TOPOLOGY PROCEEDINGS Volume 3, 1978

Pages 117–122

http://topology.auburn.edu/tp/

MAPPING THEOREMS FORPLANE CONTINUA

by

Charles L. Hagopian

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOONT	0140 4104

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

MAPPING THEOREMS FOR PLANE CONTINUA

Charles L. Hagopian

In 1927 Kuratowski [12, p. 262] defined a continuum M to be of $type \lambda$ if M is irreducible and every indecomposable continuum in M is a continuum of condensation. If a continuum M is of type λ , then M admits a monotone upper semicontinuous decomposition to an arc with the property that each element of the decomposition has void interior relative to M [13, Theorem 3, p. 216].

In 1933 Knaster and Mazurkiewicz [8] defined a continuum M to be λ -connected if for every pair p,q of points of M, there exists a continuum of type λ in M that is irreducible between p and q. They pointed out that λ -connectivity is a natural generalization of α -connectivity (arcwise connectivity) and gave two examples to show that unlike α -connectivity, λ -connectivity is not a continuous invariant. The domain in each of their examples is not planar.

Knaster and Mazurkiewicz [8, p. 90] raised the question of whether there exist counterexamples to the invariance of λ -connectivity under continuous transformations in the plane. In this paper I prove that if M is a λ -connected plane continuum and f is a continuous function of M into the plane, then f[M] is λ -connected.

The following intermediate property (weaker than α -connectivity but stronger than λ -connectivity) is defined in the last section of [8].

A continuum M is δ -connected if for each pair p,q of

Hagopian

points of M, there exists a hereditarily decomposable continuum in M that is irreducible between p and q. The closure of any ray in E^3 (Euclidean 3-space) that limits on a disk is a λ -connected continuum that is not δ -connected. Every hereditarily unicoherent λ -connected continuum is δ -connected. It follows from Theorem 2 of this paper that δ -connectivity and λ -connectivity are equivalent properties for plane continua.

In 1972 I [1] proved that every δ -connected nonseparating plane continuum has the fixed-point property. Krasinkiewicz gave another proof of this theorem in [9].

There exists a ray P in E^3 such that P limits on a disk and the closure of P is a continuous image of the topologist's sine curve. Hence δ -connectivity is not a continuous invariant. However, I [4] proved that if M is a δ -connected continuum and f is a continuous function of M into the plane, then f[M] is δ -connected.

Unfortunately, I [1,3,4,5,6, and 7] was unaware of Knaster and Mazurkiewicz's article [8] and called δ -connected continua λ -connected. In 1974 Krasinkiewicz [10, Theorem 3.2] proved that every hereditarily unicoherent continuum that is

"element of V_1 that joins q_2 to a_1 , and (2) q_2 is the last point of $[y_1,q_1]$ that can be joined to a_1 by an element of V_1 . Define $K_1 = [p_1,a_1] \cup L_1 \cup [q_2,q_1]$.

Let $Z_1 = K_1$. Note that Z_1 is a continuum in $S^2 - G_1$ that contains $\{p_1, q_1\}$."

118

^{*}The proof of Theorem 3 σf [4] can be simplified considerably by replacing line 30 of page 280 through line 22 of page 282 with the following:

a continuous image of a δ -connected continuum is hereditarily decomposable. Although Krasinkiewicz said he was following Knaster and Mazurkiewicz [8], he also called δ -connected continua λ -connected. The second example of Knaster and Mazurkiewicz [8] shows that Krasinkiewicz's theorem does not hold for λ -connected continua. In this example the product of the pseudo-arc and a circle is projected onto the pseudo-arc. In [11] Krasinkiewicz proved several other interesting theorems for δ -connected continua that do not hold for λ -connected continua.

Let M be a plane continuum. A subcontinuum L of M is a link in M if L is either the boundary of a complementary domain of M or the limit of a convergent sequence of complementary domains of M. The following characterization of δ -connected plane continua is established in [3, Theorem 2].

Theorem 1. A plane continuum M is δ -connected if and only if each link in M is hereditarily decomposable.

An indecomposable subcontinuum I of a continuum M is terminal in M if there exists a composant C of I such that each subcontinuum of M that meets both C and M - I contains I.

Theorem 2. If a plane continuum M is $\lambda\text{-connected},$ then M is $\delta\text{-connected}.$

Proof. According to Theorem 1, it suffices to show that every link in M is hereditarily decomposable. Suppose there exists a link in M that contains an indecomposable continuum I. It follows from [2, Theorem 2] and [4, Theorem 1] that I

Hagopian

is terminal in M. Hence there exists a composant C of I such that each subcontinuum of M that meets C and M - I contains I. Let p and q be points of C and I - C, respectively.

Since M is λ -connected, there exists a continuum K of type λ in M that is irreducible between p and q. Since K is a decomposable continuum in M that meets C and I - C, K meets M - I. Therefore K contains I, and this contradicts the fact that K is a continuum of type λ irreducible between p and q. Hence every link in M is hereditarily decomposable.

Theorem 3. Every λ -connected plane continuum that does not separate the plane has the fixed-point property.

Proof. Since every δ -connected nonseparating plane continuum has the fixed-point property [1], this theorem follows immediately from Theorem 2.

Theorem 4. A plane continuum M is λ -connected if and only if M cannot be mapped continuously onto Knaster's chainable indecomposable continuum with one endpoint.

Proof. This follows from [5, Theorem 2] and Theorem 2.

Theorem 5. If M is a λ -connected plane continuum and f is a continuous function of M into the plane, then f[M] is λ -connected.

Proof. By Theorem 2, M is δ -connected. Hence f[M] is δ -connected [4, Theorem 5]. Therefore f[M] is λ -connected.

Still unanswered is the following:

Question. Is every continuous image of every $\lambda-connected$ plane continuum $\lambda-connected?$

120

I wish to thank Andrzej Lelek for several helpful conversations about λ -connected continua.

References

- 1. C. L. Hagopian, Another fixed-point theorem for plane continua, Proc. Amer. Math. Soc. 31 (1972), 627-628.
- Planar images of decomposable continua, Pacific J. Math. 42 (1972), 329-331.
- , Planar λ connected continua, Proc. Amer. Math. Soc. 39 (1973), 190-193.
- , λ connected plane continua, Trans. Amer. Math. Soc. 191 (1974), 277-287.
- 5. _____, λ connectivity and mappings onto a chainable indecomposable continuum, Proc. Amer. Math. Soc. 45 (1974), 132-136.
- 6. _____, λ connectivity in the plane, Studies in Topology, Academic Press, New York, 1975, pp. 197-202.
- Fixed point theorems for disk-like products and hyperspaces, Topology, Marcel Dekker, New York, 1976, pp. 193-196.
- B. Knaster and S. Mazurkiewicz, Sur un problème concernant les transformations continues, Fund. Math. 21 (1933), 85-90.
- 9. J. Krasinkiewicz, Concerning the boundaries of plane continua and the fixed point property, Bull. Pol. Acad. Sci. 21 (1973), 427-431.
- 10. ____, A mapping theorem for tree-like continua, Bull. Pol. Acad. Sci. 22 (1974), 1235-1238.
- 11. ____, Mappings onto circle-like continua, Fund. Math.
 91 (1976), 39-49.
- 12. C. Kuratowski, Thèorie des continus irreductibles entre deux points II, Fund. Math. 10 (1927), 225-276.
- 13. _____, Topology, Vol. 2, 3rd ed., Monografie Mat., Tom 21, PWN, Warsaw, 1961; English transl., Academic Press, New York; PWN, Warsaw, 1968.

University of Houston Houston, Texas 77004 and California State University Sacramento, California 95819