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A NONSTANDARD APPROACH TO
S-CLOSED SPACES

Robert A. Herrmann

1. Introduction

In [20]}, Godel remarks that simplification facilitates
discovery, and for this reason we may expect a bright future
for nonstandard analysis. It has been amply demonstrated that
nonstandard topology is a useful tool in eliminating certain
pathological behavior inherent within the standard model as
well as producing considerable economy of effort when obtain-
ing standard results.

The major purpose of this paper is to introduce a new
monad, the S-monad, which is nuclear but not filter base deter-
mined and which is capable of characterizing T. Thompson's
[25] concept of the S-closed space, as well as improving on
many of his results. 1In particular, we show that (X,t1) is
extremally disconnected iff for each p € X either Ua(p) c uS(p)
or ue(p) = pS{p) or p(p) = uS(p). Moreover, X is S-closed iff
*X = U{puS(x)|x € X}. Using these results we improve somewhat
upon various theorems in [25]. For example, we show that if
X is nearly-compact ([resp. quasi-H-closed] and extremally dis-
connected, then X is S-closed. If X is almost regular and
S-closed, then X is nearly-compact and extremally disconnected.
If X is weakly-Hausdorff and S-closed, then X is H-closed and
extremally disconnected. If X is weakly-Hausdorff and ex-
tremally disconnected, then X is a dense subspace of the

S-closed Fomin extension o(X). Using nonstandard mapping
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theory, we also show that for the class of all weakly-
Hausdorff S-closed extensions of a weakly-Hausdorff, extrem-
ally disconnected space X the Fomin extension, ¢(X), is the
almost-projective maximum. By reworking a proof of Rudolf's,
it is shown that an almost-continuous r.o. proper map from a
space X into a gquasi-H-closed space Y has an almost-continuous
extension to the generalized absolute closure T™X of X.
Finally, examples are given of various well known maps which
have the r.o. proper condition and an example is constructed

of a Hausdorff S-closed space which is not compact.

2. Preliminaries

Throughout this paper, we assume that M = ({/, €, pr, ap)
is the standard set-theoretic superstructure constructed by
Machover and Hirschfeld [13] even though any appropriate su-
perstructure will suffice. We need only consider the non-
standard extension *fl = (*{/, *€, *pr, *ap) to be an enlarge-
ment. We assume that the reader is familiar with the basic
concepts and methods associated with nonstandard topology
[13] [20]. We shall use much of the notation as found in [7]
and [13]. Moreover, throughout this paper the symbols (X,T)
and (Y,T) will denote topological spaces. Recall that for
(X,17), the monad u(p), a-monad ua(p) and 6-monad ue(p) at a
point p € X are defined as follows:

u(p) = n{*G|p € G € 1}, Ua(P) = ﬂ{*(intxchG)|p € G € 1} and
Mg (P) = ﬂ{*(chG)|p € Ge 1}, where if A € *!{/, then

*A = {x|[x € *{/] » [x *¢ Al}. For basic properties of these
monads, we refer the reader to references [6] [7] [8] [13]

and [20].
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Singal and Mathur [23] call a space (X,T1) nearly-compact
if each open cover C has a finite subset, say {Gl,---,Gn}
such that X = U{intxclei|i=1,o--,n}. Moreover, X is almost-
regular [22] if for each regular-closed F < X and p € X - F
there exist disjoint open G, H such that p € G and F < H.

We show in [6] [7] [8] that X is nearly-compact [resp. quasi-
H-closed [18]] iff *X = U{ua(x)|x € X} [resp. *X = U{pe(x)|

x € X}] and X is almost-regular iff ua(p) = ue(p) for each

p € X. A space (X,1) is weakly-Hausdorff [24] if each p € X
is the intersection of every regular-closed set containing it
iff ua(p) N X = {p} for each p € X. T. Thompson [25] calls
(X,7) S-closed if each cover S of X by semiopen sets [2] has
a finite subset, say {Sl'°"'sn}' such that X = U{clei|
i=l,+++,n}, where S c X is semiopen if there exists G € 1

such that G © § < chG.

3. S-closed Spaces

Definition 3.1. For (X,1), let SO0(X) denote the set of
all semiopen subsets of X. For each p € X, let the S-monad,
us(p) = N{*(clys) |lp € s € S0(X)}.

It is not difficult to show that for each p € X,
usS(p) = ﬂ{*(chG)I[p € cl,G] ~ (G € 1]}. Application of
Theorems 4.1 and 4.3 in [8] yield the following characteri-

zation.

Theorem 3.1. A space (X,t) is S-closed iff

*X = y{us(x)|x € X}.

Theorem 3.2. For (X,1), let G € T and X be S-closed.

Then *(chG) c U{us(x)|x € cle}.
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Proof. Let G € T and S = S0(X). Then J U {X - cl,G} = [
is a cover of X by semiopen subsets of X. Hence there exists
a finite subset of ¢, say {Bl,---,Bn, X - clyG}, such that

X = chBl U +e+ U clen U (clx(x - chG)).

Since ch(X - chG) NG =g, then cle (= cle U eee U C1XBn'

1
Application of Theorems 4.1 and 4.3 in [8] imply that

*(clyG) = U{us(x) |x € cl,G} and proof is complete.

Remark 3.1. A set W < *X is said to be SA-compact if

W o u{us(x) |x € a}.

In what follows, we do not assume that an extremally
disconnected space is Hausdorff and observe that for each
P € X, us(p) < ue(p). Let RO(X) = {G|[G = X] A [G is regular-

open]}.

Theorem 3.3. For (X,t), the following are equivalent.

(2) X 18 extremally disconnected.

(1) For each p € X, ua(p) < us(p).

(2i1) For each p € X, uS{(p) = ue(p).

(iv) For each p € X, u{p) < us(p).

Proof. (i) implies (ii). Assume that X is extremally
disconnected. Let p € cle, G € 1. Then cle € 1. Hence
intxclx(cle) = intxcle = chG. Thus chG is regular-open.
Hence, since uu(p) = N{*U|p € U € RO(X)}, we have that
u, (P) = us(p).

(ii) implies (i). Assume that for each p € X, pu(p) c
uS{(p). Let G € 1 and assume that p € cl,G. Since u(p) <
By (P) = us(p) = *(clyG), we have that cl,G € 1.

(i) implies (iii). Let (X,T) be extremally disconnected
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and p € chG, G € 1. Since clyG € 1, then cle € {cle|
p €GE€ t}. Thus ug(p) = uS(p).
(iii) implies (ii) and (iii) implies (iv) are obvious.
(iv) implies (ii). Let p € chG, G € 1. Then u(p) <
*(chG) implies that there exists some H € 1 such that
p € Hc chG. Consequently, p € intxchH (=4 chG implies
that ua(p) c *(chG). Hence ua(p) < uS(p) and this completes

the proof.

We are now in a position to improve upon Theorems 5, 6,

7 in [25].

Theorem 3.4. If (X,1) is nearly-compact [resp. quasi-
H-closed] and extremally disconnected, then X is S-closed.
Procf. By application of Theorem 3.3, we have that
*X = U{ua(x)lx € X} = U{pS(x)|x € X}. 1In like manner, if X
is guasi-H-closed we obtain the result by application of

Theorem 3.3.

Theorem 3.5. If X is almost-regular and S-closed, then
X is extremally disconnected and nearly-compact.

Proof. Assume X is not extremally disconnected. Then
there exists G € RO(X) such that chG -G # P and X - chG # 2.
Let p € chG - G. Then u(p) N *G # P. Application of
Theorem 3.2 implies that there exists some g € chG such that
pi(p) N *G N us(q) # . If g € cle—G, then g € X - G
implies, since X - G is regular-closed and usS(q) < *(X - G),
that u(p) n *G n *(X - G) # #. This contradiction yields
pu(g) = *G. Almost-regularity and G € RO(X) imply that

Wy (@) = ugl@) = *G. since p € G, then u,(q@) n u(p) = 4.
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This contradicts u(p) N uS(q) # P#. Hence X is extremally
disconnected. Theorem 3.3 implies that X is nearly-compact

and the proof is complete.

Corollary 3.5.1. Let (X,1) be almost-regular. Then X
is S-closed iff X is nearly-compact and extremally discon-
nected i1ff (X,TS) is regular, compact and extremally discon-

nected.

Theorem 3.6. If (X,t1) is weakly-Hausdorff and S-closed,
then X is H-closed and extremally disconnected.

Proof. Assume that X is weakly-Hausdorff and distinct
p.q9 € X. Hence there exists some G' € RO(X) and F such that
X -F € RO(X), p €G'", g €Fand G' N F = g. Thus ua(p) n
uS(q) = #. Assume that X is not extremally disconnected.
Then there exists G € RO(X) such that cl,G - G # # and
X -cl,G#4. Letp € clyG - G. Then u(p) N *G # f# implies
that ua(p) N *G # . Theorem 3.2 implies that there exists
some q € chG such that ua(p) n *G N uS{q) # #. Weakly-
Hausdorff implies that p = gq. However, as in the proof of
Theorem 3.5, we have that g € u(g) < *G. This contradiction
implies that X is extremally disconnected. Since for each
p € X, uS(p) = ue(p), then Theorem 1.5 in [6] yields that X
is Hausdorff. We know that a Hausdorff space is H~-closed

iff *X = U{ue(x)|x € X} and the proof is complete.

Corollary 3.6.1. If (X,1) is weakly-Hausdorff, then for

distinet p,q € X, ua(p) N us(q) = #.

The following result is obtained by immediate applica-

tion of Corollary 3.6.1 and Theorem 1.5 [6].
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Theorem 3.7. If (X,1) is weakly-Hausdorff and extrem-

ally disconnected, then X is Hausdorff (and Urysohn).

Corollary 3.7.1. If (X,1) is weakly-Hausdorff, nearly-
compact [resp. quasi-H-closed] and extremally disconnected,

then X 18 S-closed and Hausdorff.

Corollary 3.7.2. Let (X,1) be weakly-Hausdorff. Then
X 18 S-closed iff X is quasi-H-closed and extremally discon-
nected 1ff (X,Ts) 18 compact Hausdorff and extremally discon-

nected.

Theorem 3.8. If (X,1) 28 an S-closed, first countable,
almost-regular space, then X is finite.

Proof. Assume that X is infinite. From Theorem 3.5
we have that X is nearly-compact and extremally disconnected.
Consider the semiregularization, T (i.e. the topology gener-
ated by RO(X)). Then (X,Ts) is a first countable, regular
compact space and S-closed by Theorems 3.1 and 3.3. Thomp-
son's Theorem 3 [25] now implies that X is finite and the

proof is complete.

Corollary 3.8.1. If (X,1) is infinite, S-closed and
almost-regular, then X is uncountable.

Proof. Simply consider Tg» Then Tg is a compact,
regular, S-closed topology for X. The result follows from
the Corollary to Theorem 4 in [25].

One of the basic examples of an S-closed space cited by
Thompson [25] is that of B(N). If X is Hausdorff and extrem-
ally disconnected, then in [9] Iliadis and Fomin show that

the extension o(X) is H-closed and extremally disconnected.
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Theorem 3.9. If X is weakly-Hausdorff and extremally
disconnected, then X s a dense subspace of the S-closed,

Hausdorff, almost-regular space o(X).

As a final proposition in this section, we obtain a
partial converse to the corollary to Theorem 5 in [25],

where 9(X) denotes the set of all isolated elements of X.

Theorem 3.10. Let (X,T) be a noncompact, weakly-
Hausdorff, extremally disconnected space. If o{X) is com-
pact, then o(X) = B(X) and X - 9(X) is compact.

Proof. By Theorem 6.2 in [19] there exists a continuous
surjection from o(X) onto B(X) since X is Tychonoff. Thus
o(X) = B(X). Lemma 5 in ([11] implies that X - 2(X) is com-

pact.

Corollary 3.10.1. Let (X,t) be a noncompact, weakly-
Hausdorff, extremally disconnected space. If o(X) is com-

pact, then o(X) = B(X) and $(X) is an infinite set.

Remark 3.2. Katétov has shown in [11l] that if X is any
discrete space, then o(X) = B(X). This extends the corollary

to Theorem 5 in [25].

In Thompson's fundamental paper ({25] the only explicit
types of S-closed spaces given are compact. The following

is an example of a noncompact, Hausdorff, S-closed space.

Example 3.1. Let (X,t) be an infinite discrete space
and { the set of all nonprincipal (free) ultrafilters on X.
Let Y = X U ¢ and the topology T on Y be generated by 1 and

all sets of the form F U {7}, where F € 7 € . Assume
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P, g € X. Then {p}, {g} € T. Now assume that p € X, and

J € U. Then there exists some F € 7 such that p ¢ F. Hence
{p} n (F U {F}) = @g. 1If distinct F and § are members of [,
then there exists F € F, G € 9 such that F 1 G = #. Conse-
quently, the open neighborhoods of F and §; F u {3}, G u {4},
respectively, are disjoint. Thus Y is Hausdorff. 1In order
to show that Y is extremally disconnected, let G € T and
assume that p € clYG - G. Clearly, if p € X, then p is an
interior point in clYG. Hence assume that p ¢ X. Hence
p=7¢€ld LetaU {#}, A € F, be an open neighborhood of F.
Then (A U {#}) n G # #. Since 7 ¢ G, then A n G # # for
each A € 7. Moreover, (G N X) nA# @ for each A € F.

Hence G N X € 7 and G U {p} =G U ((GN X) U {p}) € T. Thus
clYG > G U {p} € T implies that clTG € T. Obviously, (Y,T)
is noncompact. Now let 7 € /. Thus {7} ¢ T since no finite
intersection of elements of F is the empty set. Therefore,
since no element of ¢ is isolated, we have that 9(Y) = X.
Consequently, Y - 9(Y) = . However, since in the induced
topology, {/ is an infinite discrete subspace of Y, then ( is
noncompact. By application of Theorem 3.10, we now obtain

that o(X) is a noncompact, Hausdorff, S-closed space.

4. Mapping Theory

We briefly investigate various well known maps which
preserve S-closedness. Let (Y,T) be an arbitrary space.
A map f: (X,1) » (Y,T) is almost-open [4] if the image of
each regular-open subset of X is open. The map f is W-almost-
open (141 if £71(c1, V] c cl,(£71(v]) for each V € T. Observe

that if £ is almost-open in the sense of Wilansky {26], then
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it is W-almost-open. Also Example 1 in [14] is a continuous,
W-almost-open map which is not open. A map f: (X,71) » (Y,T)
is almost-continuous [resp. 6-continuous [9], weakly-6-
continuous [6]] if for each p € X and each open neighborhood

Vv of f(p) there exists an open neighborhood G of p such that
f[G] = inthlYV [resp. f[chG] < clYV, f[G] < clYV] iff for
each p € X, *£lu(p)] = u (£(p)) [resp. *flu (p)] = Hg (£(P)),
*flu(p)] < ue(f(p)) [61]. Weakly-6-continuous mappings are
also known as weakly-continuous mappings [15]. Clearly, an
open map is almost-open as well as W-almost-open. Moreover,
continuity on X implies almost-continuity implies 6-continuity
implies weak-6-continuity and none of these implications are, in
general, reversible. Example 1.3 in [4] is that of a non-

trivial, noncontinuous, almost-continuous, almost-open mapping.

Theorem 4.1. A W-almost-open, weakly-8-continuous map
on X is almost-continuous.

Proof. Let f: (X,1) » (¥,T) be weakly-6-continuous. It
is known that for v € T, cl (£ 1[v]) = £ T{cl,v] [14]. Since
f is W-almost-open, then f_l[clYV] = clx(f'l[v]) implies that
clx(f_l[V]) = f_l[clYV]. Hence the inverse image of each
regular-closed set in Y is closed in X. This global condi-
tion implies that f is almost-continuous as is well known and

the proof is complete.

Theorem 4.2. Let f: (X,1) » (Y,T) be almost-open and
almost-continuous. Then for each p € X, *f{us(p)] <

us(f(p)).

Proof. It is known [4] that the inverse image of a
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regular-closed set is regular-closed. Thus let f(p) € clYV,
v € T, Then p € f_l[clYV] = cl,H for some H € T. Hence

p € *(clH) = *£ 1 [*(cl,v)]. Consequently, uS(p) =
*f_l[*(clYV)]. Hence *f[uS(p)] < *(clYV). Since clYV is

arbitrary, then *f[us(p)] <= uS(£(p)).

Corollary 4.2.1. Let f£: (X,1) » (Y,T) be almost-open
and almost-continuous.
(1) Then the image of an SA-compact W < *X igs Sf[A]-
compact.
(12) If £ is a surjective map and X is extremally dis-

connected, then Y 1is extremally disconnected.

Corollary 4.2.2. The concept of S-closedness is a

topologieal invariant.

Theorem 4.3. Let f: (X,t) -~ (Y,T) be W-almost-open and
weakly-6-continuous. Then for each p € X, *f[uS(p)] c
us(f£(p)).

Proof. Let f(p) € cl,V, V € T. Then p € f_l[clYV] and
f-l[inthlYV] = G € T since f is almost-continuous. Hence,
since f_l[V] c G and f is W-almost-open, then

-1 -1 -1
glx(f [v]) < cle (= clx(f [clYV]) c clx(f [vi)
implies that cle = clx(f_l[clYV]). Almost-continuity implies
-1 -1 -1
that clx(f [clYV]) = f [clYV]. Thus p € cle c f [clYV].

Hence uS(p) < *f_l[uS(f(p))] implies that *f{us(p)l = usS(f(p)).

Corollary 4.3.1. Let f: (X,T1) > (Y,T) be W-almost-open
and weakly-8-continuous.
(1) Then the image of an SA-compact W c *X is SE[A]-

compact.
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(ii) If f is surjective, and X is extremally disconnected,

then Y is extremally disconnected.

We now give two final results which tend to show the
importance of the almost-continuous mappings throughout ex-

tension theory.

Theorem 4.4. Let (X,t) be weakly-Hausdorff and extrem-
ally disconnected. Assume that [ is the class of all weakly-
Hausdorff, S-closed extensions of X. Then for each 27 € C
there exists an almost-continuous surjection F: o(X) » Z such
that F|X = identity (i.e. o(X) is the almost-projective maxi-
mum in ().

Proof. In [3], Fomin has shown that for each Z € ( there
exists a 6-continuous surjection F: o(X) - 2 such that F|X =
identity on X. Since Z is almost-regular, then F is almost-

continuous and this completes the proof.

In what follows 1X will denote the generalized absolute
closure [12] of a space (X,t). If X is Hausdorff, then 71X
is the Katétov extension [10] [21]. Rudolf [21] calls a map
£: (X,1) » (Y,T) r.o. proper if for each q € Y and each
regular-open neighborhood U of g there exists an open neigh-
borhood V of q such that int, (£ 1[cl,v]) = cl, (£71[ul). ob-
serve, that an open or W-almost-open map 18 r.O. proper.
Moreover, if f is almost-open and almost-continuous, then
Theorem 1.3(b) [4] implies that for U € RO(Y)

inty (£ (el U1) = £ tintyel 0l = £ (Ul < el (£ ul) .
Hence Zf f: (X,1) > (Y,T) <s almost-open and almost-continuous,

then £ is r.o. proper. By reworking Theorem 2.1 in [21], we
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have the following major result.

Theorem 4.5, Let f: (X,1) » (Y,T) be an almost-continu-
ous r.o. proper map and Y quasi-H-closed. Then £ has an
almost-continuous extension tf: 1X » (Y,T), which is unique
if Y is Hausdorff.

Proof. Rewriting Rudolf's proof to Theorem 2.1 in [21],
we first note the gquasi-H-closed implies that n{clYU|U € U(g)}
# §. Now change equation (2) as follows:
(2) f_l[inthlYUy] € £ for each U € T.
Change the phrase "f‘l[Uy] € £" to "f_l[inthlYUy] € g" for
some Uy € T. Using the r.o. proper condition, equation (2)
is proved in the same manner as in the proof of Theorem 2.1
since almost-continuity implies that U' = U - f_l[clYVy] is
open and dense in U. We don't need a Hausdorff property for
Y unless we want a unique map. Simply define tf(f) to be any
y € ﬂ{clYUIU € Uy},

Now complete the proof in the following manner. To show

that tf is almost-continuous at x € X, let U € RO(Y) be

f(x)

a neighborhood of f(x). Then U_ = £l ) is open in X,

fix

hence in 1X and Tf[UX] = f[Ux] < U Now taking 1nthlYUy

f(x)*
for £ € 17X - X to be an arbitrary regular-open neighborhood

of y = tf(§), we have that f_l[inthlYUy] € £ by (2). So,

UE = {g} v f_l[inthlYUy] is an open neighborhood of £ in
X for which

n Xl u flu, - X - X =

£ 1 [E (t )]

=-1,. .
flf [1nthlYUy] U tf(g) < lntYClYUy'

f[UE] = f[U

Hence tf is almost-continuous
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Corollary 4.5.1. Let f: (X,t) » (Y¥,T) be almost-con-
tinuous and Y be H-closed Urysohn. Then there exists a
unique almost-continuous extension tf: 1X + (Y,T) of £.

Proof. This follows from Theorem 3.4 in [21].

Remarks. Theorem 3.1 implies that (X,t) is S-closed
iff every cover by regular-closed sets has a finite subcover.
Moreover, since "uS" determines a unique pretopological con-
vergence structure, then S-closed spaces may be discussed in
terms of the S-convergence of filter bases. Corollaries
3.5.1, 3.7.2 hold since extremally disconnected is a semi-
regular property and these results have applications to pro-

jective objects within certain interesting categories.
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