TOPOLOGY PROCEEDINGS

Volume 3, 1978

Pages 53-57

http://topology.auburn.edu/tp/

FUNDAMENTAL DIMENSION OF FIBERS OF APPROXIMATE FIBRATIONS

by

P. F. DUVALL AND L. S. HUSCH

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

FUNDAMENTAL DIMENSION OF FIBERS OF APPROXIMATE FIBRATIONS

P. F. Duvall¹ and L. S. Husch

A map f: E -> B between metric spaces has the approximate homotopy lifting property (AHLP) for the space X if for each open cover ϵ of B for each homotopy H: X × [0,1] \rightarrow B with a lifting h: $X \rightarrow E$ such that fh(x) = H(x,0), there exists a homotopy $\tilde{H}: X \times [0,1] \rightarrow E$ such that $\tilde{H}(x,0) = h(x)$ and fH(x,t) and H(x,t) are ε -close for all $(x,t) \in X \times [0,1]$. A map $f: E \rightarrow B$ between ANR's is an approximate fibration if f has the AHLP for all spaces X. This concept was defined by Coram and Duvall [2] who showed that approximate fibrations satisfied many properties of Hurewicz fibrations if one used shape theoretic concepts instead of their homotopy theoretic analogues. In particular, if B is path connected, all fibers of an approximate fibration have the same shape. They were motivated by the work of Lacher [8] who showed that cell-like mappings between ANR's satisfied the AHLP for polyhedra. Coram and Duvall [3] have shown that this implies AHLP for all spaces and hence cell-like mappings between ANR's are approximate fibrations. A natural question which arose was whether the converse were true; since Hurewicz fibrations are approximate fibrations, some additional hypotheses were needed: if f: M → N is a monotone approximate fibration between closed manifolds of the same dimension, is f a cell-like mapping? A related question suggested by the thesis of R. Goad [6] is

¹Research supported in part by an N.S.F. grant.

54 Duvall and Husch

that if $f: M \to N$ is a monotone approximate fibration between closed manifolds and if dim $M = \dim N + 1$, does the fiber of f have the shape of the 1-sphere? In this note, we show that the answer to both of these questions is yes. Our main result is the following:

Theorem 1. Let $f: M \to N$ be a proper approximate fibration from a manifold without boundary to a polyhedron with fiber F; then $Fd(F) = \dim M - \dim N$. (Fd(F) is the fundamental dimension [1] or shape dimension of F; i.e., $Fd(F) = \inf\{\dim X: \text{ shape } F = \text{ shape } X \text{ and } X \text{ is a metric compactum}\}$.)

Corollary 2. Let $f\colon M\to N$ be a proper monotone approximate fibration from a manifold without boundary to a polyhedron with fiber F.

- a) If dim $M=\dim\ N$ then f is cell-like and, hence cellular if n>5 or n=3 and M contains no false 3-cells.
 - b) If dim $M = \dim N + 1$, then F has the shape of S^1 .
- c) If dim $M=\dim N=i$, i=2,3, and if F is shape 1-connected, then F has the shape of the i-sphere.
- J. Hollingsworth has indicated to the authors that he has a proof of part a) of Corollary 2.

Corollary 3. Suppose that $f: M \twoheadrightarrow N$ is a proper approximate fibration between connected n-manifolds without boundary, $n \ge 5$ or n = 3 and M contains no false 3-cells. If ε is an open cover of N, then there is a covering projection $p: M \to N$ such that f and p are ε -close.

Proof. Choose base points m_0 and n_0 such that $f(m_0) = n_0$ and let $\rho \colon \tilde{N} \to N$ be the covering projection corresponding to

image $f_{\star}(\pi_1(M,m_0))$. Then f lifts to a map $\tilde{f}\colon M \to \tilde{N}$. It is not difficult to check that \tilde{f} is an approximate fibration. We wish to show that \tilde{f} is monotone. Suppose not. Let X_1 and X_2 be distinct components of $F_0 = \tilde{f}^{-1}(\tilde{f}(m_0))$ and let ℓ be a neighborhood of F_0 such that X_1 and X_2 lie in distinct path components of ℓ . Assume without loss of generality that $m_0 \in X_1$, let $q \in X_2$ be any point, and let $\alpha\colon I \to M$ be a path from m_0 to q. Since $f\alpha$ is a loop based at m_0 which represents an element of $f_{\star}\pi_1(\tilde{N})$, there is a loop β based at m_0 such that $f\alpha$ and $f\beta$ are homotopic rel (n_0) . It follows from the AHLP that m_0 and q can be joined by a path in ℓ , a contradiction.

By Corollary 2 and [10] it follows that \tilde{f} can be approximated by homeomorphisms, so that $p\tilde{f}=f$ can be approximated by covering projections.

Theorem 1 follows essentially from two recently proved results of Husch and Nowak, respectively:

Theorem 4 [7]. Let $f: M \to N$ be an approximate fibration from a closed manifold to a polyhedron with fiber F. If F has the shape of a finite complex and if $\dim M - \dim N \ge 6$, then $F \times T^{n+1}$ has the shape of a closed manifold of dimension m+1 where $m=\dim M$ and $n=\dim N$.

 $\mathbf{T}^{\mathbf{r}}$ is the product of r 1-spheres.

Theorem 5 [9]. If X is a continuum which has the shape of a CW-complex, then $Fd(X \times Y_1 \times Y_2 \times \cdots \times Y_n) = Fd(X) + n$ for all continua Y_1, Y_2, \cdots, Y_n such that $Fd(Y_i) = 1$, $i = 1, 2, \cdots, n$.

56 Duvall and Husch

Proof of Theorem 1. Let $f: M \to N$ be an approximate fibration with fiber F and suppose dim M = m and dim N = n. By [2], F is an FANR and by [5], F \times S¹ has the shape of a finite complex. Let $r = \max\{1, 6 - (m - n)\}$ and define $f: M \times T^r \to N$ to be the composition of the projection $M \times T^r \to M$ and f. It is easily checked that \tilde{f} is an approximate fibration and, hence, by Theorem 4, F \times T^{r+n+1} has the shape of a closed manifold of dimension m + r + 1. Therefore Fd(F \times T^{r+n+1}) = m + r + 1; by Theorem 5, Fd(F) = m - n.

Since F is an FANR, there exists a CW complex K such that shape K = shape F with dim K = Fd(F) if Fd(F) \neq 2 and dim K = 3 if Fd(F) = 2[4]. Hence K × T^{r+n+1} has the homotopy type of a closed manifold. By Theorem 2.5 of [11], K is a Poincaré complex of formal dimension m - n. Corollary 2 now follows from Theorem 4.2 of [11].

References

- K. Borsuk, Theory of shape, Polish Scientific Publishers, Warsaw, 1975.
- D. S. Coram and P. F. Duvall, Jr., Approximate fibrations, Rocky Mountain J. Math. 7 (1977), 275-288.
- 3. _____, Approximate fibrations and a movability condition for maps, Pacific J. Math. 72 (1977), 41-56.
- 4. D. A. Edwards and R. Geoghegan, Stability theorems in shape and prohomotopy, Trans. Amer. Math. Soc. 222 (1976), 389-403.
- 5. _____, Shapes of complexes, ends of manifolds, homotopy limits and the Wall obstruction, Annals of Math. 101 (1975), 521-535.
- 6. R. Goad, Local homotopy properties of maps and approximation by fiber bundle projections, thesis, University of Georgia, 1976.

- 7. L. S. Husch, Fibres of Hurewicz and approximate fibrations, to appear.
- R. C. Lacher, Cell-like mappings I, Pacific J. Math. 30 (1969), 717-731.
- 9. S. Nowak, to appear.
- 10. L. C. Siebenmann, Approximating cellular maps by homeomorphisms, Topology 11 (1973), 271-294.
- C. T. C. Wall, Poincaré complexes: I, Annals Math. 86 (1967), 213-246.

Oklahoma State University

Stillwater, Oklahoma

and

University of Tennessee

Knoxville, Tennessee