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MAP~NGTHEOREMSFORPLANECONTINUA 

Charles L. Hagopian 

In 1927 Kuratowski [12, p. 262] defined a continuum M 

to be of type A if M is irreducible and every indecomposable 

continuum in M is a continuum of condensation. If a con

tinuum M is of type A, then M admits a monotone upper semi

continuous decomposition to an arc with the property that 

each element of the decomposition has void interior relative 

to M [13, Theorem 3, p. 216]. 

In 1933 Knaster and Mazurkiewicz [8] defined a continuum 

M to be A-connected if for every pair p,q of points of M, 

there exist:s a continuum of type A in M that is irreducible 

between p and q. They pointed out that A-connectivity is a 

natural generalization of a-connectivity (arcwise connectivity) 

and gave two examples to show that unlike a-connectivity, 

A-connectivity is not a continuous invariant. The domain in 

each of their examples is not planar. 

Knaster and Mazurkiewicz [8, p. 90] raised the question 

of whether there exist counterexamples to the invariance of 

A-connectivity under continuous transformations in the plane. 

In this paper I prove that if M is a A-connected plane 

continuum and f is a continuous function of M into the plane, 

then f[M] is A-connected. 

The following intermediate property (weaker than a-con

nectivity but stronger than A-connectivity) is defined in the 

last section of [8]. 

A continuum M is c-connected if for each pair p,q of 
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points of M, there exists a hereditarily decomposable con

tinuum in M that is irreducible between p and q. The closure 

3of any ray in E (Euclidean 3-space) that limits on a disk is 

a A-connected continuum that is not a-connected. Every 

hereditarily unicoherent A-connected continuum is a-connected. 

It follows from Theorem 2 of this paper that a-connectivity 

and A-connectivity are equivalent properties for plane con

tinua. 

In 1972 I [1] proved that every a-connected nonseparating 

plane continuum has the fixed-point property. Krasinkiewicz 

gave another proof of this theorem in [9]. 

There exists a ray P in E3 such that P limits on a disk 

and the closure of P is a continuous image of the topologist's 

sine curve. Hence a-connectivity is not a continuous invari

ant. However, I [4] proved that if M is a a-connected con

tinuum and f is a continuous function of M into the plane, 

then f[M] is a-connected. * 

Unfortunately, I [1,3,4,5,6, and 7] was unaware of 

Knaster and Mazurkiewicz's article [8] and called a-connected 

continua A-connected. In 1974 Krasinkiewicz [10, Theorem 3.2] 

proved that every hereditarily unicoherent continuum that is 

*The proof of Theorem 3 of [4] can be simplified consid
erably by replacing line 30 of page 280 through line 22 of 
page 282 with the following: 

"element of VI that joins q2 to aI' and (2) q2 is the last 

point of [Yl,ql] that can be joined to by an element ofa l 

VI· Define K = [Pl,a l ] U L U [Q2,ql] ·l l 

Let Zl Kl · Note that Zl is a continuum in 52 - Gl 

that contains {Pl,ql}·" 
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a continuous image of a a-connected continuum is hereditarily 

decomposable. Although Krasinkiewicz said he was following 

Knaster and Mazurkiewicz [8], he also called a-connected con

tinua A-connected. The second example of Knaster and Mazur

kiewicz [8] shows that Krasinkiewicz's theorem does not hold 

for A-connected continua. In this example the product of the 

pseudo-arc and a circle is projected onto the pseudo-arc. 

In [11] Krasinkiewicz proved several other interesting 

theorems for a-connected continua that do not hold for 

A-connected continua. 

Let M be a plane continuum. A subcontinuum L of M is a 

link in M if L is either the boundary of a complementary 

domain of M or the limit of a convergent sequence of comple

mentary domains of M. The following characterization of 

a-connected plane continua is established in [3, Theorem 2]. 

Theorem 1. A plane continuum M is a-connected if and 

only if each link in M is hereditarily decomposable. 

An indecomposable subcontinuum I of a continuum M is 

terminal in M if there exists a composant C of I such that 

each subcontinuum of M that meets both C and M - I contains 

I. 

Theorem 2. If a plane continuum M is A-connected, then 

M is a-connected. 

Proof. According to Theorem 1, it suffices to show that 

every link in M is hereditarily decomposable. Suppose there 

exists a link in M that contains an indecomposable continuum 

I. It follows from [2, Theorem 2] and [4, Theorem 1] that I 
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is terminal in M. Hence there exists a composant C of I such 

that each subcontinuum of M that meets C and M - I contains 

I. Let p and q be points of C and I - C, respectively. 

Since M is A-connected, there exists a continuum K of 

type A in M that is irreducible between p and q. Since K is 

a decomposable continuum in M that meets C and I - C, K meets 

M - I. Therefore K contains I, and this contradicts the fact 

that K is a continuum of type A irreducible between p and q. 

Hence every link in M is hereditarily decomposable. 

Theorem 3. Every A-connected plane continuum that does 

not separate the plane has the fixed-point property. 

Proof. Since every 6-connected nonseparating plane con

tinuum has the fixed-point property [1], this theorem follows 

immediately from Theorem 2. 

Theorem 4. A plane continuum M is A-connected if and 

only if M cannot be mapped continuously onto Knaster's 

chainable indecomposable continuum with one endpoint. 

Proof. This follows from [5, Theorem 2] and Theorem 2. 

Theorem 5. If M is a A-connected plane continuum and 

f is a continuous function of M into the pZane~ then f[M] is 

A-connected. 

Proof. By Theorem 2, M is 6-connected. Hence f[M] is 

6-connected [4, Theorem 5]. Therefore f[M] is A-connected. 

Still unanswered is the following: 

Question. Is every continuous image of every A-connected 

plane continuum A-connected? 
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