TOPOLOGY PROCEEDINGS

Volume 3, 1978
Pages 109-115
http://topology.auburn.edu/tp/

A NOTE ON THE PRODUCT OF FRECHET SPACES

by
Gary Gruenhage

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

A NOTE ON THE PRODUCT OF FRECHET SPACES

Gary Gruenhage

1. Introduction

A space X is said to be a Fréchet space if whenever $\mathrm{x} \in \overline{\mathrm{A}}$, there exist $\mathrm{x}_{\mathrm{n}} \in \mathrm{A}, \mathrm{n}=1,2, \ldots$, with $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}$. In general, f'réchet spaces behave very badly with respect to products. In fact, if X and Y are non-discrete Frechet spaces and $X \times Y$ is Frechet, then a theorem of Michael [5] implies that X and Y must have the following stronger property: if ∞ $x \in \cap_{n=1} \bar{A}_{n}$, where $A_{1} \supset A_{2} \supset \cdots$, then there exists $x_{n} \in A_{n}$ with $\mathrm{X}_{\mathrm{n}} \rightarrow \mathrm{x}$. Spaces satisfying this property are called countably bi-sequential spaces. We should add that even if X and Y are countably bi-sequential, this does not guarantee that $\mathrm{X} \times \mathrm{Y}$ is Fréchet (see [4] or [6]).

In a letter to the author, F. Galvin asked the following question: if $X_{0}, X_{1}, x_{2}, \cdots$ are such that $\prod_{i<n} X_{i}$ is Frechet (equivalently, countably bisequential) for ${ }^{-a l l} n \in \omega$, must

II X_{i} be Fréchet (equivalently, countably bi-sequential)? $i \in \omega$ Y. Tanaka [8, Problem 2.6] has asked the same question. In this paper, we construct, assuming Martin's Axiom (MA), a Fréchet space X such that X^{n} is Frechet for all $n \in \omega$, but X^{ω} is not Fréchet. The space X is countable, and has only one non-isolated point.

Before proceeding with the construction of the example, we would like to mention some related problems. Bi-sequential spaces [5] are closed under countable products, so the space X we construct is a countable countably bi-sequential space
which is not bi-sequential. Others (e.g., Galvin [2], Malyhin [4], Olson [6]) have constructed such spaces assuming various axioms of set theory, but no real example has been found. (There are uncountable real examples, e.g., an uncountable [-product of the unit interval.) A space X is called a w-space if whenever $x \in \bar{A}_{n}, n=1,2, \ldots$, there exists $x_{n} \in A_{n}$ with $x_{n} \rightarrow x$. These spaces were introduced by the author in [3], and defined in terms of an infinite game, but this characterization, due to $\mathrm{P} . \mathrm{L}$. Sharma [7], is much better. Clearly, every w-space is countably bi-sequential, and the difference between the two classes of spaces does not, on the surface, look very large. But the following question, also asked by Galvin, remains open: if X^{n} is a w-space for all $n \in \omega$, must X^{ω} be a w-space (or a Fréchet space)? A counterexample to this question would be about as far as one could go in this direction. Call X a c^{*}-space (terminology due to Sharma) if X has countable tightness and every countable subset of X is first countable. It is easy to see that if X^{n} is a c^{*}-space for every $n \in \omega$, then X is a c^{*}-space. No real example of a space which is a w-space but not a c*-space has been found. However, Galvin [l] has constructed such spaces assuming MA.

2. Construction of the Example

Unless otherwise stated, we use the letters m, n, and k to denote natural numbers. The example is based on a construction, by induction on the ordinals less than the continuum c, of a certain collection of almost-disjoint subsets of ω. To get us past an uncountable stage $\alpha<c$, we need the
following lemma:

Lemma (MA). Let $\left\{I_{\alpha}\right\}_{\alpha<K}, \kappa<c$, be a collection of infinite almost-disjoint subsets of ω. Suppose $A \subset \omega^{n} \times \omega^{m}$, and $\{\alpha(0), \alpha(1), \cdots, \alpha(m-1)\} \subset \kappa$ are such that
(1) $A \subset \omega^{n} \times \prod_{j<m} I_{\alpha(j)}$
 $E(i)$ is a finite union of the I_{α} 's, together with a finite subset of ω, and $F(j)$ is a finite subset of w. Then there is a sequence $\overrightarrow{\mathrm{x}}_{0}, \overrightarrow{\mathrm{x}}_{1}, \ldots$ of elements of A such that
(i) $\mathrm{C}\left(\overrightarrow{\mathrm{x}}_{\mathrm{i}}\right) \cap \mathrm{C}\left(\overrightarrow{\mathrm{x}}_{\mathrm{j}}\right)=\varnothing$ whenever $\mathrm{i} \neq \mathrm{j}$, where $\mathrm{C}(\overrightarrow{\mathrm{x}})$ is the set of coordinates of $\overrightarrow{\mathbf{x}}$;
(ii) if $\alpha<\kappa$, then $I_{\alpha} \cap\left\{\pi_{i}\left(\vec{x}_{j}\right): i<n, j \in \omega\right\}$ is finite, where π_{i} is the projection on the $i^{\text {th }}$ coordinate.

Proof. Let $P=\{(f, F): £ \subset A, F \subset K$, with f and F finite\}. Define $(f, F)<(g, G)$ if and only if
(a) $\mathrm{f} \subset \mathrm{g}$ and $\mathrm{F} \subset \mathrm{G}$;
(b) if $\vec{y} \in g \backslash f$, then \vec{y} is an element of $A \cap[(\Pi \quad \omega \backslash$ $\left.\left.\left.\left(\underset{\alpha \in F}{U} I_{\alpha}\right) \cup \underset{\vec{x} \in f}{U} C(\vec{x})\right)\right) \times\left(\underset{j<m}{\operatorname{M}} I_{\alpha(j)} \underset{\vec{x} \in f}{U} C(\vec{x})\right)\right]$.
So defined, ($P,<$) satisfies the CCC because there are only countably many possible $f^{\prime} s$, and (f,F) and (f,G) are bounded by (f,F UG). For each $\alpha<\kappa$, and i $\in \omega$ let $X_{\alpha, i}=$ $\{(f, F) \in P:|f|>i$ and $\alpha \in F\} . X_{\alpha, i}$ is a dense open set in $(P,<)$, so by $M A$, there $i s$ a compatible family $\left\{\left(f_{\alpha, i}, F_{\alpha, i}\right) \in\right.$ $\left.X_{\alpha, i}: \alpha<\kappa, i \in \omega\right\}$. Pick $\vec{x}_{0} \in f_{\alpha(0), i(0)}$. If $\vec{x}_{0}, \vec{x}_{1}, \ldots, \vec{x}_{k-1}$ have been chosen, pick $\vec{x}_{k} \in f_{\alpha(k), i(k)} \mathcal{j}_{j<k} f_{\alpha(j), i(j)}$. We claim that $\vec{x}_{0}, \vec{x}_{1}, \ldots$ is the desired sequence. If $j<k$, then since $\vec{x}_{k} \in f_{\alpha(k), i(k) \backslash f_{\alpha(j), i(j)}, \text { and by the compatibility, }, ~(j)}$
the conclusion of property (b) is satisfied with $\vec{y}=\vec{x}_{k}$ and $f=f_{\alpha(j), i(j)}$. Hence $C\left(\vec{x}_{j}\right) \cap C\left(\vec{x}_{k}\right)=\varnothing$, and so property (i) of the conclusion of the lemma is satisfied. Now let $\alpha<\kappa$. If $\vec{x}_{k} \notin f_{\alpha, 1}$, then the conclusion of (b) is satisfied with $\vec{y}=\vec{x}_{k}$ and $F=F_{\alpha, 1}$. Since $\alpha \in F_{\alpha, 1}$, the first n coordinates of \vec{x}_{k} miss I_{α}. Thus (ii) is satisfied, and this completes the proof.

Theorem (MA). There is a countable Fréchet space X such that X^{n} is Fréchet for all $\mathrm{n} \in \omega$, but x^{ω} is not Fréchet.

Proof. We will construct a countable space X_{k} for each $k \in \omega$, so that $\Pi_{k<n} X_{k}$ is Frechet for all $n \in \omega$, but $\prod_{k \in \omega} X_{k}$ is not Fréchet. We can then take X to be the free union of the X_{k} 's.

To this end, we will construct a sequence $\left\{\vartheta_{n}\right\}_{n \in \omega}$ of collections of infinite subsets of ω such that $\underset{n \in \omega}{ } \ell_{n}$ is a maximal almost-disjoint collection. We then take X_{k} to be the space $\omega U\{\infty\}$ with the points of ω isolated, and a neighborhood of ∞ is $\omega \cup\{\infty\}$ minus a finite union of elements of $\underset{j<k}{u} l_{j}$. It is easy to see that, in the space $\prod_{k \in \omega} X_{k}$, the point $(\infty, \infty, \cdots) \in C l\{(n, n, \cdots): n \in \omega\}$, but no sequence of the type $\left\{\left(n_{k}, n_{k}, \cdots\right): k \in \omega\right\}$ converges to (∞, ∞, \cdots). Thus $\prod_{k \in \omega} X_{k}$ is not a Fréchet space.

We need to construct the g_{k} 's so that every finite product of the X_{k} 's is Fréchet. First construct $I_{k}(n), n \in \omega$, so that $\left\{I_{k}(n): n \in \omega, k \in \omega\right\}$ is an almost-disjoint collection of infinite subsets of ω, with the additional property that for each $k \in \omega$ and finite subset F of ω, there is $n \in \omega$ with $F \subset I_{k}(n)$.

For each $n \in \omega$, let $A_{n}=P\left(\omega^{n}\right)$, and let $A=\underset{n \in \omega}{\cup} A_{n}$. Let $A=\left\{A_{\alpha}: \alpha<c\right\}$ so that each element of A appears c times in the well-ordering. For each $n \in \omega$, define $\beta(n)=n$. Now suppose $I_{k}(\alpha)$ and $\beta(\alpha)$ have been defined for all $\alpha<k$, where $\omega \leq \kappa<c$, and $k \in \omega$. Let $\ell(k)=\left\{I_{k}(\alpha): \alpha<\kappa, k \in \omega\right\}$. Let $\beta(\kappa)$ be the least ordinal β such that $\beta>\beta(\alpha)$ whenever $\omega \leq \alpha<\kappa$, and such that $A_{\beta} \subset \omega^{n}$ satisfies the following two properties:
(i) there are a set $J \subset\{0,1, \cdots, n-1\}=n$, and $\left\{I_{j}\right.$: $j \in J\} \subset g(\kappa)$ so that $A_{B} \subset\left(\prod_{i \in n \backslash J} \omega\right) \times\left(\prod_{j \in J} I_{j}\right)$;
(ii) $A_{\beta} \cap\left[\left(\prod_{i \in n \backslash J} w \backslash E(i)\right) \times\left(\prod_{j \in J} I_{j} \backslash F(j)\right)\right] \neq \varnothing$ whenever $E(i)$ is a finite union of elements of $\theta(K)$, and $F(j)$ is a finite subset of ω.

Note that n is uniquely determined by A_{β}, but the set J depends also on K . Also, such a β always exists since ω itself, with $n=1$ and $J=\varnothing$, satisfies (i) and (ii).

By the lemma, there is a sequence $\vec{x}_{0}, \vec{x}_{1}, \cdots$ in $A_{\beta(k)}$ such that $C\left(\vec{x}_{i}\right) \cap C\left(\vec{x}_{j}\right)=\varnothing$ for $i \neq j$, and $I \cap\left\{\pi_{i}\left(\vec{x}_{k}\right)\right.$: $k \in \omega, i \in n \backslash J\}$ is finite whenever $I \in \mathscr{(k)}$. Express ω as
$\underset{m \in \omega}{\cup} W_{m}$ where W_{m} is infinite and $W_{m} \cap W_{m^{\prime}}=\varnothing$ if $m \neq m^{\prime}$. Define $I_{m}(k)=\left\{\pi_{i}\left(\vec{x}_{k}\right): k \in W_{m}, i \in n \backslash J\right\}$. The inductive step is now complete.

Let $\ell_{k}=\left\{I_{k}(\alpha): \alpha<c\right\}$, and let X_{k} be as defined earlier. We have already shown that $\underset{k \in \omega}{ } \mathrm{X}_{\mathrm{k}}$ is not Frechet. It remains to prove that $\underset{k<n}{ } X_{k}$ is Frechet for each $n \in \omega$. To this end, suppose $A \subset \prod_{k<n} X_{k}$, and $x \in \bar{A} \backslash A$. We need to show there exists $x_{n} \in A$ with $x_{n} \rightarrow x$. We will prove this for the case $A \subset \omega^{n}$ and $x=(\infty, \infty, \cdots, \infty)=\infty^{n}$, the other cases being trivial or reducible to a case similar to this one.

Let $\ell=\underset{n \in \omega}{U_{n}} Q_{n} \quad$ Suppose $A \cap(\underset{i<n}{\Pi} \omega \backslash E(i))=\emptyset$, where $E(i)$ is a finite union of elements of l. Then $A \subset \underset{i<n}{u}(\omega \times \cdots \times$ $\omega \times E(i) \times \omega \times \cdots \times \omega)$, so there exists $j(0)<n$ and $I_{j(0)} \in I$ so that $I_{j(0)} \subset E(j(0))$, and $\infty^{n} \in C l(A(0))$, where $A(0)=A \cap\left[\omega \times \cdots \times \omega \times I_{j(0)} \times \omega \times \cdots \times \omega\right]$. Now suppose $A(0) \cap\left[(\Pi\{\omega \backslash E(i) ': i \in n \backslash\{j(0)\}\}) \times\left(I_{j}(0) \backslash D(j(0))\right)=\varnothing\right.$, where $E(i)$ ' is a finite union of elements of θ and $D(j(0))$ is a finite subset of ω. (We are using the subscript to indicate position in the product, in order to simplify notation.) Then there exists $j(1) \in \mathrm{n} \backslash\{\mathrm{j}(0)\}$ so that $\infty^{n} \in$ $\mathrm{Cl}(\mathrm{A}(1))$, where $\mathrm{A}(1)=\mathrm{A}(0) \cap\left[\omega \times \cdots \times \omega \times \mathrm{I}_{\mathrm{j}(1)} \times \omega \times\right.$ $\left.\cdots \times \omega \times I_{j(0)} \times \omega \times \cdots \times \omega\right\}=A(0) \cap \Pi\{\omega: i \in n \backslash\{j(0)$, $j(1)\}\} \times I_{j(0)} \times I_{j(1)}$. We continue the process until we have a set $J=\{j(0), \cdots, j(m)\}$ and $A(m) \subset\left(\prod_{i \in n \backslash J} \omega\right) \times \prod_{j \in J} I_{j}$ with $\infty^{n} \in C l(A(m))$ and $A(m) \cap\left[(\Pi \quad \omega \in(i)) \times\left(\Pi I_{j} \backslash F(j)\right)\right]$ $i \in n \backslash J \quad j \in J$ $\neq \emptyset$ whenever $E(i)$ is a finite union of elements of θ and $F(j)$ is a finite subset of ω.

Choose κ_{0} large enough so that $\left\{I_{j}: j \in J\right\} \subset \vartheta\left(\kappa_{0}\right)$. Now $A(m)=A_{B}$ for $c \beta^{\prime}$ s, so choose $\beta_{0}>\sup \left\{\beta(\alpha): \alpha<\kappa_{0}\right\}$ such that $A(m)=A_{B_{0}}$. Then for any $\kappa_{0} \leq k<c$, it is true that $A_{\beta_{0}^{\prime}} J$, and k satisfy (i) and (ii) in the above construction of the l_{k} 's. Thus $\beta_{0}=\beta(k)$ for some $k_{0} \leq k<c$, and we have the sequence $\vec{x}_{0}, \vec{x}_{1}, \cdots$ in $A_{B(K)}$ that we chose in the construction. It is easy to see from the definition of X_{i} that the set $\left\{\pi_{i}\left(\vec{x}_{k}\right): k \in W_{n}\right\}$ converges to ∞ in X_{i} for each $i<n$, and since $C\left(\vec{x}_{j}\right) \cap C\left(\vec{x}_{k}\right)=\emptyset$ for $j \neq k$, then $\left\{\vec{x}_{k}: k \in W_{n}\right\}$ converges to ∞^{n}. This completes the proof.

Remark. We can get an example with only one non-isolated
point as follows: let Y be the space which is the free union X of the X_{k} 's, with the points $"_{\infty}$ " identified to a single point $\hat{\infty}$. Let $\pi: X \rightarrow Y$ be the projection. Define a neighborhood of $\hat{\infty}$ to be of the form $\pi\left(U_{1} \cup \cdots \cup U_{n} \cup X_{n+1}\right.$ $\left.\cup x_{n+2} \cup \cdots\right)$, where U_{i} is an open set in X_{i} containing ∞.

References

[1] F. Glavin, On Gruenhage's generalization of firstcountable spaces, Notices AMS, Jan., 1977, pg. A-22.
[2] \qquad , On Gruenhage's generalization of first countable spaces. II, Notices AMS, Feb., 1977, pg. A-257.
[3] G. Gruenhage, Infinite games and generalizations of first-countable spaces, Gen. Top. and Appl. 6 (1976), 339-352.
[4] V. I. Malyhin, On countable spaces having no bicompactification of countable tightness, Soviet Math. Dokl. 13 (1972), 1407-1411.
[5] E. Michael, A quintuple quotient quest, Gen. Top. and Appl. 2 (1972), 91-138.
[6] R. C. Olson, Bi-quotient maps, countable bi-sequential spaces, and related problems, Gen. Top. and Appl. 4 (1974), 1-28.
[7] P. L. Sharma, Some characterizations of W-spaces and w-spaces, Gen. Top. \& App1. 9 (1978), 289-293.
[8] Y. Tanaka, on products of pseudo-open maps and some related matters, Gen. Top; and Appl. 8 (1978), 157-164.

Auburn University
Auburn, Alabama 36830

