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ON ARC-SMOOTH CONTINUA 

J. B. Fugate, G. R. Gordh, Jr., and Lewis Lum 

This paper is a preliminary report on material which we 

intend to publish later in expanded form. 

1. Introduction 

A smooth dendroid [8] may be defined as a metric con­

tinuum X which is hereditarily unicoherent at a point p [14] 

and satisfies the following conditions. 

(1)	 Arc condition. For each x in X - {p} there is an 

arc from p to x denoted by px. 

(2)	 Smoothness condition. If x is a sequence convergingn 

to x in X - {p}, then the sequence of arcs px con-
n 

verges to the arc px. 

(Note. The fact that such a continuum is a dendroid is 

a consequence of Theorem 2.2 of [15].) 

Smooth dendroids and their Hausdorff counterparts called 

generalized trees [45] arise naturally in the study of one-

dimensional semigroups (see [20] and [25]) and partially 

ordered spaces (see [24] and [45]). These well-behaved one-

dimensional continua have been the object of considerable 

attention in recent years (e.g., [6], [9], [11], [13], [17], 

[ 2 6], [ 30], [32], [ 33], [34], [ 39], [ 40] and [ 4 6] ) . 

An obvious way to generalize the smooth dendroids is to 

impose weak forms of the "arc condition" and/or the "smooth­

ness condition" on continua which are hereditarily unicoher­

ent at some point. Weakly smooth dendroids [28], smooth con­

tinua [14] (see also [7], [15], [16], [17], [29], [33] and 
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[35]), weakly smooth continua [31], and nearly smooth con­

tinua [15] arise in this way. Mackowiak has considered a 

much more general notion of smoothness in [36], [37] and [38]. 

In this paper we generalize the smooth dendroids by re­

taining the full strength of the "arc condition" and the 

"smoothness condition" while dropping the requirement that 

the underlying continuum be hereditarily unicoherent at some 

point.- The resulting continua, termed arc-smooth, may be 

considered as a higher dimensional analogue of the smooth 

dendroids. For one-dimensional continua the smooth dendroids 

and the arc-smooth continua coincide (unlike any of the other 

generalizations of smooth dendroids) . 

We shall show that, like the smooth dendroids, the arc­

smooth continua arise naturally in the study of semigroups 

and partially ordered spaces. In fact we shall see that this 

class of continua has already been considered by several 

authors under various guises and for different reasons. 

Our purposes here are to introduce some terminology in­

volving arc-smooth continua, to establish some of their pro­

perties, and to illustrate how they arise in a variety of 

topological considerations. 

2. The Definition 

A continuum is a compact connected metric space. A 

dendroid is an arc-wise connected hereditarily unicoherent 

continuum. If X is a continuum, then C(X) denotes the hyper­

space of subcontinua of X with the Hausdorff metric (see 

[22] ) • 

We define the continuum X to be arc-smooth at the point 
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P if there exists a function A:X + C(X) satisfying the follow­

ing conditions. 

(1) Arc condition. For each x in X - {p} the set A(x) 

is an arc from p to x, denoted by px, and A(p) = {pl. 

(2) Smoothness condition. A is continuous; hence if x 
n 

converges to x in X - {p}, then px
n 

converges to px. 

(3) CompatibiZity condition. If x E py, then px ~ py. 

(Note. (3) is automatically satisfied when X is a 

dendroid. ) 

A continuum is said to be arc-smooth provided it is arc-

smooth at some point. 

3.	 Some Examples 

(1)	 Clearly a dendroid is arc-smooth if and only if it 

is smooth. 

(2)	 Each starlike subcontinuum of En is arc-smooth. 

(3)	 Each convex subcontinuum of En is arc-smooth at each 

point. 

(4)	 The cone over any metric compactum is arc-smooth. 

(5)	 If P denotes the pseudo-arc, then the hyperspace 

C(P) is arc-smooth. 

4.	 The Partial Order 

Let X be a continuum which is arc-smooth at p. We say 

that x < y in case px ~ py. 

Theorem 1. Let X be a continuum with p E X. If X is 

arc-smooth~ then ~ is a partiaZ order on X satisfying (aJ < is 

cZosed~ (bJ p is the unique minimaZ eZement~ and (cJ if 

y ~ p~ then the Zower set L(y) = {x EX: x < y} is an order 
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arc. 

ConvepselY3 if X admits a partial order < satisfying 

(a) 3 (b) and (c) 3 then X is arc-smooth at p. 

This result is essentially Theorem 2.8 of [10]. It 

should be compared with the partial order characterizations 

of generalized trees given in [24] and [45]. 

Let X be an arc-smooth continuum. A metric d on X is 

called radially convex if x < Y < z implies that d(x,y) < 

d (x, z) • 

Theorem 2. Every arc-smooth continuum admits a radially 

convex metric. 

Proof. This follows from the previous theorem and the 

main result in [4]. 

5. Semigroup Actions 

It is known that if X is a one-dimensional continuum 

which supports the structure of a semigroup with zero and 

unit, then X is a smooth dendroid [20]. In studying the 

converse, Koch and McAuley [25] introduced a class of spaces 

called continua ruled by arcs. Continua ruled by arcs are 

arc-smooth; in fact, the first four of the eight conditions 

in the definition of continua ruled by arcs are equivalent 

to our definition of arc-smooth continua. Eberhart studied 

arc-smooth continua under the name puled spaces in [10]. 

Stadtlander called them K-spaces in [42]. 

By a thread T we mean any topological semigroup (written 

multipllcatively) on the interval [0,1] with 0 acting as a 

zero and 1 as a unit. We say that the thread T acts 
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naturally on the pointed continuum (X,p) if there is a map­

ping	 m:TXX ~ X such that (a) m(O,x) = p, (b) m(l,x) = x, and 

(c) m(s,m(t,x)) = m(st,x) for x in X and s,t in T. 

The next characterization of arc-smooth continua follows 

from Theorem 1 of [42]. 

Theorem 3. Let (X,p) be a pointed continuum and T any 

'thread. Then X is arc-smooth at p if and only if T acts 

naturally on x. 

6.	 Contractibility 

Smooth dendroids are contractible (see [9] and [39]), 

but contractible dendroids need not be smooth (e.g., [18]). 

A special type of contractible spaces called freely con­

tractible were utilized by Isbell [21] in the study of injec­

tive metric spaces. We shall show that the freely contracti ­

ble continua coincide with the arc-smooth continua. 

A free contraction of space Z to a point p is a homotopy 

H:zx[O,l] ~ Z such that (a) H(z,O) p, (b) H(z,l) z, and 

H (H ( z , s) , t) H ( z , min {s , t } ) for z in Z and s, t in [ 0 , 1] . 

Theorem 4. The continuum X is arc-smooth at p if and 

only if X is freely contractible to p. 

Proof. Suppose that H is a free contraction of X to p. 

Let T be the thread with st = rnin{s,t} for s,t in [0,1]. 

Define the map m:TxX ~ X by m(t,x) = H(x,t). Then T acts 

naturally on X and hence X is arc-smooth at p by Theorem 3. 

The converse is proved similarly. 

Corollary 1. If X is arc-smooth at P3 then X is locally 

contractible at p. 
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Proof. Let d be a radially convex metric on X and for 

each t > ° let Nt(p) = {x EX: d(p,x) ~ t}. For each t, 

Nt(p) is a closed neighborhood of p which is arc-smooth at 

p. Thus Nt(p) is contractible to p for each t. 

Corollary 2. If X is arc-smooth, then X is unicoherent. 

Proof. Every contractible continuum is unicoherent (see 

Theorem 7.3 in [48). 

Corollary 3. If X is a finite dimensional continuum 

which is arc-smooth at each point, then X is an absolute 

retract. 

Proof. Since X is contractible and locally contractible, 

X is an absolute retract (see Corollary 10.5 of [3]). 

Remark. Corollary 3 generalizes the fact that a den­

droid which is smooth at each point is a dendrite (i.e., a 

one-dimensional absolute retract). 

7. A Question 

Let X be a continuum such that for each point p in X 

there exists a homotopy H:XX[O,l] + X satisfying (a) 

H(x,O) = p, (b) H(x,l) = x, and (c) H(H(x,s) ,t) = H(x,st) 

for x in X and s,t in [0,1] (here st denotes ordinary multi­

plication). Bing [1] has asked whether such a continuum 

admits a strongly convex metric. Applying an argument analo­

gous to that in the proof of Theorem 4 we see that Bing's 

question can be restated: Does a continuum which is arc­

smooth at each point admit a strongly convex metric? 

8. Selected Theorems 
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In this section we present a variety of theorems about 

arc-smooth continua and indicate their proofs (with the ex­

ception of Theorem 7) . 

Theorem 5. Let X be a one-dimensional continuum. Then 

X is a dendroid which is smooth at p if and only if X is 

arc-smooth at p. 

Proof. It suffices to observe that every contractible 

one-dimensional continuum is a dendroid by Theorem 1 of [5]. 

Theorem 6. Every arc-smooth continuum is semi-aposyndetic 

(i.e., given distinct points, one of them is contained in the 

interior of a subcontinuum missing the other one) . 

Proof. This is a consequence of Theorem 4 of [8]. 

Theorem 7. For a planar continuum X the following are 

equivalent. (aJ X is an absolute retract. (bJ X is arc­

smooth and semi-locally connected. (cJ X is arc-smooth at 

each point. 

Theorem 8. For a two-dimensional polyhedron X the fol­

lowing are equivalent. (aJ X is collapsible. (bJ X is arc­

smooth. (cJ X is arc-smooth at each point. 

Proof. This follows from the equivalence of arc-smooth­

ness and free contractibility and some results in [21]. That 

(a) and (b) are equivalent also follows from [44]. 

Remark. For one-dimensional continua and planar con­

tinua we have seen that arc-smoothness at each point charac­

terizes the absolute retracts. Theorem 8 shows that the 

analogous statement is false in two-dimensions since there 
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are well-known examples of contractible 2-polyhedra which are 

not collapsible. 

If X is an arc-smooth continuum we denote the set of 

maximal elements (relative to~) by E(X) and call it the 

end set of X. 

Theorem 9. Let X be a three manifold with boundary a 

two-sphere S2. Then X is a three cell if and only if X is 

arc-smooth at some point in such a way that E(X) = S2. 

Proof. This follows immediately from Theorem 3 of [43]. 

Smooth dendroids have the fixed point property (since 

dendroids do [2]). Arc-smooth continua need not have the 

fixed point property since there are cones which do not [23]. 

Theorem 10. Let X be an arc-smooth continuum. If X is 

uniquely arc-wise connected or embeddable in the plane 3 then 

X has the fixed point property. 

Proof. The first part is a consequence of contracti­

bility and Theorem 5 of [49]. The second part follows from 

Theorem 3 of [19]. 

Theorem 11. If the continuum X is arc-smooth at the 

point P3 then each closed set containing p is the fixed point 

set of some selfmap on x. 

Proof. The proof given in [47] for smooth dendroids 

also applies to arc-smooth continua. 

A space is said to have the complete invariance property 

if each of its closed subsets is the fixed point set of some 

selfmap. 
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Corollary 4. If the continuum X is arc-smooth at each 

point 3 then X has the complete invariance property. 

We remarked earlier that if P is the pseudo-arc, then 

the	 hyperspace C(p) is an arc-smooth continuum. It was 

shown in [41] that C(P) is a two-dimensional Cantor manifold. 

More generally, if Z is any continuum, then no closed zero-

dimensional set separates C(Z) [27]. A similar argument 

yields an analogous result for certain arc-smooth continua. 

Theorem 12. If X is an arc-smooth continuum without 

separating points and E(X) is a continuum 3 then no closed 

zero-dimensional set separates X. 

The	 Hilbert cube is an arc-smooth continuum which is 

homogeneous [12]. 

Theorem 13. Every homogeneous non-degenerate arc-smooth 

continuum is infinite-dimensional. 

Proof. The proof is similar to that given in [21] for 

compact injective spaces. 
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