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A FINITENESS CONDITION IN CG-SHAPE 

T. J. Sanders 

Let X denote a Hausdorff space and let c(X) denote the 

set of all compact subsets of X. A compact cover F of X is 

said to be CS-cofinal [R-S] if there is a function g: c(X) + F 

satisfying: 

(1) if A ~ c(X) then A C g(A), and 

(2) if A,B E c(X) and A c B, then g(A) c g(B). 

The concept of CS-cofinal is used to help reduce the set of 

compact subsets determining the compactly generated shape of 

a space. The function g: c(X) + F is called a CS-cofinality 

function for F. 

A compact cover F of X that is CS-cofinal is said to be 

CS-finite if for each A E F there are only finitely many 

B E F such that B cA. The Hausdorff space X is said to be 

CS-finite if there is a compact cover F of X that is CS-finite. 

From Example 4.5 of [R-S], every paracompact, locally compac't 

Hausdorff space is CS-finite. Using these definitions, 

Example 4.9 and Corollary 4.10 of [8] may be restated as fol

lows: 

(1) Proposition. If two CS-finite metria spaaes have 

the same Borsuk-strong shape [B-2]~ then they have the same 

compactly generated shape [R-S]. 

(2) Corollary. If two locally compact metric spaces 

have the same Borsuk-strong shape~ then they have the same 

compactly generated shape. 
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A question that arises is when does (1) apply and 

(2) not apply? That is, are there metric spaces that are 

CS-finite and not locally compact? 

(3) Proposition. If X is a Hausdorff space that fails 

to be locally compact at a point X at which X has a countableo 
local base, then X is not CS finite. 

The following proof of the proposition is an adaptation 

of a similar construction given by W. L. Young for the case 

X = (0,1] x [-1,1] U {(o, O)}. 

Proof of (3). Let U be a countable local base of X at 
n 

the point x • Assume without loss that U ~ U ~ ••• ~ Un ~ O l 2 

••• , and that each inclusion is proper. Since X fails to be 

locally compact at x o' for all n, Un is not compact. 

Let F be any compact cover of X that is CS-cofinal and 

let g: c(X) ~ F be a CS-cofinality function for F. There is 

a sequence {x } that converges to X such that, for all n,n o 
where 

Then {g(Sn)} is a sequence of sets in F such that, for all 

n, g(Sn) is a proper subset of g(Sn+l). But S = 
00 

UlSn U {xO} 

is a compact set and for all n, g(Sn) c 9 (S) • Thus X cannot 

be CS-finite. 

(4) Corollary. For metric spaces, the concepts of 

locally compact and CS-finite are equivalent. 
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