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A NOTE ON THE PRODUCT OF FRECHET SPACES

Gary Gruenhage

1. Introduction

A space X is said to be a Fréchet space if whenever
X € R, there exist x €A, n= 1,2,+++, with x, »x. In
general, Fréchet spaces behave very badly with respect to
products. In fact, if X and Y are non-discrete Fréchet spaces
and X x Y is Frechet, then a theorem of Michael [5] implies
that X and Y must have the following stronger property: if

o
X € D i;, where A; > A, > +-+, then there exists x € A
with X > X. Spaces satisfying this property are called
countably bi-sequential spaces., We should add that even if
X and Y are countably bi-sequential, this does not guarantee
that X x Y is Fréchet (see [4] or [6]).

In a letter to the author, F. Galvin asked the following
guestion: if xo,xl,xz,--- are such that iEnx. is Fréchet
(equivalently, countably bisequential) for all n € w, must
_H X. be Fréchet (equivalently, countably bi-sequential)?
;?wTanaka [8, Problem 2.6] has asked the same gquestion. 1In
this paper, we construct, assuming Martin's Axiom (MA), a
Fréchet space X such that x" is Fréchet for all n ¢ w, but
x” is not Fréchet. The space X is countable, and has only
one non-isolated point.

Before proceeding with the construction of the example,
we would like to mention some related problems. Bi-sequential

spaces [5] are closed under countable products, so the space

X we construct is a countable countably bi-sequential space
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which is not bi-sequential. Others (e.g., Galvin [2], Malyhin
[4], Olson [6]) have constructed such spaces assuming various
axioms of set theory, but no real example has been found.
(There are uncountable real examples, e.g., an uncountable
z—product of the unit interval.) A space X is called a
w-space if whenever x ¢ Kn' n=1,2,..., there exists X, € An
with X, > X. These spaces were introduced by the author in
[3], and defined in terms of an infinite game, but this
characterization, due to P. L. Sharma [7], is much better.
Clearly, every w-space is countably bi-sequential, and the
difference between the two classes of spaces does not, on

the surface, look very large. But the following question,
also asked by Galvin, remains open: if " is a w-space for
all n ¢ w, must X¥ be a w-space (or a Fréchet space)? A
counterexample to this question would be about as far as one
could go in this direction. Call X a c*-space (terminology
due to Sharma) if X has countable tightness and every countable
subset of X is first countable. It is easy to see that if x"
is a c*-space for every n € w, then X is a c*-space. No real
example of a space which is a w-space but not a c*-space has
been found. However, Galvin [l] has constructed such spaces

assuming MA.

2. Construction of the Example

Unless otherwise stated, we use the letters m, n, and k
to denote natural numbers. The example is based on a con-
struction, by induction on the ordinals less than the con-
tinuum ¢, of a certain collection of almost-disjoint subsets

of w. To get us past an uncountable stage a < ¢, we need the
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following lemma:

Lemma (MA). Let {Ia}a<K’ K < c be a collection of

infinite almost-disjoint subsets of w. Suppose A c o x wm,

and {a(0),a(l),**+,a(m-1)} <« are such that

n

(1) A cw x I Ia(j)
j<m
(2) A 0 [( T w\E(1)) x (I Ia(j)\F(j))] # @ whenever
i<n j<m

E(i) Zs a finite union of the Ia’s, together with a
finite subset of w, and F(J) Zs a finite subset of
w. Then there is a sequence ;O’§l"" of elements
of A such that
, > > . . >
(i) C(xi) n C(xj) = f whenever i # j, where C(X) ig the
set of coordinates of §;

(i) if o <, then I_ N {ni&j): i < n,j ¢ w) is finite,

th

where T 18 the projection on the i coordinate.

Proof. Let P = {(f£,F): £ cA,F ck, with £ and F
finite}. Define (f,F) < (g,G) if and only if
(a) £f =g and F c G;

(b) if § € g\f, then ; is an element of A n [( I w\
i<n
(UI)Uu (Uucx)) x (II . \UCcx)l.
a€F %ef jem ) Fee
So defined, (P,<) satisfies the CCC because there are

only countably many possible f's, and (f£,F) and (£,G) are

bounded by (f,F U G). For each a < x, and i € w let Xa i <
1

{(£,F) € P: [f] > i and a € F}. X, 3 is a dense open set in
7
(P,<), so by MA, there is a compatible family {(fu i’Fa i) €
7 1
N

N
1f xo,il,---,x

X .: 0 < k,1 € w}l. Pick §0 c f

o, 1 a(0),1(0)° k-1
. >

have been chosen, pick X, € fa(k),i(k)\jgkfa(j),i(j)' We

claim that §0,§l,--- is the desired sequence. If j < k, then

. >
since Xx, €

K fa(k),i(k)\fa(j),i(j)' and by the compatibility,
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->

the conclusion of property (b) is satisfied with § =X and

f = Hence C(§j) n C(Qk) = g, and so property (i)

£ o s .
a(3),i(3)
of the conclusion of the lemma is satisfied. Now let o < «.

If ;k 4§ £ then the conclusion of (b) is satisfied with

a,l’
> > . . .
Yy = X and F = Fa,l' Since o ¢ Fa,l' the first n coordinates

of ;k miss Ia' Thus (ii) is satisfied, and this completes

the proof.

Theorem (MA). There s a countable Fréchet space X such
that X™ is Fréchet for all n € w, but XY is not Fréchet.
Proof. We will construct a countable space Xk for each

k € w, so that I Xk is Fréchet for all n € w, but 1 xk is
k<n kKew

not Fréchet. We can then take X to be the free union of the

X 's.

To this end, we will construct a sequence {gn}nem of

collections of infinite subsets of w such that U 9n is a
new
maximal almost-disjoint collection. We then take xk to be

the space w U {«} with the points of w isolated, and a neigh-
borhood of «» is w § {~} minus a finite union of elements of

U 9.. It is easy to see that, in the space 1 X the point

i<k kew k
(0,0,+++) € Cl{(n,n,+++): n € w}, but no sequence of the type

{(n_,n_,*++): k € w} converges to (w,o,+«¢). Thus I X, is
k’"k Kew k
not a Fréchet space.
We need to construct the ﬁk's so that every finite pro-

duct of the X, 's is Fréchet. First construct Ik(n), n € w,

k
so that {Ik(n): n € w,k € w} is an almost-disjoint collection
of infinite subsets of w, with the additional property that

for each k € w and finite subset F of w, there is n € @ with

F < Ik(n).
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For each n € w, let An = P(mn), and let A= U An' Let
A= {Aa: a < c} so that each element of A appearsngmtimes in
the well-ordering. For each n € w, define B(n) = n. Now
suppose Ik(a) and B(a) have been defined for all o < k,
where @ < k < c, and k € w. Let I(x) = {I}(a): a < k,k € w}.
Let B(x) be the least ordinal B such that B > B(a) whenever
w < a < k, and such that AB c w" satisfies the following two
properties:

(i) there are a set J < {0,1,+++,n-1} = n, and {Ij:

j € J} < 9(x) so that AB c (I w x (1 Ij);
ien\J jed

NI W\E(i)) x (I Ij\F(j))] # # whenever

8 ien\g jed
E(i) is a finite union of elements of 9(x), and F(j)

(ii) A

is a finite subset of w.

Note that n is uniquely determined by A but the set J

BI
depends also on k. Also, such a B always exists since u
itself, with n = 1 and J = @, satisfies (i) and (ii).

. > > .
By the lemma, there is a sequence XqgrXyetce in A

B (k)
such that C(SEi) n c&j) =g for i # j, and I N {Tri(?:k):
k € w,i € n\J} is finite whenever I ¢ 9(«x). Express w as
UW , where W_ is infinite and W_ N W , =g if m # m'.
mew m n n

Define Im(K) = {ﬂi(;k): k € Wm,i € n\J}. The inductive step
is now complete.
Let 9k = {Ik(a): a < c}, and let X, be as defined

earlier. We have already shown that I Xk is not Fréchet.
kew

It remains to prove that I X, is Fréchet for each n ¢ w. To

k<n

this end, suppose A < I X,,

k<n k

there exists X, € A with X, > X, We will prove this for the

k
and x € ANA. We need to show

n n .
case A < w and x = (w,w,+e.,®) = » , the other cases being

trivial or reducible to a case similar to this one.
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Let 9= 5;. Suppose A N ( I w\E(i)) = @, where E(i)
n€w i<n
is a finite union of elements of 9. Then A © y (w X =e+ X
i<n

w x E(1) X w x <« x @), so there exists j(0) < n and

c E(§(0)), and " € C1(A(0)), where

Ij(O) € 9 so that Ij(O)
A(0) = A N [w x e+ X @ X Ij(O) X w X ese x @], NOw suppose
A(0) n [(M{w\E(i)': i € n\{j(0)}}) x (Ij(o)\D(j(O))) = g,

where E(i)' is a finite union of elements of ¢ and D(j(0))
is a finite subset of w. (We are using the subscript to

indicate position in the product, in order to simplify nota-

tion.) Then there exists j(1) ¢ n\{j(0)} so that " ¢

Cl(A(l)), where A(l) = A(0) N [w X +¢ x @ X Ty “w~x

eee X @ X I. X w x see x @] = A(0) n I{w: i € n\{j(0),

j(0)

J(L)}} x Ij(O) X Ij(l). We continue the process until we
have a set J = {j(0),+++,j(m)} and A(m) = (I w) x T I.
n ien\J jeJ 3
with ©° € Cl1(A(m)) and A(m) N [( II W\E(1)) x (I I.~F(3))]1]
ien\Jg jeg J
# P whenever E(i) is a finite union of elements of 9 and F(j)

is a finite subset of w.

Choose Ko large enough so that {Ij: j e J} < 9(K0). Now
A{m) = AB for c¢ B's, so choose BO > sup{B(a): a < KO} such
that A(m) = AB . Then for any Ko < Kk < ¢, it is true that

0
AB ,J, and « satisfy (i) and (ii) in the above construction
0

of the ﬁk's. Thus 80 = B(k) for some KO < k < ¢, and we have

the sequence §0,§l,--- in AB(K) that we chose in the construc-

tion. It is easy to see from the definition of Xy that the

set {"i(; k € Wn} converges to « in X, for each i < n,

i)
. - - . -
and since C(xj) n C(xk) = g for j # k, then {xk: k € Wn}

converges to ™ This completes the proof.

Remark. We can get an example with only one non-isolated
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point as follows: 1let Y be the space which is the free

union X of the Xk's, with the points "=" identified to a

single point ©. Let m: X -~ Y be the projection. Define a

neighborhood of » to be of the form T (U cee U U X

lU

U Xn+2 U s++), where Ui is an open set in Xi containing .

n+1
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