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STRONG SHAPE THEORY:
 

A GEOMETRICAL APPROACH
 

J. Dydak and J. Segal 

1.	 Introduction 

In 1968, K. Borsuk [B l ] introduced the shape category 

of compact metric spaces in the pseudo-interior of the Hilbert 

cube Q and fundamental sequences. This version of shape 

theory is very close to the geometrical situation. In 1970, 

S. Marde~ic and J. Segal [M-S ] developed shape theory on2

the basis of inverse systems of ANR's. In this approach, 

maps between such systems are defined as well as a notion 

of homotopy of such maps. This homotopy relation classifies 

maps between ANR-systems and these classes are called shape 

maps. The ANR-system approach yields a continuous theory, 

i.e., the shape functor commutes with taking inverse limits. 

This is true for a single compactum or pairs of compacta. 

On the other hand, Borsuk's shape theory is not continuous 

on pairs of compacta. So while the two approaches agree on 

compact metric spaces, they differ on pairs of compact 

metric spaces. Thus the ANR-system approach is the more 

categorical of the two theories and permits extension to 

Hausdorff compacta [M-S ] and to arbitrary topologicall 

spaces [Ml ] and [Mor]. 

In 1972, T.A. Chapman [C 2 ] showed that the shape cate

gory is equivalent to the category whose objects are comple

ments of compact Z-sets in Q and whose morphisms are weak 

proper homotopy classes of proper maps. Recall that a 
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closed subset X of Q is a Z-set if for each non-empty open 

subset U of Q, contractible in itself, the set U-X is non

empty and contractible in itself. Moreover, all compacta 

in the pseudo-interior of Q are Z-sets. By a proper map 

f: X ~ Y is meant a map such that for every compactum 

Bey there exists a compactum A c X such that f(X-A) n B ~. 

This is just a reformulation of the usual definition of 

proper map as a map for which f-I(B) is compact for any 

compact subset B of Y. 

Chapman's approach to shape theory influenced O.A. Edwards 

and H.M. Hastings [E-H] to introduce the strong shape cate

gory whose objects are compact Z-sets in Q and whose morphisms 

are proper homotopy classes of maps of complements of compact 

Z-sets in Q. Their approach is quite categorical. Recently, 

A. Calder and H.M. Hastings [C-H] have announced that the 

strong shape category is precisely the quotient category 

obtained by inverting strong shape equivalences. 

This paper is a report of our recent joint work [O-S] 

in which we gave a more geometrical description of the strong 

shape category. Our definition is equivalent to the one 

given in [E-H]. We emphasize geometrical conditions for a 

map f to induce a strong shape equivalence. By using these 

characterizations, we obtain results similar to those proved 

in [S] and announced in [E-H]. In addition to the geometri

cal characterizations for a map to induce a strong shape 

equivalence, we obtain a strong shape version of the Fox 

Theorem which allows us to reduce considerations to simpler 

cases. These results are applied to determine some important 

classes of maps (~.g., CE maps between compacta of finite 
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deformation dimension or hereditary shape equivalences) 

which induce strong shape equivalences. Moreover, this 

approach allows us to answer various questions raised in 

[C l ], [0 ], and [Kod].2

2.	 Contractible Telescopes 

Throughout the paper, we assume that all (metric) spaces 

are locally compact and separable. Thus X E ANR means 

X E ANR(M) (see [B ]).2

If f: X + Y is a map, then by Mn(f) (n ~ 0) we mean the 

space Y x {2n} U X x [2n + 1,2n + 2]/-, where - identifies 

(x,2n +1) with (f(x) ,2n) for each x E X. 

If X = (X ,pm) is an inverse sequence of compacta, then n n
 

CTel X - UOO 
M (pn+l)


- n=O n n ' 

1where PO: Xl + X is a constant map onto a one-point spaceo 
X	 If X is a compact space, then CTel X CTel~, whereO. 

X = (Xn'p~), X = X and P~ = idx for each n ~ 1 and m ~ n. n 
m

Analogously, we can define CTel (X,Y) for (X,Y) = ((Xn,Y ) ,Pn)n 

as the pair (CTel ~,CTel X). 

A net of ANR's U is an inverse sequence (U ,pm) such n n 

t h at Pn are 1nc US10n. maps an Un are compact ANR s.m . 1 d	 ' 

A net of U of ANR's is said to be coarser than a net V 

of ANR's (~ > V in notation) provided V C Un and V n nu nv n n 

for each n ~ 1. 

If U > V are nets of ANR's, then 

i(~,y): CTel (X,Y) + CTel (~,~) 

denotes the inclusion map, where X = n~ and Y nv. 

If f: X + Y is a map of compacta, then 

CTel f: CTel X + CTel Y 
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is a proper map defined by 

CTel f(x,t) = (f(x),t) for (x,t) E CTel X. 

Recall that two maps f, g: X ~ Yare said to be properly 

homotopic (written f ~ g) if there exists a proper mapp 

~: X x I ~ Y such that ~(x,O) = f(x) and ~(x,l) = g(x) for 

each x E X. If for a proper map f: X ~ Y there exists a 

proper map g: Y ~ X such that g f P id and f g ~ idy thenx 
f is said to be a proper homotopy equivalence. 

The following can be easily derived from Lemma 3.2 of 

[B-S]. 

Theorem 2.1. Let A be a closed subset of a locally 

compact separable space X and let P be an ANR. Then~ for 

any proper map f: A ~ P~ there exists a proper extension 

-
f: U ~ P of f over a closed neighborhood U of A in X. 

The next theorem is a "proper" version of the Borsuk 

Homotopy Extension Theorem [B2 ; Theorem 8.1, p. 94] whose 

proof is a modification of that given in [B ] together with2 

the use of Lemma 3.2 of [B-Sl. 

Theorem 2.2. ([B-S; Theorem 3.1]). Let A be a closed 

subset of a locally compact separable space X and let P be 

an ANR. Then each proper map H: X x {a} U A x I ~ P is 

properly extendible over X x I. 

Theorems 2.1 and 2.2 imply that all results concerning 

locally compact ANR's and maps can be carried over to ANR's 

and proper maps. This is true since if the inclusion 

i: P ~ R of one ANR into another is a proper homotopy 
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equivalence, then P is a strong deformation retract of R. 

The next two theorems are of this type. 

Theorem 2.3. Let A be a closed subset of an ANR X. 

If g: X + X is a map properly homotopic to id and g(a) = ax 
for a E A, then there exists a proper map f: X + X such that 

f g~ idx reI. A and g f~ id reI. A.x 

In view of Theorem 2.2 the proof of HiIfssatz 2.21 of 

[D-K-P; p. 56] can be used to obtain a proof of Theorem 2.3. 

Similarly Satz 2.32 of [D-K-P; p. 64] implies the following 

theorem. 

Theorem 2.4. Let A and B be closed subsets of ANR's X 

and Y respectively. If g: X + Y is a proper homotopy equiva

lence which induces a proper homotopy equivalence g\A: A + B, 

then g: (X,A) + (Y,B) is a proper homotopv equivalence. 

3. The Strong Shape Category 

If C is a category, then Morc(X,Y) is the set of all 

morphisms from X to Y in C. By S: H + Sh we denote the c 

shape functor from the homotopy category to the s.hape cate

gory, where H is a full subcategory of the proper homotopyc 

category H. The objects of Hand Sh are all pairs of p c 

compact spaces. By W (W ), we denote a full subcategory of 
p c 

H (H ) whose objects are pairs of ANR's (pairs of compact
p c 

ANR's). If (X,A) is a compact pair, then 

ITCTel(X,A): Wp + Ens 

is the functor which assigns to each pair (P,R) of ANR's 

the set MorH (CTel (X,A), (P,R». 
I? 
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Proposition 3.1. Let ~i > ~i' i = 1, 2 be nets of ANR's 

with Xi = n~i and Ai = n~i for i = 1, 2. Then for each 

naturaZ transformation 

~: IT ~ ITCTel (X 2 ,A2 ) CTel (Xl,A )l 

there exists a unique (up to proper homotopy) map 

f: CTel (~l'Yl) ~ CTel (~2'~2) 

such that for any proper map 

we have 

~[g]p = [g-f-i (~l'~l)]p' 

where g: CTel (~2'~2) ~ (P,R) is any extension of g. 

If all conditions of Proposition 3.1 are satisfied, then 

we say that ~ is representable by [f]p. The composition of 

natural transformations ~1-~2 is representable by [f2 f l ]p 

where ~. is representable by f., i = 1, 2. Now we can define 
1 1 

the strong shape category s-Sh. The objects of s-Sh are 

pairs of compact metric spaces, a morphism from (Xl,A ) tol 

(X2 ,A2 ) is a natural transformation from ITCTel (X ,A ) to
 
2 2


(Xl,A ). The composition of morphisms of s-Sh is theITCTel l
 
composition of the corresponding natural transformations.
 

By Proposition 3.1 s-Sh is actually a category. Moreover,
 

Define the functor S* : H ~ s-Sh as follows: S* (X,A)c 

(X,A) on objects and if f: (Xl,A ) ~ (X ,A ) is a map, S* [f]l 2 2 -
is a natural transformation corresponding to [f]p' where 

f: CTel (~l'~l) ~ CTel (~2'~2) is an extension of 

CTel f: CTel (Xl,A ) ~ CTel (X ,A ).l 2 2 
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The functor e: s-Sh ~ Sh is defined as follows: 

0(X,A) = (X,A) for each compact pair (X,A) . If 

¢: ~ is a natural transformation,IICTel (X ,A ) IICTel (Xl,Al )2 2 
then for each pair (P ,R) of compact ANR's and each map 

f: (X2 ,A2 ) ~ (P,R) there exists a unique (up to homotopy) 

map f': (X1,A ~ (P,R) satisfying [CTel f']p = ~[CTel f l .1 ) p 

Consequently, if II(X,A): W ~ Ens is the functor assigningc 

Mor ((X,A), (P,R» to each pair (P,R) of compact ANR's,Hc 
then for each natural transformation 

we can define a natural transformation 

e(~): II(X ,A ) ~ II(X1,A )
2 2 l 

by the formula 

e (~) [fl = [f'], where [CTel f'] = ~ [CTel f] . 
P P 

Thus we get the functor 

0: s-Sh ~ Sh 

. * satl.sfying e·s S, i.e., 

S 
H -----... Sh 

c 

s* " ~ 
s-Sh

/ 
It is shown in [E-H] that for each shape morphism f: (X,A) ~ 

(Y,B) there is a strong shape morphism g: (X,A) ~ (Y,B) with 

0(~) =!. Moreover, if f is an isomorphism, then ~ can be 

chosen to be an isomorphism of s-Sh. However, e is not an 

isomorphism of categories. Take two points x and y belonging 

to different composants of the dyadic solenoid D. Let 

A = {x,y} and let i: A ~ D and f: A ~ D be an inclusion and 
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constant map respectively. Then 

es* [i] = S [i] = S [f] = es* [f]. 

However, S* [i] ~ S* [fl. Indeed, S* [i] = S* [f] would imply 

the existence of a proper map 

H: CTel I ~ CTel U 

where I = [0,1] and 0 = n~ = n~=lUn' such that H(O,t) = (x,t) 

and H(l,t) = (y,t) for each t ~ 0. Hence there would exist 

paths W : I ~ Un joining x and y with W +l = W in n	 n n 
Un	 reI {O,l}. This would mean that x and yare joinable in 

o in the sense of Krasinkiewicz-Minc (see [K-M]). But this 

would contradict the result of [K-M] that no two points from 

different composants are joinable in D. 

4.	 Geometric Characterization of Maps Inducing Strong 

Shape Equivalences 

Theorem 4.1. Let f: X ~ Y be a map of compacta. The 

following conditions are equivalent: 

1) f induces a strong shape equivalence, 

2) for some net ~ of ANR's with n~ = X the natural 

ppojections P : un + un UfY induce shape equivalences,n 

3) for each compactum Z containing X the natural 

projection p: Z ~ ZUfY induces a shape equivalence. 

The next theorem answers problem (SC6) in [Cl]. 

Theorem 4.2. Let X c Y be compacta. Then the following 

conditions are equivalent: 

1) The inclusion map i: X ~ Y induces a strong shape 

equivalence, 

2) for each neighborhood V of Y in Q and for every 
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neighborhood u of X in Q there is a homotopy ft: Y ~ V, 

o ~ t ~ 1, suah that fO(y) = Y for all y E Y, f1(Y) c U 

and	 ft(x) = x for all x E X and 0 ~ t ~ 1. 

3) the inalusion i: (X,X) ~ (Y,X) is a shape equivalenae. 

The Fox Theorem in Shape Theory: 

Let~: (X1,XO) ~ (Yl,YO) be a strong shape morphism. 

Then there exist a pair (Zl'ZO) and homeomorphisms 

i: (X1,XO) ~ (Zl'ZO) and j: (Yl,YO) ~ (Zl'ZO) into (Zl'ZO) 

suah that 

1) S* [j ]!. S* [i], 

2) S* [j ] is an isomorphism, 

3) dim Zk = max (dim Yk,l + dim X ) for k = 0, 1,k 
4) Zo n i (Xl) = i (XO) , Zo n j (Y1) = j (yO) , 

5) if X and YO are one-point spaaes, then Zo is an o 

one-point spaae, too. 

Theorem 4.4. Let f: X ~ Y be a map of aompaata. Then 

the following aonditions are equivalent: 

1) f induaes the strong shape equivalenae S * [f], 

2) the inalusion i: (X,X) ~ (M(f),X) induaes the shape 

equivalence S[i]. 

3) f: X ~ Y and f: M(f) ~ Y induce shape equivaZences. 

In the above theorem M(f) denotes the double mapping 

cylinder of f: X ~ Y which is defined to be the adjunction 

space 

M(f) (X x [-1,1]) U (Y x {-l,l}) 
cP 

where 

~ f x 1: X x {-l,l} ~ Y x {-l,l}. 
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The image of (u,t) under the quotient map q: (X x [-1,1]) + 

(Y x {-l,l}) + M(f) is denoted by [u,t]. The map f: M(f) + Y 

is defined by f[u,t] f(u), if (u,t) E X x [-1,1] and by 

f[u,t] = u, if (u,t) E Y x {-l,l}. This result is obtained 

from Theorem 4.1 by using a technique due to Kozlowski [K]. 

5.	 Some Classes of Maps Which Induce Strong Shape Equivalences 

The deformation dimension ddim X of a compactum X is 

the minimum n such that any map of X into a CW-complex K is 

homotopic to one whose image lies in the n-skeleton of K. 

The following theorem is a shape version of the classi 

cal Whitehead Theorem. Notice that the classical theorem is 

generalized from connected CW-complexes to connected topo

logical spaces and that the homotopy groups TIn(X,x) are 

replaced the homotopy pro groups TIn(~'~) where (~,~) is an 

inverse system of pointed CW-complexes associated with (X,x). 

The Whitehead Theorem in Shape Theory. ([Mos], [Mor], 

[D 4] ) • 

Let (X,x), (Y,y) be connected topological spaces, 

nO = max(l + dim X,dim Y) < 00 and f: (X,x) + (Y,y) be a 

shape map such that the induced homomorphism 

f k #: ITk(~'~) + ITk(!,y) 

is an isomorphism of pro groups for 1 ~ k < nO and an epi

morphism for k = no' then f is a shape equivalence. 

Theorem 5.3. Let X and Y be continua of finite defor

mation dimension. If a map f: (X,x ) + (Y,yO) induces aO

pointed shape equivalence S[f], then f induces a strong shape 

equivalence S* [fl. 
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Proof. Let U be a compact ANR containing X. The 

natural projection p: (U,xO) ~ (U Uf Y,yO) induces an 

n-equivalence S[p] for each n, i.e., 

pro - TIk(S[p]): pro - TIk(U,x O) ~ pro - TIk(U Uf Y,yO) 

is an isomorphism for 0 < k < n and an epimorphism for k n. 

Since Sh(U U Y) = Sh(U U M(f)) and the latter has finitef 

deformation dimension we may apply the Whitehead Theorem in 

shape theory and get that p induces a shape equivalence S[p]. 

Then using Theorem 4.1, we may conclude that f induces a 

strong shape equivalence S* [f]. 

The following theorem is a consequence of Theorem 5.3 

and the Fox Theorem in shape theory. 

Theorem 5.4. Let X and Y be continua of finite defor

mation dimension. If~: (X,x ) ~ (Y,yO) is a strong shapeO

morphism such that e(~) is an isomorphism~ then ~ is an 

isomorphism. 

Theorem 5.5. Let f: (X ,xO) ~ (Y,yO) b~ a map inducing 

a shape equivalence S[f]~ where X and Yare movable continua. 

Then the following conditions are equivalent: 

1) f induces a strong shape isomorphism S* [f]~ 

2) the pair (M(f),X) is movable~ where M(f) is the 

mapping cylinder (unreduced) of f: X ~ Y_ 

Proof. 1 ~ 2 relies on the results of [0 ]. 2 ~ 1 uses4

the infinite dimensional Whitehead Theorem in shape theory 

[01 ] to show S[j] is an isomorphism where the inclusion 

j: (U,x O) ~ (U U Y,yO) of an ANR U containing X with U n Y = X 

induces an n-equivalence S[j] for each n~ Then by Theorem 

4.1, S* [j] is an isomorphism of s-Sh. 
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Definition. A map f: X ~~ Y of compacta is called a CE 

map (or cell-like map) if f-l(y) is of trivial shape for each 

Y E Y. 

Theorem 5.6. If f: X ~ Y is a CE map such that ddim X, 

ddim Y < +oo~ then f induces a strong shape equivalence S* [fl. 

Proof· Since such a f induces a pointed shape equiva

lence Theorem 5.3 yields the result. 

Definition. [K] A map f: X ~ Y is called an hereditary 

shape equivalence, provided that for any closed set B in Y 

the map (fIA): A ~ B where A = f-l(B) is a shape equivalence. 

Theorem 5.7. A hereditary shape equivalence of compacta 

induces a strong shape equivalence. 

In [K] Lemma 8 essentially says that any extension of 

a hereditary shape equivalence is a shape equivalence. There

fore, Theorem 4.1 implies that a hereditary shape equivalence 

of compacta induces a strong shape equivalence. 

6. J?roblemms 

The following questions remain open. 

Problem 1. (Compare with [C-S]). Let £: X ~ Y be a 

strong shape morphism such that 0(~) is an isomorphism of She 

Is ~ an isomorphism? 

Problem 2. Let~: (X,x) ~ (Y,y) be a strong shape mor

phism of pointed continua such that 0(£) is an isomorphism. 

Is ~ an isomorphism? 
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Theorem 6.1. Let~: X ~ Y be a strong shape morphism 

of continua such that e(~) is an isomorphism. If (1) 

ddim X ~	 1 or (2) X is pointed I-movable and ddim X is 

finite, then ~ is an isomorphism. 

Proof. By the Fox Theorem in shape theory, we may assume 

that ~: X ~ Y is induced by the inclusion map i: X ~ Y. Then 

S[i] is an isomorphism and using the results of [D ], the3
 

inclusion i induces a pointed shape equivalence i: (X,x) ~
 

(Y,x) for each x E X. Then by Theorem 5.4 S* [i] is an iso

morphism	 of s-Sh. 
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