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HYPERSPACES WITH THE KAPPA TOPOLOGY 

Oskar Feichtinger 

1.	 Introduction 

In previous papers ([1], [2], [3]) the author has 

examined properties of semi-continuous multifunctions and 

spaces wit~h the lambda topology (Kuratowski [4]). In 1959 

V. I. Ponomarev ([5]) applied the so-called Kappa topology 

to the family of closed nonvoid subsets of a compact 

Hausdorff space, achieving several interesting results. 

The aim of this paper is to generalize the K-topology to 

families of subsets not necessarily closed. 

2.	 Foundations 

Let R be a binary relation on X to C, a cover of X, 

defined as follows: xRC iff x E C, where x E X, C E C. R 

is obviously equivalent to a multifunction mapping X to X. 

Furthermore let R+ and R_ be mappings from P(X) + P([) such 

that	 R+ (A) = {C E [ Ie£; A} and R_ (A) = {C Eel C n A =f= ~} 

(see [1]). R+ and R_ are used to define topologies on the 

family [. The A-topology, generated by sets of the form 

R_(G), has been described extensively in [1]. The K-topology, 

on the other hand, is generated by all sets of the form 

R+(G), where G is open in X. It is easy to see that this 

family is not only a subbasis but indeed a basis for the 

K-topology. Also it is the smallest topology for C for 

which R is closed, i.e. whenever M is closed in X, then R(M) 

is closed in K C. We shall denote by KX the space of all 
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closed subsets of X and by KP the space of all subsets of X, 

with the K-topology. 

3.	 Some Properties of the K-Topology 

Lemma. If Ccontains all singleton subsets of X~ then 

X is second countable provided KC is second countable. 

Proof· Let {R+ (Gi ) }~=l be a countable base for KC , 
where G is open in X. Let x E G, G open in X. Theni 

{x}	 E R+(G) and {x} E R+(Gi ) £ R+(G) for some i. Thus 

x E	 G S G.i 

Proposi tion 1. Le t X be a T 1 space. If K X is second 

countable~ then X is compact. 

Proof. We know X is second countable. Let H be a 

countably infinite subset of X without cluster points. H 

is closed and discrete in the relative topology. Hence KH 

considered as a subspace of KX is also second countable. 

Let {G} be a countable basis for KH and let E E KH. a a 

Obviously E E R+(E) and R+(E) is open in KH. Hence there 

exists a(E) so that E E Ga(E) £·R+(E). Let E and F be dis­

tinct elements of K H. Since ei ther E rJ R+ (F) or F rJ R+ (E) , 

we have Ga(E) +Ga(F). But H has an uncountable number of 

subsets, so that {G} cannot be a countable basis for KH, 
a a 

a contradiction. 

Proposition 2. Let Cbe a family of subsets of X con­

taining all singletons. X is separable iff K Cis separable. 

Proof. Assume X is separable and let A be a countable 

dense subset of X, say A = {al,a2~···}. Let A = {{all, 

{a2},···}. If B is an open subset of K C, say B = ~R+(Ga)' 
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then B n A +~ so that A is dense in K [. Conversely, let 

A = {Al ,A2 , • • .} be a countable dense subset of K [. From 

each Ai we choose some a and form A = {a l ,a2 ,···}. Let 0i 

be open in X. Then R+(O) is open in K[ and thus R+(O) n 

A +~. Suppose A E A nR+ (0). Then A £; 0, and since 
K K 

a E A , A n 0 +~. Hence X is separable.
K K 

Proposition 3. Let [ be a cover of X such that ~ ( [ 

and for each x E X, {x} E [. Then K[ has isolated points 

iff X has isolated points. 

Proof. Assume X has no isolated points. Let A be an 

isolated point of K[. Hence {A} = R+(G) for some G open in 

X and it follows that A ~ G. Let a, a' be distinct elements 

of A, then {a}, {a'} are distinct elements of R+(G), so that 

A = {a} = {a'}--a contradiction. This contradicts the assump­

tion that X has no isolated points. Conversely, if K [ has 

no isolated points and {x} is open in X, then R+{X} = {{x}} 

is open in K [, a contradiction. 

Proposition 4. Let A = be a connected subset of{AaJ Ct 

K [, A connected in X for all Ct. Then A = UACt is connected. 
Ct Ct 

Proof· Assume A is not connected, i.e. A = (G n A) U 

(H n A) where G and H are open in X, G n A 1= ~, H n A +~ 

and G n H n A Let A E A. Since A c A and A is 
a a a 

connected, either ACt c G or ACt c H. Thus (R+(G) n A) u 

(R+(G) n A) = A. Also R+(G) n Ai~, R+(H) n A+ ~ and 

their intersection is empty. This contradicts the assumption 

that A is connected. 

CorolZary. If [ is a cover of X by connected sets and 
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K[ is connected~ then X is connected. 

We now consider the family L of all open subsets of X 

with the K-topology. The binary relation R defined above is 

closed and lower semicontinuous in this case (see [1]). We 

give the following elementary results without proofs. More­

over we also note without proof that (L,~,u,n) is a complete 

lattice and that for each GEL, R+(G) is the smallest 

K L-open set about G. 

Proposi tion 5. 

(i) KL is connected~ compact~ locally connected. 

(ii) If <p E A and A is dense in K L~ then UA is dense 

in X. 

(iii) If A is an open dense subset of X~ then {A nolo 

is open in X} is dense in K L • 

It can be easily shown that X is a fixed point of any 

continuous map from L onto L. We conclude this paper by 

establishing that even a continuous map that is not a sur­

jection has a fixed point. 

Proposition 6. Let (X,L) be a topological space and 

let f: L -+ L. The n f: (L ,K L) -+ (L, K L) is con tinu 0 us i f ~ 

and only if~ f: (L,~) -+ (L,~) is order preserving. 

Proof. Suppose first that f is continuous and let A 

and B be members of L such that A ~ B. Then A E {G E LIG S B}, 

and this set is the smallest KL-open set about B. Since 

B {G E LIG c f(B)} is a KL-open set about f(B) and since 

f is continuous we have that f-l(B) is a KL-open set about 
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B. Hence A E f-l(B). In other words f(A) E Band 

f (A)	 £ f (B) • 

Now suppose that f is an order-preserving function. In 

order to show that f: (L ,K L) ~ (L ,K L)is continuous, it 

suffices to show that for each G E L,f-l(R+(G)) E KL. Let 

GEL and let A E f- l (R+ (G) ). If BEL and B £ A, then 

-1feB) £ f(A) S G so that feB) E R+(G) and B E f (R+(G)). 

Thus A E {B E LIB SA} = R+(A) S f-l(R+(G)). It follows 

that	 f-l(R+(G)) E KL. 

Corollary. Every continuous map from (L ,KL) into 

(L, K L) has a fixed point. 

Proof. As is well known, a lattice L is complete if, 

and only if, every order-preserving function from L into L 

has a fixed point. 

4.	 Example of a k-Space 

Let X = [0,1] and let C be the family of all nonvoid, 

closed, connected subsets of X. With each C = {a,b] E C 

associate the point (a~b,b;a/3). This yields a 1-1 corres­

pondence	 of C onto the triangle with vertices (0,0), (1,0), 

113
(2'~). We shall topologize the triangle to make it homeo­

morphic with KC. Let G be open and connected in X, F closed 

and connected in X. Figure 1 (resp. 2) shows a typical basic 

open (resp. closed) subset of KC (shaded areas plus heavy 

lines). If P E KC with P ~ R_(K) (Figure 2), then every 

open set containing R_(K) also contains P. Hence KC is 

not regular (also not normal). 
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