TOPOLOGY PROCEEDINGS Volume 3, 1978

Pages 109–115

http://topology.auburn.edu/tp/

A NOTE ON THE PRODUCT OF FRECHET SPACES

by

GARY GRUENHAGE

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOONT	0140 4104

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A NOTE ON THE PRODUCT OF FRECHET SPACES

Gary Gruenhage

1. Introduction

A space X is said to be a *Fréchet space* if whenever $x \in \overline{A}$, there exist $x_n \in A$, $n = 1, 2, \cdots$, with $x_n \to x$. In general, Fréchet spaces behave very badly with respect to products. In fact, if X and Y are non-discrete Fréchet spaces and X \times Y is Frechet, then a theorem of Michael [5] implies that X and Y must have the following stronger property: if $x \in \bigcap_{n=1}^{\infty} \overline{A}_n$, where $A_1 \supset A_2 \supset \cdots$, then there exists $x_n \in A_n$ with $x_n \to x$. Spaces satisfying this property are called *countably bi-sequential* spaces. We should add that even if X and Y are countably bi-sequential, this does not guarantee that X \times Y is Fréchet (see [4] or [6]).

In a letter to the author, F. Galvin asked the following question: if X_0, X_1, X_2, \cdots are such that $\prod X_i$ is Fréchet (equivalently, countably bisequential) for all $n \in \omega$, must $\prod X_i$ be Fréchet (equivalently, countably bi-sequential)? $i \in \omega$ Y. Tanaka [8, Problem 2.6] has asked the same question. In this paper, we construct, assuming Martin's Axiom (MA), a Fréchet space X such that X^n is Fréchet for all $n \in \omega$, but X^{ω} is not Fréchet. The space X is countable, and has only one non-isolated point.

Before proceeding with the construction of the example, we would like to mention some related problems. Bi-sequential spaces [5] are closed under countable products, so the space X we construct is a countable countably bi-sequential space

Gruenhage

which is not bi-sequential. Others (e.g., Galvin [2], Malyhin [4], Olson [6]) have constructed such spaces assuming various axioms of set theory, but no real example has been found. (There are uncountable real examples, e.g., an uncountable \sum -product of the unit interval.) A space X is called a w-space if whenever $x \in \overline{A}_n$, $n = 1, 2, \dots$, there exists $x_n \in A_n$ with $x_n \rightarrow x$. These spaces were introduced by the author in [3], and defined in terms of an infinite game, but this characterization, due to P. L. Sharma [7], is much better. Clearly, every w-space is countably bi-sequential, and the difference between the two classes of spaces does not, on the surface, look very large. But the following question, also asked by Galvin, remains open: if xⁿ is a w-space for all $n \in \omega$, must X^{ω} be a w-space (or a Fréchet space)? A counterexample to this question would be about as far as one could go in this direction. Call X a c*-space (terminology due to Sharma) if X has countable tightness and every countable subset of X is first countable. It is easy to see that if Xⁿ is a c*-space for every $n \in \omega$, then X is a c*-space. No real example of a space which is a w-space but not a c*-space has been found. However, Galvin [1] has constructed such spaces assuming MA.

2. Construction of the Example

Unless otherwise stated, we use the letters m, n, and k to denote natural numbers. The example is based on a construction, by induction on the ordinals less than the continuum c, of a certain collection of almost-disjoint subsets of ω . To get us past an uncountable stage $\alpha < c$, we need the

110

following lemma:

Lemma (MA). Let $\{I_{\alpha}\}_{\alpha < \kappa}$, $\kappa < c$, be a collection of infinite almost-disjoint subsets of ω . Suppose $A \subset \omega^n \times \omega^m$, and $\{\alpha(0), \alpha(1), \dots, \alpha(m-1)\} \subset \kappa$ are such that

- (1) A ⊂ ωⁿ × Π I_{α(j)} _{j<m} α(j)
 (2) A ∩ [(Π ω \E(i)) × (Π I_{α(j)} \F(j))] ≠ Ø whenever i<n j<m j<m α(j) E(i) is a finite union of the I_α's, together with a finite subset of ω, and F(j) is a finite subset of ω. Then there is a sequence x₀, x₁,... of elements of A such that
 - (i) $C(\vec{x}_i) \cap C(\vec{x}_j) = \emptyset$ whenever $i \neq j$, where $C(\vec{x})$ is the set of coordinates of \vec{x} ;
 - (ii) if $\alpha < \kappa$, then $I_{\alpha} \cap \{\pi_{i}(\vec{x}_{j}): i < n, j \in \omega\}$ is finite, where π_{i} is the projection on the ith coordinate.

Proof. Let $P = \{(f,F): f \subset A, F \subset \kappa, with f and F finite\}$. Define (f,F) < (g,G) if and only if

- (a) $f \subset g$ and $F \subset G$;
- (b) if $\vec{y} \in g \setminus f$, then \vec{y} is an element of $A \cap [(\Pi \cup (\cup I_{\alpha})) \cup (\cup C(\vec{x}))) \times (\Pi \cup (\cup C(\vec{x}))]$, $\alpha \in F$, $\vec{x} \in f$, j < m, $\alpha (j) \setminus (\cup C(\vec{x}))$.

So defined, (P,<) satisfies the CCC because there are only countably many possible f's, and (f,F) and (f,G) are bounded by (f,F U G). For each $\alpha < \kappa$, and $i \in \omega$ let $X_{\alpha,i} =$ $\{(f,F) \in P: |f| > i \text{ and } \alpha \in F\}$. $X_{\alpha,i}$ is a dense open set in (P,<), so by MA, there is a compatible family $\{(f_{\alpha,i},F_{\alpha,i}) \in X_{\alpha,i}: \alpha < \kappa, i \in \omega\}$. Pick $\vec{x}_0 \in f_{\alpha(0),i(0)}$. If $\vec{x}_0, \vec{x}_1, \cdots, \vec{x}_{k-1}$ have been chosen, pick $\vec{x}_k \in f_{\alpha(k),i(k)} \setminus \bigcup_{j < k} f_{\alpha(j),i(j)}$. We claim that $\vec{x}_0, \vec{x}_1, \cdots$ is the desired sequence. If j < k, then since $\vec{x}_k \in f_{\alpha(k),i(k)} \setminus f_{\alpha(j),i(j)}$, and by the compatibility,

Gruenhage

the conclusion of property (b) is satisfied with $\vec{y} = \vec{x}_k$ and $f = f_{\alpha(j),i(j)}$. Hence $C(\vec{x}_j) \cap C(\vec{x}_k) = \emptyset$, and so property (i) of the conclusion of the lemma is satisfied. Now let $\alpha < \kappa$. If $\vec{x}_k \notin f_{\alpha,1}$, then the conclusion of (b) is satisfied with $\vec{y} = \vec{x}_k$ and $F = F_{\alpha,1}$. Since $\alpha \in F_{\alpha,1}$, the first n coordinates of \vec{x}_k miss I_{α} . Thus (ii) is satisfied, and this completes the proof.

Theorem (MA). There is a countable Fréchet space X such that $X^{\mathbf{n}}$ is Fréchet for all $n\in\omega,$ but X^{ω} is not Fréchet.

Proof. We will construct a countable space X_k for each $k \in \omega$, so that $\prod X_k$ is Fréchet for all $n \in \omega$, but $\prod X_k$ is not Fréchet. We can then take X to be the free union of the X_k 's.

To this end, we will construct a sequence $\{\mathcal{G}_n\}_{n\in\omega}$ of collections of infinite subsets of ω such that $\bigcup \mathcal{G}_n$ is a $\underset{n\in\omega}{n\in\omega}n$ is a maximal almost-disjoint collection. We then take X_k to be the space $\omega \cup \{\infty\}$ with the points of ω isolated, and a neighborhood of ∞ is $\omega \cup \{\infty\}$ minus a finite union of elements of $\bigcup \mathcal{G}_j$. It is easy to see that, in the space $\prod X_k$, the point $\underset{k\in\omega}{j\leq k}$, $\underset{k\in\omega}{i\in \infty}$, \ldots) $\in \operatorname{Cl}\{(n,n,\cdots): n\in\omega\}$, but no sequence of the type $\{(n_k,n_k,\cdots): k\in\omega\}$ converges to (∞,∞,\cdots) . Thus $\prod X_k$ is not a Fréchet space.

We need to construct the \mathcal{G}_{k} 's so that every finite product of the X_{k} 's is Fréchet. First construct $I_{k}(n)$, $n \in \omega$, so that $\{I_{k}(n): n \in \omega, k \in \omega\}$ is an almost-disjoint collection of infinite subsets of ω , with the additional property that for each $k \in \omega$ and finite subset F of ω , there is $n \in \omega$ with $F \subset I_{k}(n)$.

112

For each $n \in \omega$, let $A_n = P(\omega^n)$, and let $A = \bigcup_{\substack{n \in \omega \\ n \in \omega}} A_n$. Let $A = \{A_{\alpha}: \alpha < c\}$ so that each element of A appears c times in the well-ordering. For each $n \in \omega$, define $\beta(n) = n$. Now suppose $I_k(\alpha)$ and $\beta(\alpha)$ have been defined for all $\alpha < \kappa$, where $\omega \leq \kappa < c$, and $k \in \omega$. Let $\beta(\kappa) = \{I_k(\alpha): \alpha < \kappa, k \in \omega\}$. Let $\beta(\kappa)$ be the least ordinal β such that $\beta > \beta(\alpha)$ whenever $\omega \leq \alpha < \kappa$, and such that $A_\beta \subset \omega^n$ satisfies the following two properties:

(i) there are a set $J \subset \{0, 1, \dots, n-1\} = n$, and $\{I_j: j \in J\} \subset \mathcal{G}(\kappa)$ so that $A_\beta \subset (\Pi \quad \omega) \times (\Pi \quad I_j); i \in n \setminus J \quad j \in J^{-1}$ (ii) $A_\beta \cap [(\Pi \quad \omega \setminus E(i)) \times (\Pi \quad I_j \setminus F(j))] \neq \emptyset$ whenever $i \in n \setminus J \quad j \in J^{-1}$ E(i) is a finite union of elements of $\mathcal{G}(\kappa)$, and F(j)is a finite subset of ω .

Note that n is uniquely determined by A_{β} , but the set J depends also on κ . Also, such a β always exists since ω itself, with n = 1 and J = \emptyset , satisfies (i) and (ii).

By the lemma, there is a sequence $\vec{x}_0, \vec{x}_1, \cdots$ in $A_{\beta(\kappa)}$ such that $C(\vec{x}_1) \cap C(\vec{x}_j) = \emptyset$ for $i \neq j$, and $I \cap \{\pi_i(\vec{x}_k): k \in \omega, i \in n \setminus J\}$ is finite whenever $I \in \mathcal{G}(\kappa)$. Express ω as $\bigcup W_m$, where W_m is infinite and $W_m \cap W_m$, $= \emptyset$ if $m \neq m'$. Define $I_m(\kappa) = \{\pi_i(\vec{x}_k): k \in W_m, i \in n \setminus J\}$. The inductive step is now complete.

Let $\mathcal{G}_{\mathbf{k}} = \{\mathbf{I}_{\mathbf{k}}(\alpha): \alpha < c\}$, and let $\mathbf{X}_{\mathbf{k}}$ be as defined earlier. We have already shown that $\prod \mathbf{X}_{\mathbf{k}}$ is not Fréchet. It remains to prove that $\prod \mathbf{X}_{\mathbf{k}}$ is Fréchet for each $\mathbf{n} \in \omega$. To this end, suppose $\mathbf{A} \subset \prod \mathbf{X}_{\mathbf{k}}$, and $\mathbf{x} \in \overline{\mathbf{A}} \setminus \mathbf{A}$. We need to show there exists $\mathbf{x}_{\mathbf{n}} \in \mathbf{A}$ with $\mathbf{x}_{\mathbf{n}} \to \mathbf{x}$. We will prove this for the case $\mathbf{A} \subset \omega^{\mathbf{n}}$ and $\mathbf{x} = (\infty, \infty, \dots, \infty) = \infty^{\mathbf{n}}$, the other cases being trivial or reducible to a case similar to this one.

Gruenhage

Let $\mathcal{G} = \bigcup_{n \in \omega} \mathcal{G}_n$. Suppose A \cap ($\Pi \ \omega \setminus E(i)$) = \emptyset , where E(i) is a finite union of elements of \mathcal{G} . Then A $\subset \bigcup_{i < n} (\omega \times \cdots \times i_{i < n} \omega \times E(i) \times \omega \times \cdots \times \omega)$, so there exists j(0) < n and $I_j(0) \in \mathcal{G}$ so that $I_j(0) \subset E(j(0))$, and $\omega^n \in Cl(A(0))$, where A(0) = A $\cap [\omega \times \cdots \times \omega \times I_j(0) \times \omega \times \cdots \times \omega]$. Now suppose A(0) $\cap [(\Pi\{\omega \setminus E(i)': i \in n \setminus \{j(0)\}\}) \times (I_j(0) \setminus D(j(0))) = \emptyset$, where E(i)' is a finite union of elements of \mathcal{G} and D(j(0)) is a finite subset of ω . (We are using the subscript to indicate position in the product, in order to simplify notation.) Then there exists $j(1) \in n \setminus \{j(0)\}$ so that $\omega^n \in$ Cl(A(1)), where A(1) = A(0) $\cap [\omega \times \cdots \times \omega \times I_j(1) \times \omega \times \cdots \times \omega \times I_j(0) \times \omega \times \cdots \times \omega] = A(0) \cap \Pi\{\omega: i \in n \setminus \{j(0), j(1)\}\} \times I_j(0) \times I_j(1)$. We continue the process until we have a set J = $\{j(0), \cdots, j(m)\}$ and A(m) $\subset (\Pi \ \omega) \times \Pi \ I_j (\Pi \ \omega \in I_j) \times I_j(0)$ with $\omega^n \in Cl(A(m))$ and A(m) $\cap [(\Pi \ \omega \setminus E(i)) \times (\Pi \ I_j \setminus F(j))] \ i \in n \setminus J \ j \in J \ j$

Choose κ_0 large enough so that $\{I_j: j \in J\} \subset \mathcal{G}(\kappa_0)$. Now $A(m) = A_\beta$ for c β 's, so choose $\beta_0 > \sup\{\beta(\alpha): \alpha < \kappa_0\}$ such that $A(m) = A_{\beta_0}$. Then for any $\kappa_0 \leq \kappa < c$, it is true that A_{β_0} , J, and κ satisfy (i) and (ii) in the above construction of the \mathcal{G}_k 's. Thus $\beta_0 = \beta(\kappa)$ for some $\kappa_0 \leq \kappa < c$, and we have the sequence $\vec{x}_0, \vec{x}_1, \cdots$ in $A_{\beta(\kappa)}$ that we chose in the construction. It is easy to see from the definition of X_i that the set $\{\pi_i(\vec{x}_k): k \in W_n\}$ converges to ∞ in X_i for each i < n, and since $C(\vec{x}_j) \cap C(\vec{x}_k) = \emptyset$ for $j \neq k$, then $\{\vec{x}_k: k \in W_n\}$ converges to ∞^n . This completes the proof.

Remark. We can get an example with only one non-isolated

point as follows: let Y be the space which is the free union X of the X_k 's, with the points " ∞ " identified to a single point $\hat{\infty}$. Let $\pi: X \to Y$ be the projection. Define a neighborhood of $\hat{\infty}$ to be of the form $\pi(U_1 \cup \cdots \cup U_n \cup X_{n+1} \cup X_{n+2} \cup \cdots)$, where U_i is an open set in X_i containing ∞ .

References

- F. Glavin, On Gruenhage's generalization of firstcountable spaces, Notices AMS, Jan., 1977, pg. A-22.
- [2] _____, On Gruenhage's generalization of first countable spaces. II, Notices AMS, Feb., 1977, pg. A-257.
- [3] G. Gruenhage, Infinite games and generalizations of first-countable spaces, Gen. Top. and Appl. 6 (1976), 339-352.
- [4] V. I. Malyhin, On countable spaces having no bicompactification of countable tightness, Soviet Math. Dokl. 13 (1972), 1407-1411.
- [5] E. Michael, A quintuple quotient quest, Gen. Top. and Appl. 2 (1972), 91-138.
- [6] R. C. Olson, Bi-quotient maps, countable bi-sequential spaces, and related problems, Gen. Top. and Appl. 4 (1974), 1-28.
- P. L. Sharma, Some characterizations of W-spaces and w-spaces, Gen. Top. & Appl. 9 (1978), 289-293.
- [8] Y. Tanaka, On products of pseudo-open maps and some related matters, Gen. Top. and Appl. 8 (1978), 157-164.

Auburn University

Auburn, Alabama 36830