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PARACOMPACTNESS IN UNIFORM SPACES

H. L. Shapiro and F. A. Smith

1. Introduction

If (X,d) is a pseudometric space, a cover § = (Ga)ael
is said to be Lebesgue if there exists a real number § > 0
such that for all x in X, B(x,68) < Ga for some o € I. (Of
course, B(x,8) = {y € X: d(x,y) < §}.) Lebesgue covers have
been extensively studied and shown themselves to be important
in many areas, especially dimension theory (see [4], [7],

(91, (101, [11]).

There are at least two ways to generalize Lebesgue covers
to more general spaces. A cover § of a topological space can
be called Lebesgue if there exists a neighborhood W of the
diagonal of X such that (W(x))xEX refines §. This term was
used in [1, p. 28]. On the other hand, Smith [10] called a
cover § of a uniform space (X,l{) Lebesgue if there exists a
U € U such that (U(x)) cy refines ¢. So as to avoid confusion
and because it seems more natural we will call these latter
covers (-even. Our motivation comes from Kelley [6] where a
cover § of a topological space is called even if there exists
a neighborhood W of the diagonal of X such that (W(x))x€x
refines §. We will use the term Lebesgue cover only if we
are in a pseudometric space.

In [11], Smith studied Lebesgue covers and (~even covers.
He ended this paper by posing two questions:

(1) In a metric space (X,d) does every Lebesgue cover

have a locally finite Lebesgue refinement?
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(2) In a uniform space does every l/~even cover neces-
sarily have a normal sequence of (~even covers that refine
the given cover?

Recently ééepin ([7]) answered the first question negatively.
In this paper we answer the second question positively (see
3.2). We then derive some consequences of this result. We
then define ULparacompac£ and its generalization and show

some of the interesting properties of this concept.

2. Definitions and Elementary Properties

In general we use the notation and terminology as in [1]

and [5]}.
I1f 9 = (Ga)aél and A = (HB)BGJ are two families of sub-
sets of X we write ¢ A A for e, n Hp: a € T and 8 € J}. 1If

y is a cardinal number we say that § has power at most y in
case the cardinal number of I is less than or equal to y.
If X is a topological space, if F is a subset of X and
if U is a neighborhood of the diagonal of X then we set
U(F) = {y € X: (x,y) € U for some y € F}. If F = {x} we write

U(x) instead of U({x}). We define UoU = U2

{(x,y) € X x X:
there exists z € X with (x,z) € W and (z,y) € W}.

If X is a topological space and if n ¢ N we say that a
cover § is n-even if there exist neighborhoods W

the diagonal of X such that wi c wi—

1"“'Wn of

for i = 2,++¢,n and

1
(Wl(x))X€X refines §. If there exists a sequence (wn)nég of
neighborhoods of the diagonal of X such that Wﬁ = wn-l for

alln € N, n # 1, and (Wl(x))xex refines § we say that ¢ is
No-even. If n = 1 we write "even" instead of "l-even" and

note that this is the usual definition of even.
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A sequence (0;) of open covers of a topological

neN
space X is normal if f;¥ all n € N, Uh+l* refines Uh (i.e.
(St(U'0;+l))U€U refines 0;). The cover § is normal if there
is a normal seguence (uh)nGN of open covers of X such that
U refines §. -

By a uniformity (/ on X we mean a non-empty collection
of subsets of X x X satisfying the usual axioms. If X is a
completely regular space we write Uo for the universal uni-
formity on X; i.e. the finest uniformity compatible with the
topology on X. If the universal uniformity is the collec-
tion of all neighborhoods of the diagonal of X we will say
that X is strongly collectionwise normal. It is known that
if X is paracompact then X is strongly collectionwise normal
and that strongly collectionwise normal implies collectionwise
normal (see ([2] and [3]). Furthermore, in general, neither
of these implications can be reversed. In [l] Richard A. Alo

and the first author proved the following two results.

2.1 Theorem. If G is an open cover of a topological

space then § is normal if and only if § is Ho—even.

2.2 Theorem. A completely regular topological space is
strongly collectionwise normal 1f and only 1f every even open

cover is normal.

A completely regular topological space is almost compact
if |BX - X| < 1. Clearly every compact space is almost com-
pact. There are many characterizations in the literature of
almost compact spaces. We list here the following character-

ization and refer the reader to [5].
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2.3 Theorem. A completely regular topological space X

is almost compact if and only if X admits a unique uniformity.

3. (-even Covers

Before starting on our main results concerning (~even

covers, we state some elementary properties of these covers.

3.1 Lemma. If (X,U) is a uniform space and if ¢ and A
are l-even covers of X, then the following statements hold.

(1) If F is a cover of X and if § refines F then F is

U-even.

(2) The cover § A H is U-even.

(3) There is an open l-even cover that refines §.

Proof. The simple proofs of (1) and (2) are omitted.
To see that (3) holds, let U € { such that (U(x))xex refines
G. sSince l{ is a uniformity, V = int U is an element of {(/,

so (V(x))xex is an open (/-even cover that refines 9.

We can now show the relationship between the "evenness"”

and "normality" of a given cover relative to a uniformity.

3.2 Theorem. If (X,U) is a uniform space and if
[ (Gu)aEI 18 a cover of X then the following statements are
equivalent:

(1) The cover G is {[-normal.

(2) The cover § is (/-even.

Proof. (1) implies (2). If ¢ is ([/-normal there exists

a sequence of open covers (§i).

ieN such that for all i € N
§i is l~even, §

x . . .
141 % refines §i and 91 refines §. So, in
particular, there exists a U in {/ such that (U(x))XEX refines

91‘ Since §l refines §, 3.1 shows that § is (-even.
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(2) implies (1). Since § is lU-even we can choose an
open symmetric U_ in { such that §o = (U, (x)) .y Tefines g.
Since ¢ is a uniformity there exists an open symmetric ele-
. 2
ment U; in ¢ such that U] €U,. Let 91 = (U; (%)) .y and note
that §1 A-refines 90 since st(x,§l) © U_(x). Furthermore 91
is lU-even. We now proceed by induction to construct covers

gn so that each §n is a A-refinement of 9&_1 by simply se-

lecting neighborhoods U2,U3,--- of the diagonal of X so that
2 .
Ui c Ui_l for i > 2. We thus have a sequence (9n)n€§ such

that §£+1 is a A-refinement of 9n—l' By [1, 1.20], (§2n)n€§
is a normal sequence of open covers and since each cover is

l~even the proof is complete.

Since (~normal implies normal, we have the following

corollary.

3.3 Corollary. If (X,) is a uniform space and if §

is a (~even cover of X, then § is normal.

As a result of 3.3 every (~even cover has a locally
finite cozero-set refinement, however, as was shown by ééepin
in [7] we may not in general choose this refinement to be
U-even.

Since every (/-even cover ¢ of a uniform space (x,U) is
normal there is a continuous pseudometric associated with
it. Using standard techniques it can be shown that this
pseudometric is uniformly continuous. Conversely, if we have
a uniformly continuous pseudometric associated with a normal
cover ¢ then § has a (/[-normal refinement and hence is (/-even.

Thus we have the following result.
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3.4 Theorem. If (X,l) is a uniform space and if § is
an open cover of X then the following statements are equiva-
lent:

(1) The cover G is U-even.

(2) There exists a uniformly continuous pseudometric

associated with §.

We next observe that in a pseudometric space a given
cover is Lebesgue if and only if it is (~even in the pseudo-
metric uniformity. This follows from the fact that sets of
the form {(x,y) € X x X: d(x,y) < &} for all § > 0 are a

basis for this uniformity.

3.5 Proposition. Suppose that (X,d) is a pseudometric
space, that ( is the pseudometric uniformity and that ¢ is a
cover of X. Then the following statements are equivalent:

(1) The cover § is Lebesgue (in (X,d)).

(2) The cover § is lU-even (in (X,U)).

We next show that in a pseudometric space every Lebesgue

cover is Bo—even but the converse need not hold.

3.6 Proposition. Suppose that (X,d) is a pseudometric
space and that § is an open cover of X. If G is Lebesgue then
G is B -even.

Proof. By hypothesis § is Lebesgue so there exists
§ > 0 such that (Bd(x,6))xex refines §. Suppose that & < 1
and for each n € N let U = {(x,y) € X x X: d(x,y) < 8/2"}.

2 . .
Then Uy = U _; and (Uj(x)) . refines § so § is B -even.

3.7 Example. Let X be the open interval (0,1) with the
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usual metric m and let { be the uniformity generated by m.
For each n € N let G, = (1/n+2,1/n) and let ¢ = (Gn)neg'
Then § is a countable star-finite normal open cover. Hence

by 2.1 ¢ is B -even. But ¢ is not Lebesgue and therefore by

3.5, G is not (-even.

Suppose that (X,m) is a pseudometric space and that §
is an open cover. 1In a pseudometric space every open cover
has a locally finite cozero-set refinement and hence every
open cover is normal. It follows that § is B -even. But as
we saw above § need not be lleven (where [/ is the pseudo-
metric uniformity on X) or equivalently, ¢ need not be
Lebesgue. Since § is normal there exists a continuous pseudo-
metric d associated with §Vsuch that (Bd(x,l/22))XGX refines
§. We now give sufficient conditions on d in order that § be

Lebesgue.

3.8 Theorem. Suppose that (X,m) is a pseudometric space
and that § is an open cover of X. If there exists a continu-
ous pseudometric d associated with § such that d < m then §
18 Lebesgue (in (X,m)).

Proof. Since d is associated with 9, (Bd(x,l/22))xEX

refines §. We show that (Bm(x,l/22)) refines §¢. If

x€X
y € B_(x,1/2%) then m(x,y) < 1/2°. Therefore d(x,y) < m(x,y)

< 1/22 so y € Bd(x,l/22) and hence (Bm(x,l/22))xEX refines 9.

4., The Main Results

We are now ready to introduce the concepts of [(/-para-
compact and (/-collectionwise normal in the context of uniform

spaces.
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4.1 Definition. Let (X,l{) be a uniform space.

(1) Suppose that y is a cardinal number not necessarily
infinite. We say that (X,{) is {/Y-paracompact if every open
cover of power at most y is (-even. Furthermore, we say that
(X,l) 1is Y -collectionwise normal if for every family (Fa)aEI
of discrete closed subsets of X of power at most y, there is
a U € U such that (U(Fa))ael is a pairwise disj?int family of
subsets of X.

(2) We say that (X,l) is U-paracompact (respectively,
UT-paracompact) if the space is UY-paracompact for every
(respectively, every finite) cardinal number y. Furthermore,
we say that (X,l) is (-collectionwise normal (respectively,
dr-collectionwise normal) if the space is {Y-collectionwise

normal for every (respectively, every finite) cardinal number

Y.

Let us point out here that (/Y-paracompact and (/f-collec-
tionwise normal are of special significance in the case that
Y is 2 or 8. In [8] we investigated the properties of even
and n-even covers. In general, these were not (-even. How-
ever, many of the techniques used there can be modified and
generalized to give similar results. Wherever needed we
will assume that this has been done.

In this section we will present several results showing
the relationship between UY—paracompact and (/'-collectionwise
normal. In particular we will show that bm—paracompact,
Uz—paracompact, 0E—collectionwise normal and Uz—collection—
wise normal are all equivalent. We will also show some of

the connections to paracompact and present examples to show
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that bm—paracompact and (-paracompact are not equivalent

and that [/-paracompactness in one (in particular, the uni-
versal) uniformity does not imply (/~paracompactness in other
uniformities.

First we will present some elementary properties of
Uw-paracompactness and (Y-collectionwise normality and
examine them in some familiar classes of topological spaces.
At the outset let us observe the following which shows the
similarity to paracompactness on subspaces and in particular

on closed subspaces.

4.2 Theorem. If (X,U) is a UY-paracompact uniform space,
then every closed uniform subspace is UY—paracompact.
Proof. Let S be a closed uniform subspace of X and let

A= (Aa)ael be an open cover of S of power at most y. For

each o € I, there is an open subset Ba of X such that

B, NS=A,. Let §= (G) be defined as follows: choose

o 0€T

8 in I arbitrary, set Ga = Ba if a # B and set GB = BB U (X-9).
Then § is an open cover of X of power at most y with the pro-
perty that Ga nss= Aa' By hypothesis X is UY—paracompact,

so 9 is l~even, i.e. there is a U € {/ such that (U(x))XEX
refines §. Let V=Un (S x S). Clearly V € /|s and for each
x in S, V(x) = {y € S: (x,y) € V} = U(x) nSC(GanS)=Aa

for some a € I. Thus (V(x))XEX refines A and S is UY-para-

compact.

Note that in the preceding proof if y is an infinite

cardinal number we can construct the cover 9 = (Ba)aél U (X-58)

so that A and ¢ will have the same power.
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4.3 Corollary. If (X,l) is a uniform space that is
U-paracompact (respectively, Uz—paracompact; respectively,
UT-paracompact) then every closed uniform subspace of X is
U-paracompact (respectively, Oz-paracompact; respectively,

dr-paracompact).

4.4 Theorem. If (X,l{) is a uniform space and <if y s
a cardinal number then the following statements are equiva-
lent:

(1) Every subspace of X is UY—paracompact.

(2) Every open subspace of X is UY-paracompact.

Proof. We need only show (2) <implies (l). Let S be a

subspace of X and let (Au)ae be an open cover of S of power

I
at most y. For all o € I there exists Ba open in X such that

B NS = Aa. Let B =

o B and note that (Bu)ael is an open

a€I
cover of the open subspace B of power at most y. Hence there

exists U € {|B x B such that (U(x))xEB refines (Ba) (on B).

o€l
Let V= U N (S x S) and note that V € {/|S x S such that

(V(x))xEX refines (Aa)ael'

The previous results did not require y to be an infinite
cardinal but we now will restrict ourselves to the case where

Y is not finite.

4.5 Theorem. Suppose that (X,l) is a uniform space. If
(x,l) is U-paracompact then X is paracompact.

Proof. 1f § is an open cover of X then by definition
there exists an element U in { such that (U(x))xex refines

G. Since U is a neighborhood of the diagonal of X we have

that every open cover is even and therefore X is paracompact.
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The preceding result used the fact that a space is para-
compact if and only if every open cover is even. If y is an
infinite cardinal number it does not appear to be known if X
is y-paracompact if and only if every open cover of power at

most y is even. However we do have the following.

4.6 Theorem. Suppose that X is a mormal topological
space and that Yy is an infinite cardinal number. If X is
Y-paracompact then every open cover of power at most y is
even.

Proof. The result follows from the fact that in a normal
space every locally finite open cover is normal and hence

even.

In the case that y is 80 we can sharpen the above result

as follows.

4.7 Theorem. If X is a topological space then the fol-
lowing statements are equivalent:

(1) The space X is countably paracompact and normal.

(2) Every countable open cover of X is B -even.

(3) Every countable open cover of X is 3-even.

Proof. (1) implies (2). If ¢ is a countable open cover
of X then, since X is countably paracompact, § has a locally
finite open refinement #. Since X is normal # is normal and
therefore K -even.

(2) Zmplies (3). This implication is clear.

(3) implies (1). If § is a countable open cover then,
by (3), G is 3-even and therefore by [8, Theorem 3.7] § has

a locally finite even refinement and hence X is countably
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paracompact.
We now show that X is normal. By [l1, Theorem 11.7] it
will suffice to show that every countable locally finite
e has a refinement (Fn)neg such that
cl Fn [~ Gn for all n € N. But this follows immediately from

open cover (Gn)n

[8, Theorem 3.6].

Thus we again see the special role of Ko in the study
of properties of families of subsets of varying cardinalities
in topology. As contrasted with Theorem 4.7 the next theorem
shows that a converse to Theorem 4.6 can be obtained in the

class of strongly collectionwise normal spaces.

4.8 Theorem. If X is a strongly collectionwise normal
topological space and if v 18 an infinite cardinal number
then the following statements are equivalent:

(1) The space X is y-paracompact.

(2) Every open cover of power at most y is even.

Proof. By 4.6, (1) implies (2). To prove (2) implies
(1), let § be an open cover of power at most y. By (2) ¢
is even and hence by 2.2 ¢ is normal. Since a normal open
cover has a locally finite open refinement the proof is com-

plete.

4.9 Corollary. If X is a completely regular topological
space and if Uo 18 the universal uniformity on X then X is
Uo-paracompact i1f and only if X is paracompact.

Proof. 1If X is Uo—paracompact then, by 4.5, X is para-
compact. Conversely, if ¢ is an open cover of the paracompact

space X, then ¢ is even. So there exists a neighborhood W of
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the diagonal of X such that (W(x)) ., refines §. But X is
paracompact so X is strongly collectionwise normal. Hence W
is an element of the universal uniformity. It follows that

X is Og—paracompact.

Since a compact space has a unique uniformity it follows
from the above and the fact that a compact space is paracom-
pact that every compact space is (/~paracompact. Actually a
paracompact almost compact space is (/~paracompact for every
(one!) admissible uniformity {. In 4.13 we will show the
converse of this statement but first we present an example
which shows that neither paracompact nor Uo-paracompact im-

plies (-paracompact for an arbitrary uniformity.

4.10 Example. Suppose that X is an infinite discrete
topological space and that UO is the universal uniformity.
Then X is paracompact and therefore by 4.3, X is Uo-paracom-
pact. Moreover X is not almost compact so there is a uni-
formity ¢ compatible with the topology on X such that ¢ # Uo.
We show that X is not (-paracompact.

Let § = ({x}) .y and observe that § is an open cover
of X. I1f § is l{-even then there is a U € { such that

(U ( refines §. This implies that U(x) = {x} and

X)) yex
U= {(x,x) € X X X: x € X} whence {/ = Uo' a contradiction.

Thus 9 is not (-even so X is not (/-paracompact.

We will now sharpen the relationship between compact,
{/-paracompact and almost compact but first we must show the

relationship to completeness.
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4.11 Theorem. If (X,l) is a l-paracompact uniform space
then (X,U) is complete.

Proof. Suppose that there exists a Cauchy filter 7 with
no cluster point. Thus for all x € X there exists Ux € U and
A, € 7 such that A NU(x) =g Let A= (Ux(x))xex' Then
A is a cover of X. Since X is (-paracompact there exists
v € {/ such that (V(x)) oy refines A. Now J is a Cauchy fil-
ter, hence there exists F € 7 such that F x F € V. Let x € F
be fixed. Then F < V(x). Also (V(x))XEX refines A so there
exists y € X such that V(x) < Uy(y). Thus F < Uy(y). Since

Uy(y) n Ay = f we have that F N Ay = @, a contradiction.

If { is the universal uniformity then 4.9 and the above

yields the following known result.

4.12 Corollary. A paracompact space is complete in its

universal uniformity.

4.13 Theorem. A uniform space (X,l) is compact <if and
only if it is U-paracompact and almost compact.

Proof. From the discussion after 4.9 we have that a
compact space is (/-paracompact and almost compact. Conversely,
if (X,!) is [ll~paracompact then (X,({/) is complete (4.11) and it
is easy to see that a complete almost compact space is com-

pact.

4.14 Remark. Clearly (/-paracompact implies UY-paracom—
pact for every infinite cardinal number y and this implies
Uxo—paracompact, UT—paracompact, and Uz—paracompact. More-
over, UT—paracompact does not in general imply (/-paracompact.

However we will show that (/T—paracompact and Uz—paracompact
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are equivalent. In order to do this we need to investigate
the relationship between ON—paracompactness and (Y-collection-
wise normality in further detail so we now proceed to inves-

tigate (f-collectionwise normal spaces.

4.15 Theorem. Suppose that (X,l) is a completely regu-
lar uniform space and that Y is a cardinal number. If (X,()
ig Uw—paracompact then X is UY-collectionwise normal.

Proof. Suppose that 7 = (Fa)aél is a discrete family of
closed subsets of X of power at most y. For each o € I let

G and let § = (G)) Since 7 is discrete it

= F .
o T Vzer,zza’c o aer
follows that Gu is open for each o € I. Thus § is an open
cover of X. Since X is ON—paracompact there exists an open

symmetric W, in { such that (W) (x)) oy Tefines §. Further-

1
more, since (/ is a uniformity there exists an open symmetric
. 2 _
W2 in {/ such that W2 c:Wl. Let %5 = (W2(x))Xex and for each
@ €I set H = st(Fa,WE) and let # = (Ha)aEI' We assert that

# is a family of pairwise disjoint open sets such that Fa = Ha
for all o € I. Clearly Ha is open and Fa C:Ha for o € I. If

H N HB # @ for a, B € I then there exists wz(b) and Wz(c)

in %& such that W,(b) N F # 8, Wy(c) n FB # # and a € W, (b)
n Wz(c) for some a € X. Hence there exists x ¢ W2(b) n Fa and

y € Wz(c) n FB' But then x € W2(b) c st(a,%&) C:Wl(a). Since

(Wl(x))xex refines g there exists § € I such that Wl(a)c GG'

It follows that x € G, and therefore x g F_if ¢ # 6, whence

§ g
§ = a. A similar argument shows that § = 8. Thus if

Ha n HB # @ then a = B.

We will now show that in the finite case the situation
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is quite special. Specifically in 4.18 we will show the
equivalence of 02—paracompact, Uz—collectionwise normal,
UT—paracompact, and Om—collectionwise normal. We will do

this in two steps. First we have the following result.

4.16 Theorem. If (X,U) is a uniform space then the
following statements are equivalent:

(1) The space (X,{l) is Uz-paracompact.

(2) The space (X,l) is uz—collectionwise normal.

Proof. (1) implies (2). Suppose that F = (Fl’FZ) is
a family of two discrete closed subsets of X. For i = 1,2
let G, = X - F; and let ¢ = (G;+G,). Then ¢ is a binary
open cover of the Uz-paracompact space X hence there exists
a U € { such that (U(x))XEX refines §. Furthermore ( is a

uniformity so there exists a symmetric V ¢ {/ such that V2 < U.

We need only show V(fl) n V(F,) g. Ify € V(F) nV(F,)

1 and b € F2
and (b,y) € V, hence (a,b) € V2 < U. Since (U(x))XGX refines

a contradic-

then there exists an a € F such that (a,y) € V

¢, U(b) =G,. But then a € U(b) €G, = X - F

1 1 1’

tion.
(2) Zimplies (l). Let A = (Al'AZ) be a binary open cover.
Set Fi = X - Ai' i = 1,2 and note that Fl n F2 = g. 1If

F, = @ or F, = @ the statement clearly holds. So assume each

1 2
is nonempty. By (2) there exists U € (/ such that U(Fl) n
U(F2) = g. Since ([ is a uniformity there exists an open
symmetric V such that V2 < U. We assert that (V(x))XEX re-
fines A. Suppose that there exists x € X such that V(x) & Al
and V(x) & A,. Then there exists zy € V(x) such that zy £ A

and z, € V(x) such that z, I3 A2. But then (x,zl) € V and

2
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2
(x,zz) € V so (zl,zz) € V© ©cU. Now z; £ Al so z, € X - Al

= Fl and therefore z, € U(zl) c U(Fl). Also z, £ A2 so

2 € X - A2 = F2 hence z2 € F2

U(Fl) n U(Fz) # @, a contradiction.

z = U(FZ)' It follows that

4.17 Corollary. If (X,l) is Uz-paracompact then X is

normal.

We can now show that in the finite case UT-paracompact
and UT—collectionwise normal are equivalent to each other and

to Uz—paracompact and Uz—collectionwise normal.

4.18 Theorem. If (X,{/) is a uniform space then the fol-
lowing statements are equivalents:

(1) The uniform space (X,({]) is U2—paracompact.

(2) The uniform space (X,l) is UT-paracompact.

(3) The uniform space (X,ll) s Uz-collectionwise normal.

(4) The uniform space (X,{/) is UT-collectionwise normal.

Proof. (1) implies (2). Let A = (Al,---,An) be a
finite open cover of X. By 4.17, X is normal, hence by
[1, 11.7]}, there exists an open cover 8 = (Bl,---,Bn) such
that cl B, <A, for i = 1,+++,n. For each i, let F, =X -
cl Bi' Then }i = (Ai,Fi) is a binary open cover of X and
hence by (1) there exists U; € U such that (Ui(x))X€X refines
Ji' Let U = n?=lUi and note that U ¢ (. We assert that
(U(x))XGX refines A. For, if x is an element of X and if
U(x) is not contained in Ai for all i = 1,«++,n then, since
(Ui(x))x€X refines ]i’ U(x) = U, (x) < F, for all i = 1,++-,n.

Therefore, U(x) < n?= F, = nn

n =
1F5 i=1(X -cl Bi) =X - Ui=1Cl Bi 2,

a contradiction.
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The implication (2) Zmplies (3) follows from 4.15.
Clearly (3) <implies (4). Finally, (4) implies (1) follows

from 4.16. The proof is now complete.

Finally, we give an example of a uniform space that is
Um—paracompact but not (/-paracompact.

4.19 Example of a uniform space (X,{) that is UT-para—
compact but not (/-paracompact.

Let X be the topological space of all ordinal numbers
less than the first uncountable ordinal number wg . One often
writes this space as W(wl). For a description of this space
see [1] or [5]. 1In particular X is almost compact but not
compact. Since X is almost compact it has a unique uniformity
which we denote by (. By 4.13, X is not U-paracompact.

To see that X is dr—paracompact we show that X is
[F-collectionwise normal. Suppose that Fy and F2 are two
(discrete) closed subsets of X. Since X is normal there
exists a real valued continuous function f from X into the
closed unit interval [0,1l] such that f(x) = 0 if x is in Fl
and £(x) = 1 if x is in F2. Let 4 be the continuous pseudo-
metric associated with f and let U = {(x,y) € X x X: d(x,y)
< 1/2}. Then U is an element of the universal uniformity

which must be in { and one easily shows that U(Fl) n U(FZ) = g.
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