutions, Inv. Math. 10 (1970), 239-250.
- A. Edmonds and R. Stern, Resolutions of homology manifolds: A classification theorem, J. London Math. Soc. (2), 11 (1975), 474-480.
- 3. R. D. Edwards,
- 4. M. Freedman and R. Kirby, A geometric proof of Rohlin's theorem, preprint, 1975.
- 5. D. Galewski and R. Stern, The relationship between homology and topological manifolds via homology transversality, to appear in Inv. Math.
- Classification of simplicial triangulations of topological manifolds, Bull. Amer. Math. Soc. 82 (1976), 916-918.
- 7. ____, Classification of simplicial triangulations of topological manifolds, preprint, 1976.
- M. Kervaire and J. Milnor, Bernoulli numbers, homotopy groups and a theorem of Rohlin, Proc. Int. Congr. Math., Edinburg, 1958, 454-458.

- 9. R. Kirby and M. Scharlemann, Eight faces of the dodecahedral 3-manifold, preprint, 1976.
- R. Kirby and L. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematics Studies No. 88, Princeton University Press, Princeton, NJ.
- N. Martin, On the difference between homology and piecewise linear block bundles, J. London Math. Soc. 6 (1973), 197-204.
- Y. Matsumoto, An elementary proof of Rohlin's theorem, preprint, 1976.
- Variétés simpliciales d'homologie et variétés topologiques métrisables, Thése, Univ. de Paris-Sud, 91405 Orsay, 1976.
- J. Milnor and J. Husemoller, Symmetric bilinear forms, Springer, 1973.
- 15. V. A. Rohlin, A new result in the theory of 4-dimensional manifolds, Soviet Math. Doklady 8 (1952), 221-224 (in Russian).
- 16. L. Siebenmann, Disruption of low-dimensional handlebody theory by Rohlin's theorem, in Topology of Manifolds, edited by Cantrell and Edwards, Univ. of Georgia, 1970.
- 17. L. Siebenmann, Are non-triangulable manifolds triangulable? in Topology of Manifolds, edited by Cantrell and Edwards, University of Georgia, 1970.

University of Utah

Salt Lake City, UT 84112