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PIXLEY-ROY TOPOLOGY 

David J. Lutzer 

I. Introduction 

In the spring of 1969, the annual topology conference was 

held at Auburn University. In one of the most elegant papers 

presented at that conference, Carl Pixley and Prabir Roy [PRJ 

gave an entirely new construction of an important example in 

Moore space theory, a nonseparable Moore space which has 

countable cellularity, i.e., which satisfies the countable 

chain condition (CCC). The original example of a space of 

this type had been given by Mary Ellen Rudin in 1951 [R ] andl 

is certainly among the most complicated known Moore spaces. 

(Recently, an easier-to-understand description of Rudin's 

space has been given by Aarts and Lowen-Colebunders in [ALC].) 

Intervening years have demonstrated that Pixley and Roy 

actually discovered a counterexample machine. ~heir con­

struction has been used by Przymusinski and Tall [PT], Alster 

and Przymusinski [AP], and by van Douwen, Tall and Weiss 

[vDTW] in the study of Moore spaces. More recently the con­

struction has been studied as an end in itself in such papers 

as [vD], [BFLl ], [R2 ]. My goal today is to tell you about 

the PR-construction itself, about a few results obtained in 

the last year and a half, and about several problems which 

remain open. 

In today's terminology, Pixley and Roy described a hyper­

space construction, i.e., a method for imposing a topology on 

certain families of subsets of a given topological space 
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(X,]). The Pixley-Roy hyperspace of X, which I will denote 

by J[X], has as its underlying set the collection of all 

finite, nonernpty subsets of X. If F E J[X], then basic 

neighborhoods of F have the form 

[F,V] = {H E J[X] IF c H c V} 

where V is allowed to be any open subset of X which contains 

F. 

It is important to point out that the topology of J[X] 

is different from the more classical hyperspace topology 

called the Vietoris topology. The Vietoris topology has fewer 

open sets than does the PR-topology. But the relationship is 

closer than that. In the terminology of Aarts, de Groot and 

McDowell [AGM] if X is regular, the Vietoris hyperspace of 

finite subsets of X is a cospace of J[X]. (This observation 

is due independently to van Douwen [vD] and to Alster and 

Przymusinski [AP] '. ) 

The remainder of my talk today will break into three 

parts. First I'll tell you certain general results on J[X]. 

Then I'll look at the problems of metrization and normality 

of J[X] where X will be taken from certain special classes, 

e.g., where X is a space of ordinals, or a subspace of the 

usual real line~, or a generalized ordered space built on a 

separable linearly ordered set, or a Souslin line--because one 

must have a great deal of control of X in order to study such 

complex properties of J[X]. 

Certain subspaces of J[X] will receive particular atten­

tion: for each n < wo' let In[X] = {F E J[X] Icard(F) ~ n}. 

As you will learn from a talk later today [B], J 2 [X] is a well 
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known space (for X cR) and the other J [X] give the PR­n 

hyperspace a hierarchical structure which invites proofs 

by induc·tion. 

Undefined notation and terminology will follow [E]. 

Definitions of special spaces such as Moore spaces, a-spaces,

perfect spaces, etc., can be found in [EL]. When viewed as 

topological spaces, ordinals will always carry the usual 

open interval topology. Terminology and notation related to 

ordered sets and spaces will follow [L]. In particular, the 

symbol tli will denote the first infinite ordinal. 

2. General Properties of PR-Hyperspaces 

Throughout the rest of this talk, I will assume that the

ground space X is at least T Other restrictions will bel . 

mentioned	 when needed. 

The space J[X] always has certain properties. 

2.1 Theorem [vD]. If X is T then J[X] is zero-dimen­l 

sional, completely regular {and Hausdorff}, and every sub­

space of J[X] is metacompact. 

A construction which yields metacompact spaces that do not 

have much stronger properties may be useful in the study of 

two nice open questions: 

1) Is it true that every member of Arhangel'ski's class

Regular-MOBI (terminology as in [BL]) is quasi-developable? 

One step toward a solution of this problem is to decide 

whether open-compact mappings preserve weak e-refinability 

[BeL], given regularity of the domain of the mapping. And, 

surprisingly, we do not even know whether the image of a 
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regular metacompact space under an open-compact mapping is 

weakly 8-refinable. 

2) It is true that every metacompact space is the image 

of a paracompact space under an open-compact mapping? (This 

question is usually ascribed to Arhangel'skil.) 

At the opposite extreme, there are certain properties 

that ][X] never has. 

2.2 Theorem. If X is not discrete 3 i.e. 3 if X has at 

least one limit point 3 then ][X] is not a Baire space. 

Proof. Let p be any limit point of X. Then, X being 

T each neighborhood of p is infinite. If ][X] were al , 

Baire space then its open subspace Z = [{p},X] would also be 

a Baire space. And yet Z u{z n ]n[X] In > I} even though 

each Z n ] [X] is a closed, nowhere dense subspace of Z. 
n 

There are some interesting problems related to the Baire 

category property, but posing them must wait for a minute. 

The topology of the ground space X determines some pro­

perties of J[X], as the next three theorems show. 

2.3 Theorem. Let X be a Tl-space. The following are 

equivalent: 

a) X has countable pseudo-character; 

b) ]2 [X] has countable pseudo-character; 

c) ][X] has countable pseudo-character; 

d) ][X] is perfect; 

e) ][X] is semi-stratifiable; 

f) ][X] is a a-space; 

g) J[X] is a union of countably many closed discrete 

Bubspaces. 
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Proof. We prove that a) implies g). The implications 

g) ~	 f) ~ e) ~ d) ~ c) ~ b) are all well-known, and the impli­

cation b) ~ a) is easy. 

For each n, let C {F E J[X] Icard(F) = n}. Then Cn' n 

topologized as a subspace of J[X], is discrete-in-itself 

(although not closed in J[X], unless n = 1). For each x E X 

select a decreasing sequence g(n,x) of open sets having 

n{g(x,x) In ~ I} = {x}. For each F E J[X], let k(F) be the 

first integer k such that if x ~ y belong to F, then y f g(k,x). 

Now define 

Cnk = {F E Cnlk(f) = k} for each n > 2 

and k > 1. Because J[X] = C U(U{cnkln ~ 2, k > I}), thel 

proof will be complete once we show that each C is closednk 

in J[X]. SO suppose T E J[X] - Cnk where n > 2 and k > 1. 

If card (T) ~ n, then [T,X] is a neighborhood of T which 

misses Ck entirely, so suppose card(T) < n. Consider the n 

open set U = U{g(k,t) It E T}. If the open neighborhood 

[T,U] of T contains a point F E Cnk then T c FeU. Index 

T and F as 

T = {xl ,x2 ,···,x } c F = {xl,···,xm,xm+l,·.·,xn}m

where m card(T). Because m < nand FeU there must be 

some	 xi E T such that g(k,x ) contains two distinct elementsi 

of F, and that is impossible since k(F) = k. Therefore, 

[T, U] n (:nk = <p and the proof is complete. 

2.4 Theorem. The following properties of a T1-space 

are	 equivalent: 

aJ X is first-countable; 

bJ J 2 [X] is first countable; 
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cJ J[X] is a Moore space. 

Proof. That a) implies c) is due to van Oouwen [vO] , 

and the other implications are easy. 

In the next result, the cardinal functions c,d nw and w 

denote cellularity, density, netweight and weight respec­

tively (see [E]). 

2.5 Theorem. For any infinite Tl-space X~
 

aJ nw(J[X]) = card(X) -nw(X)
 

bJ w(J[X]) card (X) -w (X)
 

c J c (J [X]) < nw (X)
 

dJ d(][X]) card(][X]) = card(X).
 

Proof. The first three assertions are easy to prove and
 

the fourth (also easy) appears in [vO]. 

Something is obviously lacking in part (c) of (2.5): 

one would like to compute c(J[X]) exactly. 

Now I'd like to pause to tie together some of that 

general theory in an example. The original Pixley-Roy space 

was J[:R]. According to (2.4) and (2.1), J[R] is a completely 

regular, metacompact Moore space. According to (2.5d), 

J[:R] is not separable, and yet, by (2.5c), J[R] satisfies 

the countable chain condition. It follows that J[R] is not 

metrizable, of course, but more is true: no dense subspace 

of J [:R] can be metrizable. It follows that the Moore space 

J[R] cannot be densely embedded in any complete Moore space 

(see Proposition I of [PRJ) and, even more, that JOR] can­

not be densely embedded in any Moore space satisfying the 

Baire Category theorem. (Combining Theorems 4 and 9 of [ReI]' 
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one sees that if a Moore space Y can be densely embedded in 

q Moore space satisfying the Baire Category Theorem, then Y 

has a dense metrizable subspace. Alternatively, see the 

proof of 3.3.1 in [AL].) 

Looking at the Moore space J[X] for various subspaces X 

of E (and for various generalized ordered spaces constructed 

on E--see Section 3 for a definition) leads to the following 

questions: for which first-countable spaces X will the Moore 

space J[X] be completable? In particular, is there a gener­

alized ordered space X constructed on R such that J[X] is 

completable but not metrizable? (An excellent survey of the 

ideas and tools in completability theory is given in [ReI].) 

There are certain fairly general results which have been 

useful in studying the PR-hyperspaces of, for example, ordi­

nals. However, these lemmas do not themselves involve special 

spaces and may have broader use, so I will include them in 

this section. The proofs are straightforward. 

2.6 Theorem. Suppose X = Y U Z where Y and Z are open 

subspaces of x. Define a function u: J[y] x J[Z] + J[X] by 

u(A,B) = A U B. Then the image of u is a closed and open 

subspace of J[X] and u is a continuous open mapping. In 

particular, if Y and Z are disjoint open subspaces of X then 

J[X] is homeomorphic to the topological sum (=disjoint union) 

J[y] u J[Z] u (J[Y] x J[Z]). 

2.7 Theorem. Suppose g: X + Y is a closed~ continuous~ 

finite-to-one mapping from X onto Y. Define g*: J[y] + J[X] 

by the rule that g*{F) = g-I[F] for each F E J[Y]. Then 

g* is a homeamorphism of J[y] onto a subspace of J[X]. 
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2.8 Theorem. For any spaces X and Y~ J[X] x J[Y] can 

be embedded as a closed subspace of J[XxY] by the map 

p(A,B) = A x B. 

We have already seen (2.3 and 2.4) that sometimes the 

properties of J[X] can be studied in terms of properties of 

the subspaces In[X], and Theorem 3.6 below will present a 

more spectacular example of that phenomenon. These results 

suggest the following question: What is the relationship 

between J [X] and the sequence (J [X]) of its subspaces?
n 

3. Metrizability of Special Pixley-Roy Spaces 

In his paper [vD], van Douwen pointed out the inverse 

relation which seems to exist between properties of X and 

properties of ][X]: nice spaces X have bad hyperspaces ][X], 

and vice versa. To illustrate that thesis, he observed that 

while J[R] does not have even a dense metrizable subspace, 

both of the spaces J[[O,wl )] and J[8], where 8 is the familiar 

Sorgenfrey line, are themselves metrizable. Van Douwen did 

not publish proofs for those last two assertions; there are 

now several proofs available (besides the ones which he had 

in mind) . 

3.1 Theopem. Suppose X is first-countable and locally 

countable (i.e.~ X can be covered by open~ countable subsets). 

Then J[X] is metrizable. 

The proof of (3.1) rests on an easy relative 8mirnov's 

metrization theorem: if Y is regular, metacompact and can 

be covered by open, separable rnetrizable subspaces, then Y 

is metrizable. In addition to showing that J [[O,W )] isl 
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metrizable, (3.1) shows that J[X] is metrizable even for such 

wierd spaces as the Ostaszewski line (which exists if ¢ holds-­

see [0]), the Kunen line (which exists under CH--see [JKR]) 

and the wierd lines constructed by van Douwen and Wicke [vOW].

There is another result which proves that J[[O,w )] isl 

metrizable, namely 

3.2 Theorem [BFL ]. Let a be any ordinal and let X bel 

any first-countable subspace of [O,a). Then J[X] is metriza-­

ble. 

ThE~ original proof (3.2) was an inductive one and was 

very messy. The current proof is much cleaner and shorter. 

Certain generalizations of (3.2) are available. For example: 

3.3 Theorem. Let a be any ordinal and let X be any 

first-countabZe subspace of [O,a). Then J[X2] is metrizable. 

One proof of (3.3) proceeds by induction and uses a result 

which may be valuable in other contexts (e.g., for giving 

a quick induction-proof of (3.2). 

3.4 Proposition. Suppose the point p E Z has a decreas­

ing countable base {V(n) In ~ I} of open and closed neighbor-· 

hoods. For each n > 1 Zet Z Z - V(n). If each J[Zn l is n 

paracompact~ then so is J[Z]. 

Proof. Let Z = J[Z l. Each Z is a clopen, paracom­
n n n 

pact subspace of J = J[Z}. Let ~ be any open cover of J. 

Since each Z is a clopen paracompact subspace of J, there 
n 

is a a-locally finite (in J) collection of open subsets of 

J which refines ~ and covers J[U{Z In > l}l = J[Z - {p}l.n ­
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Since the set {p} can be covered by a single member of ¢, 

it is enough to find a a-locally finite (in J) collection of 

J-open sets which refines ~ and covers the set 

J# = {F E Jlp E F and card(F) ~ 2}. 

For each F E J# write F' = F - {p} and let n(F) be the first 

integer k having F' E J[Zk] Zk. Let 

J# = {F E J#ln(F) m}.
m 

Obviously it will be enough to show that each collection J# m 

can be covered by a a-locally finite (in J) open family which 

refines ~. 

Fix m. For each F E J: choose y(F) E ~ having F E y(F). 

Then find an open set G(F) Zm and a positive integer l(F)C 

such that 

(i) F' c G(F) i 

(ii) V (1 (F» n Zm = ep, i. e., 1 (F) ~ mi 

(iii) [F, G(F) U V (1 (F) )] c Y(F) . 

Let ~'(m) = {[F',G(F)] IF E J#}. Then~' (m) is an open cover m 

of the paracompact space J[Zm] so that there is a collection 

~'(m) which refines ~'(m) and is a locally finite (in Zm) 

open (in Z ) covering of Z. Then~' (m) is a locally finite m m 

open collection in J. For each B E ~(m) choose F(B) E J# m 

having B c [F' (B) , G(F (B) ) ]. Then 1 (F (B» and y (F (B» are 

defined and [F(B),G(F(B» U V(l(F(B»)] c y(F(B». For each 

T E B, choose an open set W(T,B) c Z containing T and havingm 

[T,W(T,B)] c B. Now define 

(j(B) = U{[T U {p},W(T(B) U V(l(F(B»)] IT E B}. 

Then (j(B) c §(F(B» so that the collection ~(m) = {{j(B) IB E 

~'(m)} refines~. Further, ~(m) covers J#. Finally, it is m 
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a straightforward matter (albeit tedious) to verify that 

~(m) is locally finite in J, as required to complete the 

proof. 

Remark. After the original version of this paper was 

completed, a significant sharpening of (3.2) was obtained. 

We [BFL2 ] can prove: 

3.5 Theorem. Let X be any subspace of any ordinal 

[O,a). Then J[X] is ultraparacompact, i.e., each open 

cover of J[X] admits an open refinement which is pairwise 

disjoint. 

Now consider the situation when the ground space X is 

a subspace of, or a relative of, the real line. The fact 

that the PR-hyperspaces of the Sorgenfrey line and the Michael 

line are both metrizable (as van Douwen pointed out) can be 

deduced from a more general result in [BFL ] which tells usl 

exactly when J[X] will be metrizable for any generalized 

ordered space X built on a separable linearly ordered set. 

For sake of simplicity, let me describe the situation for 

generalized ordered spaces built fromR, the usual space of 

real numbers. Select four disjoint (possibly empty) subsets 

R, E, I, L having R = RUE U I U L. With Cdenoting the 

usual topology of R, let ] be the topology on R having the 

following base: 

C U{ [x, y) Ix E R, Y > x} U {( z, x] Ix E L, z < x} U. {{x} Ix E I}. 

We denote the resulting space OR,]) by GO(R,E,I,L), and we 

can then prove 

3.6 Theorem. Let X GO(R,E,I,L). Then the following 
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are equivalent: 

a) J[X] is metrizable; 

b) J [X] is metrizable for each n > 1;
n
 

c) J2 [X] is metrizable;
 

d) the sets R, E, I and L satisfy: 

(i) E is countable; 

(ii) If S = R U L is topologized as a subspace of X, then 

Rand L are each Fa-subsets of S; 

(iii) R can be written as R = U{R(n) In > I} in such a way 

that if x E E n clx(R(m» then for some y < x, 

(y,x) n R(m) = <p; 

(iv) L can be written as L = U{L(n) In > I} in such a way 

that if x E E n clX(L(n» then for some z > x, 

(x,z) n L(n) = <p. 

Applying (3~6) to specific spaces is usually an easy 

matter. For example, if S is the Sorgenfrey line than S = 

GOOR,<P,<P,<P) so (d) is trivially satisfied. And if M is the 

Michael line then M = GO(<P,~,P,¢), where ~ and F denote 

the sets of rational and irrational numbers respectively, 

and again (d) is vacuoisly satisfied. On the other hand, 

the "mixed Sorgenfrey line" GO(~,<P,<P,F) has a non-metrizable 

PR-hyperspace. 

Stating the corresponding theorem for generalized ordered 

spaces built on arbitrary separable linearly ordered sets is 

messier because of the potential existence of two many "jumps," 

i.e., points x < y having [x,y] = {x,y}. A typical example 

of this phenomenon is the "Alexandroff double arrow" space, 

i.e., the lexicographically ordered set A = [0,1] x {O,l} 
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endowed with the usual open interval topology. That J[A] is 

not metrizable follows from Theorem I of [BFL ] or from
1 

Theorem 2.7, above, since the mapping g: A ~ [0,1] which col­

lapses the points (x,D) and (x,l) to x induces an embedding 

g*: J[[O,l]] ~ ][A], and J[[O,l]] is non-metrizable. 

Remark. The sharpening of (3.2) mentioned in (3.5) has 

an analogue for the metrization theorem given in (3.6). 

Let's say that a space is ultrametrizable if it has a base of 

open sets which can be written as the union of countably many 

subcollections, each of which is a disjoint open cover of the 

entire space. It is proved in [BFL ] that if X is a general­
2 

ized ordered space constructed fromR and satisfying d) of 

(3.6), then X must be ultrametrizable. 

Having disposed of the PR-hyperspace of spaces related 

to separable linearly ordered sets, one might reasonably turn 

to subspaces of a Souslin line, i.e., a compact, connected, 

non-separable linearly ordered space which satisfies the 

countable chain condition. Everyone knows that whether or not 

such things exist depends on your set theory: under (V = L) 

they do; under Martin's Axiom plus wI < c they do not. In 

her talk later today, Mary Ellen Rudin will present her solu­

tion of the following problem: Let X be a subspace of a 

Souslin line: give sufficient conditions for ][X] to be 

metrizable. Details of the solution will appear in [RU ].2 

You will see that the problem really reduces to the situation 

studied in (3.6). 

4. Normality of Special PR Spaces 

Some of the most elegant work involving the PR hyperspace 
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has dealt with problems of normality. In their paper [PT], 

Przymusinski and Tall proved 

4.1 Theorem. Let X be an uncountable separable metric 

space. If each finite power of X is a Q-set then ][X] is 

normal. 

To say that a space X is a Q-set means that X is an uncounta­

ble separable metric space and every subset of X is an Fa-set 

in X. This notion entered modern topology through the work 

of Bing and Heath who proved that there is a separable, 

normal nonrnetrizable Moore space if and only if there is a 

Q-set. 

Today one of the most interesting problems about Q-set 

Xntopology is "if X is a Q-set, what about ?" In a recent 

paper [RU ], Mary Ellen Rudin gave a new proof of (4.1) and2 

proved its converse as well. Therefore we have 

4.2 Theorem. Let X be an uncountable separable metric 

space. Then each finite power of X is a Q-set if and only if 

J[X] is normal. 

Using the observation in (2.8) above, we can sharpen 

(4.2) to read: 

4.3 Theorem. Let X be an uncountable separable metric 

space. Then each finite power of X is a Q-set if and only 

if (][X])w is normal (and metacompact, CCC). 

Proof. If (][X])w is normal then so is its closed sub­

space ][X] so that (4.2) applies. Conversely, suppose each 

power of X is a Q-set. According to (2.8) applied inductively, 



153 TOPOLOGY PROCEEDINGS Volume 3 1978 

(][X])n embeds as a closed	 subset in ][Xn ] for each nEw.
 

n
But every finite power of x is a Q-set and so ][Xn ] is 

normal. But then so is (][X])n. Now consider (][X])w. It 

is a Moore space and hence is perfect. But now a theorem of 

Katetov [K] may be applied to conclude that (][X])w is normal. 

Most of the early work on	 normality of ][x] used Martin's 

axiom plus (w < c). For	 example, that special axiom was
l 

used in the paper by Przymusinski and Tall [PT] , but only to 

conclude that every uncountable separable metric space with 

cardinality < C is a Q-set. Also, the argument in (4.3) cir ­

cumvents one use of Martin's Axiom in the paper by Alster and 

Przymusinski [AP]. 

Obviously, if one intends to prove that every finite 

power of every Q-set is again a Q-set, it is enough to prove 

that the square of every Q-set is a Q-set. However, it is 

also possible to investigate the various finite powers of 

an individual Q-set. One way is given in our next theorem 

which is essentially proved in [PT] and [RU ].2

4.4 Theorem. Let X be an uncountable separable metric 

space.	 The following are equivalent: 

aJ is a Q-setXn 

bJ if Hand K are disjoint closed subsets of] [X] then 
n 

these are disjoint open subsets lj and V of ][x] with H c lj 

and K c V. 

Studying normality in separable Moore spaces led to the 

study of Q-sets. Studying countable paracompactness in 

separable Moore spaces led to a related notion, called 
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~-sets [Re ]. An uncountable separable metric space X is2 

called a ~-set if whenever 8 ~ 8 ~ ••• are subsets of X1 2 

having n{8 In > l} = ¢ it is possible to find open subsets 
n ­

(The argument 

given by Przymusinski in [P, p. 334] shows that any ~-set 

must have cardinality < c. Then it follows that any ~-set 

can be embedded in R. Hence the restriction that a ~-set 

be a subspace of R, which is part of the original definition 

of ~-set, is superfluous.) Combining theorems of Reed [Re ]2 

and Przymusinski [P] yields the conclusion that there is a 

separable, countably paracompact nonmetrizable Moore space 

if and only if there is a ~-set. 

It is obvious that any Q-set is a ~-set, but the con­

verse is open (unless special axioms are assumed: for 

example, under Martin's Axiom plus w < c, Q-sets and ~-setsl 

are exactly the same things). A slight modification of the 

argument given in [PT] combined with half of the proof of 

(4.3) yields the expected result, namely 

4.5 Theorem. Suppose every finite power of X is a 

~-set. Then (J[X])n is countably paracompact for each n < w. 

That result reduces at least part of the ~-set vs. Q-set 

problem to considering special PR-spaces: if J[X] is normal 

whenever it is countably paracompact (for X cR), then every 

finite power of X is a Q-set provided every finite power of 

X is a ~-set. 

Remark. It does not appear to be known whether, if each 

finite power of a space Y is perfect and countably paracompact, 
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it follows that yW is countably paracompact. Thus, (4.5) 

contrasts with (4.3) in that one does not obtain countable 

paracompactness of (][X]}w free. 

It would be desirable to prove the converse of (4.5), 

namely that if ][X] is countably paracompact (for X cR), 

then every finite power of X is a ~-set. It is easy to see 

that if ]2 [X] is countably paracompact then X is a ~-set (use 

the representation of J 2 [X] described in [B]) and it may be 

that the techniques of [RU ] can be modified to prove the
2

desired converse. However there is some work to be done 

because, unlike normality, countable paracompactness is not 

known to be a hereditary property in the class of Moore 

spaces. 

It would be of interest to know whether countable para­

compactness is a hereditary property in the special Moore 

spaces obtained from the Pixley-Roy construction applied to 

subspaces of the real line. A solution of that problem would 

have some bearing on the Q-set vs. ~-set problem, as the next 

result shows. 

4.6 Theorem. The following assertions are equivalent: 

a) if each finite power of X is a 6-set., then each 

finite power of X is a Q-set (and conversely); 

b) if each finite power of X is a 6-se t., then each sub­

space of ][X] is countabZy paracompact. 

Proof. That a) implies b) is trivial since perfect 

normality of ][X] is hereditary property and implies counta­

ble paracompactness. To prove that b) implies a}, suppose 

that each finite power of X is a 6-set. Let S denote a 
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convergent sequence {lin: n > I} U {OJ with the usual 

topology. It is known that a space Y is normal provided the 

product space yxS is hereditarily countably paracompact, so 

consider the space J[X]xS. Certainly S can be embedded in 

the hyperspace J[S] so that, in the light of (2.8), J[X]xS 

can be embedded in J[X]xJ[S] which embeds in J[xxS]. Now 

consider (XxS)n where n < w. Since (XxS)n = xnxsn , we see 
o 

that (XxS)n is the product of a ~-set and a countable metric 

space. But it is easy to show that any such product must be 

a ~-set. Therefore, according to b), each subspace of J[xxS] 

is countably paracompact so that the same is true of J[X]xS. 

Therefore J[X] must be normal so that Rudin's theorem (4.2), 

above, may be applied to show that each finite power of X is 

a Q-set. 

Added in Proof: 1) Concerning DC mappings (cf. Section 

2), Bennett has shown that each space J[X] is the image of a 

paracompact space under a continuous, open, compact mapping. 

2) Concerning squares of Q-sets: Przymusinski has recently 

announced [Notices Amer. Math. Soc. 25 (1978), A-610] that 

if there is a Q-set, then there is a Q-set all of whose finite 

powers are also Q-sets. 

References 

AGM J. Aarts, J. DeGroot, and R. McDowell, Cocompactness, 

Nieuw Arch. Wisk. 18 (1970), 2-15. 

AL J. Aarts, and D. Lutzer, Completeness properties de­

signed for recognizing Haire spaces, Diss. Math. 116 

(1974) . 

ALC J. Aarts and E. Lowen-Colebunders, On an example of Mary 

Ellen Rudin, Proc. Fourth Prague Symposium, Part B, 



157 TOPOLOGY PROCEEDINGS Volume 3 1978 

Society of Czech Mathematicians and Physicists, Prague 

1977, pp, 18-20. 

AP K. A1ster and T. Przymusinski, Normality and Martin's 

Axiom, Fund. Math., to appear. 

B H. Bennett, Pixley-Roy spaces and Heath planes, Topol­

ogy Proceedings 1978, to appear. 

BeL and D. Lutzer, A note on weak 8-refinability, 

Gen. Top. App1. 2 (1972), 49-54. 

BFL H. Bennett, W. F1eissner,and D. Lutzer, Metrizability1 
of certain Pixley-Roy spaces, Fund. Math., to appear. 

BFL2 ' Ultraparacompactness in Pixley-Roy spaces, to 

appear. 

BL D. Burke and D. Lutzer, Recent advances in the theory 

of generalized metric spaces, Topology, Marcel Dekker, 

1976, pp. 1-70. 

vD E. van Douwen, The Pixley-Roy topology on spaces of 

subsets, Set Theoretic Topology, Academic Press, 1977, 

pp. 111-134. 

vDTW , F. Tall, and W. Weiss, Nonmetrizable heredi­

tarily Lindelof spaces with point-countable bases, 

Proc.	 Amer. Math. Soc. 64 (1977), 139-145. 

vDW	 E. van Douwen and H. Wicke, A real~ wierd topology on 

the reals, to appear. 

E	 R. Engelking, General Topology, Polish Scientific Pub­

lishers, 1977. 

JKR	 J. Juhasz, K. Kunen, and M. Rudin, Two more heredi­

tarily separable non-Lindelof spaces, preprint. 

K	 M. Katetov, Complete normality in Cartesian products, 

Fund. Math. 36 (1948), 271-274. 

L	 D. Lutzer, On generalized ordered spaces, Diss. Math. 

89 (1972). 

o	 A. Ostaszewski, On countably compact~ perfectly normal 

spaces, J. Lond. Math. Soc. 14 (1976), 501-516. 

P	 T. Przymusinski, Normality and separability of Moore 

spaces, Set Theoretic Topology, Academic Press, 1977, 

pp. 325-338. 

PR	 C. Pixley and P. Roy, Uncompletable Moore spaces, 

Proc. Auburn Univ. Conf. (Auburn, Alabama, 1969). 



158	 Lutzer 

PT	 T. przymusinski and F. Tall, The undecidability of the 

existence of a nonseparable Moore space satisfying the 

countable chain condition, Fund. Math. 85 (1974), 291­

297. 

ReI	 G. Reed, On completeness conditions and the Baire pro­

perty in Moore spaces, TOPO-72, Springer Lecture Notes 

in Mathematics, vol. 378, pp. 368-384. 

Re 2 ' private communication. 

R1 M. E. Rudin, Concerning abstract spaces, Duke Math. J. 

17 (1950), 317-327. 

R2 ' Pixley-Roy and the Souslin line, Proc. Amer. 

Math. Soc., to appear. 

Texas	 Tech University 

Lubbock, Texas 79409 


	b0.pdf



