TOPOLOGY PROCEEDINGS

Volume 3, 1978

Pages 73-78

http://topology.auburn.edu/tp/

HYPERSPACES WITH THE KAPPA TOPOLOGY

by

Oskar Feichtinger

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

HYPERSPACES WITH THE KAPPA TOPOLOGY

Oskar Feichtinger

1. Introduction

In previous papers ([1], [2], [3]) the author has examined properties of semi-continuous multifunctions and spaces with the lambda topology (Kuratowski [4]). In 1959 V. I. Ponomarev ([5]) applied the so-called Kappa topology to the family of closed nonvoid subsets of a compact Hausdorff space, achieving several interesting results. The aim of this paper is to generalize the κ-topology to families of subsets not necessarily closed.

2. Foundations

Let R be a binary relation on X to (, a cover of X, defined as follows: xRC iff $x \in C$, where $x \in X$, $C \in C$. R is obviously equivalent to a multifunction mapping X to X. Furthermore let R_{\perp} and R_{\perp} be mappings from $P(X) \rightarrow P(())$ such that $R_{\perp}(A) = \{C \in (| C \subseteq A) \text{ and } R_{\perp}(A) = \{C \in (| C \cap A \neq \emptyset) \}$ (see [1]). R_{\perp} and R_{-} are used to define topologies on the family \int . The λ -topology, generated by sets of the form R_{G} , has been described extensively in [1]. The κ -topology, on the other hand, is generated by all sets of the form $R_{\perp}(G)$, where G is open in X. It is easy to see that this family is not only a subbasis but indeed a basis for the κ -topology. Also it is the smallest topology for (for which R is closed, i.e. whenever M is closed in X, then R(M) is closed in κ (. We shall denote by κX the space of all

74 Feichtinger

closed subsets of X and by $\kappa\,P$ the space of all subsets of X, with the κ -topology.

3. Some Properties of the κ -Topology

Lemma. If (contains all singleton subsets of X, then X is second countable provided $\kappa($ is second countable.

Proof. Let $\{R_+(G_{\underline{i}})\}_{\underline{i}=1}^\infty$ be a countable base for κ (, where $G_{\underline{i}}$ is open in X. Let $x \in G$, G open in X. Then $\{x\} \in R_+(G)$ and $\{x\} \in R_+(G_{\underline{i}}) \subseteq R_+(G)$ for some i. Thus $x \in G_{\underline{i}} \subseteq G$.

Proposition 1. Let X be a \mathbf{T}_1 space. If $\kappa\,X$ is second countable, then X is compact.

Proof. We know X is second countable. Let H be a countably infinite subset of X without cluster points. H is closed and discrete in the relative topology. Hence κH considered as a subspace of κX is also second countable. Let $\{G_{\alpha}\}_{\alpha}$ be a countable basis for κH and let E $\in \kappa H$. Obviously E \in R₊(E) and R₊(E) is open in κH . Hence there exists $\alpha(E)$ so that E \in G_{\alpha(E)} \(\sigma R_+(E)\). Let E and F be distinct elements of κH . Since either E \(\notin R_+(F)\) or F \(\notin R_+(E)\), we have G_{\alpha(E)} \(\dip G_{\alpha(F)}\). But H has an uncountable number of subsets, so that \(\{G_{\alpha}\)\)_\alpha cannot be a countable basis for κH , a contradiction.

Proposition 2. Let (be a family of subsets of X containing all singletons. X is separable iff K (is separable.

Proof. Assume X is separable and let A be a countable dense subset of X, say $A = \{a_1, a_2, \cdots\}$. Let $A = \{\{a_1\}, \{a_2\}, \cdots\}$. If β is an open subset of κ (, say $\beta = \bigcup_{\alpha} R_+(G_{\alpha})$,

then $\beta \cap A \neq \emptyset$ so that A is dense in κ (. Conversely, let $A = \{A_1, A_2, \cdots\}$ be a countable dense subset of κ (. From each A_i we choose some a_i and form $A = \{a_1, a_2, \cdots\}$. Let 0 be open in X. Then $R_+(0)$ is open in κ (and thus $R_+(0)$ $\cap A \neq \emptyset$. Suppose $A_{\kappa} \in A \cap R_+(0)$. Then $A_{\kappa} \subseteq 0$, and since $a_{\kappa} \in A_{\kappa}$, $A \cap O \neq \emptyset$. Hence X is separable.

Proposition 3. Let (be a cover of X such that $\emptyset \notin$ (and for each $x \in X$, $\{x\} \in$ (. Then κ (has isolated points iff X has isolated points.

Proof. Assume X has no isolated points. Let A be an isolated point of κ (. Hence $\{A\} = R_+(G)$ for some G open in X and it follows that $A \subseteq G$. Let a, a' be distinct elements of A, then $\{a\}$, $\{a'\}$ are distinct elements of $R_+(G)$, so that $A = \{a\} = \{a'\}$ —a contradiction. This contradicts the assumption that X has no isolated points. Conversely, if κ (has no isolated points and $\{x\}$ is open in X, then $R_+\{x\} = \{\{x\}\}$ is open in κ (, a contradiction.

Proposition 4. Let $A=\{A_{\alpha}\}_{\alpha}$ be a connected subset of κ (, A_{α} connected in X for all α . Then $A=\bigcup_{\alpha}A_{\alpha}$ is connected.

Proof. Assume A is not connected, i.e. $A = (G \cap A) \cup (H \cap A)$ where G and H are open in X, $G \cap A \neq \emptyset$, $H \cap A \neq \emptyset$ and $G \cap H \cap A = \emptyset$. Let $A_{\alpha} \in A$. Since $A_{\alpha} \subset A$ and A_{α} is connected, either $A_{\alpha} \subset G$ or $A_{\alpha} \subset H$. Thus $(R_{+}(G) \cap A) \cup (R_{+}(G) \cap A) = A$. Also $R_{+}(G) \cap A \neq \emptyset$, $R_{+}(H) \cap A \neq \emptyset$ and their intersection is empty. This contradicts the assumption that A is connected.

Corollary. If (is a cover of X by connected sets and

76 Feichtinger

 κ (is connected, then X is connected.

We now consider the family ℓ of all open subsets of X with the κ -topology. The binary relation R defined above is closed and lower semicontinuous in this case (see [1]). We give the following elementary results without proofs. Moreover we also note without proof that (ℓ,\subseteq,U,\cap) is a complete lattice and that for each $G\in \ell$, $R_+(G)$ is the smallest κ ℓ -open set about G.

Proposition 5.

- (i) KL is connected, compact, locally connected.
- (ii) If $\phi \in A$ and A is dense in KL, then $\cup A$ is dense in X.
- (iii) If A is an open dense subset of X, then $\{A \cap 0 \mid 0\}$ is open in X} is dense in KL.

It can be easily shown that X is a fixed point of any continuous map from ℓ onto ℓ . We conclude this paper by establishing that even a continuous map that is not a surjection has a fixed point.

Proposition 6. Let (X,L) be a topological space and let $f: L \to L$. Then $f: (L, \kappa L) \to (L, \kappa L)$ is continuous if, and only if, $f: (L, \subseteq) \to (L, \subseteq)$ is order preserving.

Proof. Suppose first that f is continuous and let A and B be members of ℓ such that $A \subseteq B$. Then $A \in \{G \in \ell \mid G \subseteq B\}$, and this set is the smallest $\kappa \ell$ -open set about B. Since $\beta = \{G \in \ell \mid G \subset f(B)\} \text{ is a } \kappa \ell\text{-open set about } f(B) \text{ and since } f \text{ is continuous we have that } f^{-1}(\beta) \text{ is a } \kappa \ell\text{-open set about } f(B) \text{ and since } f \text{ is continuous we have that } f^{-1}(\beta) \text{ is a } \kappa \ell\text{-open set about } f(B) \text{ and }$

B. Hence $A \in f^{-1}(\beta)$. In other words $f(A) \in \beta$ and $f(A) \subseteq f(B)$.

Now suppose that f is an order-preserving function. In order to show that $f:(\mathcal{L},\kappa\mathcal{L})\to (\mathcal{L},\kappa\mathcal{L})$ is continuous, it suffices to show that for each $G\in\mathcal{L},f^{-1}(R_+(G))\in\kappa\mathcal{L}$. Let $G\in\mathcal{L}$ and let $A\in f^{-1}(R_+(G))$. If $B\in\mathcal{L}$ and $B\subseteq A$, then $f(B)\subseteq f(A)\subseteq G$ so that $f(B)\in R_+(G)$ and $B\in f^{-1}(R_+(G))$. Thus $A\in\{B\in\mathcal{L}|B\subseteq A\}=R_+(A)\subseteq f^{-1}(R_+(G))$. It follows that $f^{-1}(R_+(G))\in\kappa\mathcal{L}$.

Corollary. Every continuous map from $(L, \kappa L)$ into $(L, \kappa L)$ has a fixed point.

Proof. As is well known, a lattice ℓ is complete if, and only if, every order-preserving function from ℓ into ℓ has a fixed point.

4. Example of a k-Space

Let X = [0,1] and let C be the family of all nonvoid, closed, connected subsets of C. With each $C = [a,b] \in C$ associate the point $(\frac{a+b}{2}, \frac{b-a}{2}/3)$. This yields a 1-1 correspondence of C onto the triangle with vertices C(0,0), C(1,0), $C(\frac{1}{2}, \frac{\sqrt{3}}{2})$. We shall topologize the triangle to make it homeomorphic with C. Let C be open and connected in C, C closed and connected in C. Figure 1 (resp. 2) shows a typical basic open (resp. closed) subset of C (shaded areas plus heavy lines). If C with C with C (shaded areas plus heavy open set containing C with also contains C. Hence C is not regular (also not normal).

78 Feichtinger

5. Bibliography

- [1] O. Feichtinger, Properties of the λ topology, Lecture Notes in Mathematics 171, Springer-Verlag, 1970, 17-23.
- [2] ____ and Wm. Geiger, Some notes on multifunctions, Studies in Topology, Academic Press, 1975, 135-137.
- [3] _____, More on lower semi-continuity, American Mathematical Monthly (1) 83 (1976), 39.
- [4] O. Kuratowski, Topology, Vol. I, Academic Press, 1966, 160-187.
- [5] V. I. Ponomarev, A new space of closed sets and multivalued continuous mappings of bicompacta, AMS Translations (sec. 2) 38 (1959), 95-118.

University of Maine Orono, Maine 04473