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PARACOMPACTNESS IN UNIFORM SPACES 

H. L. Shapiro and F. A. Smith 

1.	 Introduction 

If (X,d) is a pseudometric space, a cover ~ = (G) I 
a aE 

is said to be Lebesgue if there exists a real number 0 > 0 

such	 that for all x in X, B(x,o) C G for some a E I. (Of
a 

course, B(x,o) = {y E X: d(x,y) < o}.) Lebesgue covers have 

been extensively studied and shown themselves to be important 

in many areas, especially dimension theory (see [4], [7], 

[9], [10], [11]). 

There are at least two ways to generalize Lebesgue covers 

to more general spaces. A cover ~ of a topological space can 

be called Lebesgue if there exists a neighborhood W of the 

diagonal of X such that (W(x»XEX refines~. This term was 

used in [1, p. 28]. On the other hand, Smith [10] called a 

cover Yof a uniform space (X,U) Lebesgue if there exists a 

U E U such that (U(x»xEX refines y. So as to avoid confusion 

and because it seems more natural we will call these latter 

covers U-even. Our motiv~tion comes from Kelley [6] where a 

cover ~ of a topological space is called even if there exists 

a neighborhood W of the diagonal of X such that (W(x»xEX 

refines y. We will use the term Lebesgue aover only if we 

are in a pseudometric space. 

In [11], Smith studied Lebesgue covers and U-even covers. 

He ended this paper by posing two questions: 

(1) In a metric space (X,d) does every Lebesgue cover 

have a locally finite Lebesgue refinement? 
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(2) In a uniform space ~oes every U-even cover neces­

sarily have a normal sequence of U-even covers that refine 

the given cover? 

Recently Scepin ([7]) answered the first question negatively. 

In this paper we answer the second question positively (see 

3.2). We then derive some consequences of this result. We 

then define It-paracompact and its generalization and show 

some of the interesting properties of this concept. 

2. Definitions and Elementary Properties 

In general we use the notation and terminology as in [1] 

and [51. 

If ~ = (Ga)aEI and H=(He)eE~ are two families of sub­

sets of X we write ~ /\ H for {G· n He: a E I and e E J}. If a 

Y is a cardinal number-we say that ~ has power at most y in 

case the cardinal number of I is less than or equal to y. 

If X is a topological space, if F is a subset of X and 

if U is a neighborhood of the diagonal of X then we set 

U(F) = {y E X: (x,y) E U for some y E F} .. If F = {x} we write 

2U(x) instead of U({x}). We define uou = u {(x,y) E X x X: 

there exists z E X with (x,z) E Wand (z,y) E W}. 

If X is a topological space and if n E N we say that a 

cover § is n-even if there exist neighborhoods Wl'···'W of n 

the diagonal of X such that W~ c w. 1 for i = 2,···,n and 
1 1­

(Wl(x»xEX refines~. If there exists a sequence (Wn)nEN of 

2neighborhoods of the diagonal of X such that w c W 1 for n n­

all n E ~' n ~ 1, and (Wl(x»xEX refines § we say that § is 

~o-even. If n = 1 we write "even" instead of "I-even" and 

note that this is the usual definition of even. 
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A sequence (U) EN of open covers of a topological
n n 

space X is normal if for all n E N, U +1* refines U (i.e.- n n 

(st(U,Un+l))UEU refines Un). The cover § is normal if there 

is a normal sequence (Un)nEN of open covers of X such that 

U refines §. 
By a uniformity Uon X we mean a non-empty collection 

of subsets of X x X satisfying the usual axioms. If X is a 

completely regular space we write U for the universal uni­o 

formity on Xi i.e. the finest uniformity compatible with the 

topology on X. If the universal uniformity is the collec­

tion of all neighborhoods of the diagonal of X we will say 

that X is strongly collectionwise normal. It is known that 

if X is paracompact then X is strongly collectionwise normal 

and that strongly collectionwise normal implies collectionwise 

normal (see [2] and [3]). Furthermore, in general, neither 

of these implications can be reversed. In [1] Richard A. Alo 

and the first author proved the following two results. 

2.1 Theorem. If § is an open cover of a topological 

space then § is normal if and only if § is K -even. o 

2.2 Theorem. A completely regular topological space is 

strongly collectionwise normal if and only if every even open 

cover is normal. 

A completely regular topological space is almost compact 

if lex - xl ~ 1. Clearly every compact space is almost com­

pact. There are many characterizations in the literature of 

almost compact spaces. We list here the following character­

ization and refer the reader to [5]. 



182	 Shapiro and Smith 

2.3 Theorem. A completely regular topological space X 

is almost compact if and only if X admits a unique uniformity. 

3. tl- even Covers 

Before starting on our main results concerning tl-even 

covers, we state some elementary properties of these covers. 

3.1 Lemma. If (X,tl) is a uniform space and if § and H 

are tl-even covers of X, then the following statements hold. 

(1)	 If J is a cover of X and if § refines J then J is 

tl-even. 

(2)	 The cover § A H is tl-even. 

(3)	 There is an open tl-even cover that refines §. 

Proof· The simple proofs of (1) and (2) are omitted. 

To see that (3) holds, let U E tl such that (U(x))xEX refines 

§. Since tl is a uniformity, V int U is an element of tl, 

so (V (x) ) xEX is an open tl-even cover that refines §. 

We can now show the relationship between the "evenness" 

and "normality" of a given cover relative to a uniformity. 

3.2 Theorem. If (X,tl) is a uniform space and if 

§ = (Ga)aEI is a cover of X then the following statements are 

equivalent: 

(1)	 The cover § is tl-normal. 

(2)	 The cover § is tl-even. 

Proof· (1) implies (2). If § is tl-normal there exists 

a sequence of open covers (§.). N such that for all i E ~ 
1 lE_ 

§i is tl-even, §i+l* refines §i and §l refines §. So, in 

particular, there exists a U in tl such that (U(x))xEX refines 

~l. Since ~l refines ~, 3.1 shows that ~ is U-even. 
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(2) implies (1). Since § is U-even we can choose an 

open symmetric U in U such that § = (U (x» EX refines ~. o 0 0 x J 

Since U is a uniformity there exists an open symmetric ele­

2 
ment Ul in U such that Ul C U Let §l = (Ul(x»xEX and note o 

that §l ~-refines §o since st(x'§l) C Uo(x). Furthermore §l 

is U-even. We now proceed by induction to construct covers 

§n so that each §n is a ~-refinement of §n-l by simply se­

lecting neighborhoods u ,U3 ,--- of the diagonal of X so that2 

uf C u - 1 for i > 2. We thus have a sequence (Yn)nEN suchi 

that §n+l is a ~-refinement of §n-l. By [1,1.20], (§2n)nEN 

is a normal sequence of open covers and since each cover is 

U-even the proof is complete. 

Since U-normal implies normal, we have the following 

corollary. 

3.3 9e-ro l lary. If (X, /J) is a uniform space and if § 

is a U-even cover of X, then § is normal. 

As a result of 3.3 every ~even cover has a locally 

finite cozero-set refinement, however, as was shown by Scepin 

in [7] we may not in general choose this refinement to be 

tJ-even. 

Since every U-even cover § of a uniform space (X,U) is 

normal there is a continuous pseudometric associated with 

it. Using standard techniques it can be shown that this 

pseudometric is uniformly continuous. Conversely, if we have 

a uniformly continuous pseudometric associated with a normal 

cover § then § has a U-normal refinement and hence is U-even. 

Thus we have the following result. 
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3.4 Theorem. If (X,U) is a uniform space and if ~ is 

an open cover of X then the following statements are equiva­

lent: 

(1) The cover ~ is U-even. 

(2) There exists a uniformly continuous pseudometric 

associated with ~. 

We next observe that in a pseudometric space a given 

cover is Lebesgue if and only if it is U-even in the pseudo-

metric uniformity. This follows from the fact that sets of 

the form {(x,y) E X x X: d(x,y) < o} for all 0 > 0 are a 

basis for this uniformity. 

3.5 Proposition. Suppose that (X,d) is a pseudometric 

space~ that U is the pseudometric uniformity and that ~ is a 

cover of X. Then the following statements are equivalent: 

(1) The cover ~ is Lebesgue (in (X,d)). 

(2) The cover ~ is U-even (in (X,U)). 

We next show that in a pseudometric space every Lebesgue 

cover is Ko-even but the converse need not hold. 

3.6 Proposition. Suppose that (X,d) is a pseudometric 

space and that ~ is an open cover of x. If ~ is Lebesgue then 

~ is Ho-even. 

Proof. By hypothesis ~ is Lebesgue so there exists 

0 > o such that (Bd(X'O))xEX refines ~. Suppose that 0 < 1 

and for each n E N let U = {(x,y) E X x X: d(x,y) < o/2n }.n 

Then u2 cU and (Ul(x))xEX refines ~ so ~ is Ho-even.n n-l 

3.7 Example. Let X be the open interval (0,1) with the 
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usual metric m and let Ube the uniformity generated by m. 

For each n E N let G = (l/n+2,1/n) and let § = (Gn)nEN.n 

Then § is a countable star-finite normal open cover. Hence 

by 2.1 § is ~ -even. But § is not Lebesgue and therefore byo 

3.5, § is not U-even. 

Suppose that (X,m) is a pseudometric space and that § 
is an open cover. In a pseudometric space every open cover 

has a locally finite cozero-set refinement and hence every 

open cover is normal. It follows that § is ~o-even. But as 

we saw above § need not be U-even (where U is the pseudo­

metric uniformity on X) or equivalently, § need not be 

Lebesgue. Since § is normal there exists a continuous pseudo­

2metric d associated with § such that (Bd (X,1/2 »XEX refines 

~. We now give sufficient conditions on d in order that § be 

Lebesgue. 

3.8 Theorem. Suppose that (X,m) is a pseudometric space 

and that ~ is an open cover of x. If there exists a continu­

ous pseudometric d associated with ~ such that d 2 m then ~ 

is Lebesgue (in (X,m». 

Proof. Since d is associated with §, (Bd (X,1/2 2 »XEX 

refines §. We show that (B (X,1/22»XEX refines §. If m

2 2
Y E B (X,1/2 ) then m(x,y) < 1/2 . Therefore d(x,y) ~ m(x,y)m


2 2 2
< 1/2 so y E Bd (X,1/2 ) and hence (B (x,1/2 »XEX refines §.m

4. The Main Results 

We are now ready to introduce the concepts of U-para­

compact and U-collectionwise normal in the context of uniform 

spaces. 
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4.1 Definition. Let (X,lj) be a uniform space. 

(1) Suppose that Y is a cardinal number not necessarily 

infinite. We say that (X,lj) is ljY-papaaompaat if every open 

cover of power at most Y is lj-even. Furthermore, we say that 

(X,lj) is ljY-aoZZeationwise nopmaZ if for every family (Fa)aEI 

of discrete closed subsets of X of power at most y, there is 

a U E lj such that (U(Fa»aEI is a pairwise disjoint family of 

subsets of X. 

(2) We say that (X,lj) is lj-papaaompaat (respectively, 

ljT_papaaompaat) if the space is ljY-paracompact for every 

(respectively, every finite) cardinal number y. Furthermore, 

we say that (X,ffi is lj-aoZZeationwise nopmaZ (respectively, 

ur-aoZZeationwise nopmaZ) if the space is ljY-collectionwise 

normal for every (respectively, every finite) cardinal number 

y. 

Let us point out here that ljY-paracompact and ljY-collec­

tionwise normal are of special significance in the case that 

Y is 2 or ~o. In [8] we investigated the properties of even 

and n-even covers. In general, these were not lj-even. How­

ever, many of the techniques used there can be modified and 

generalized to give similar results. Wherever needed we 

will assume that this has been done. 

In this section we will present several results showing 

the relationship between ljY-paracompact and ljY-collectionwise 

normal. In particular we will show that ljT_paracompact, 

If-paracompact, ljT-collectionwise normal and If-collection­

wise normal are all equivalent. We will also show some of 

the connections to paracompact and present examples to show 
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that	 ljT_paracompact and lj-paracompact are not equivalent 

and that lj-paracompactness in one (in particular, the uni­

versal) uniformity does not imply lj-paracompactness in other 

uniformities. 

First we will present some elementary properties of 

uY-paracompactness and ljY-collectionwise normality and 

examine them in some familiar classes of topological spaces. 

At the outset let us observe the following which shows the 

similarity to paracompactness on subspaces and in particular 

on closed subspaces. 

4.2 Theorem. If (X,lj) is a ljY-paracompact uniform space, 

then	 every cZosed uniform subspace is ljY-paracompact. 

Proof. Let S be a closed uniform subspace of X and let 

A = (Aa)aEI be an open cover of S of power at most y. For 

each a E I, there is an open subset B of X such that 
a 

B n S A Let § = (G ) EI be defined as follows: choose a a a a 

S in I arbitrary, set G B if a ~ S and set GS = BS U (X-S).a a 

Then § is an open cover of X of power at most Y with the pro­

perty that G n S = A. By hypothesis X is ljY-paracompact,a a 

so y is lj-even, i.e. there is a U E lj such that (U(x))xEX 

refines §. Let V U n (S x S). Clearly V E ljls and for each 

x in S, V(x) = {y E S: (x,y) E V} c U(x) n S c (G n S) = A 
a a 

for some a E I. Thus (V(x))xEX refines A and S is ljY-para ­

compact. 

Note that in the preceding proof if y is an infinite 

cardinal number we can construct the cover § = (Ba)aEI U (X-S) 

so that A and § will have the same power. 
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4.3 Corollary. If (X,U) is a uniform space that is 

U-paracompact (respectively~ U2-paracompact; respectively~ 

UT-paracompact) then every closed uniform subspace of X is 

U-paracompact (respectively~ U2-paracompact; respectively~ 

UT -paracompact) . 

4.4 Theorem. If (X,U) is a uniform space and if y is 

a cardinal number then the following statements are equiva­

lent: 

(1) Every subspace of X is UY-paracompact. 

(2) Every open subspace of X is UY-paracompact. 

Proof. We need only show (2) implies (1). Let S be a 

subspace of X and let (Aa)aEI be an open cover of S of power 

at most y. For all a E I there exists B open in X such that 
a 

B n S = A Let B UaEIB and note that (Ba)aEI is an open
a a 

cover of the open subspace B of power at most y. Hence there 

exists U E UIB x B such that (U(x))xEB refines (Ba)aEI (on B). 

Let V = U n (S x S) and note that V E Uis x S such that 

(V(x))xEX refines (Aa)aEI· 

The previous results did not require Y to be an infinite 

cardinal but we now will restrict ourselves to the case where 

Y is not finite. 

4.5 Theorem. Suppose that (X,U) is a uniform space. If 

(X,U) is U-paracompact then X is paracompact. 

Proof. If § is an open cover of X then by definition 

there exists an element U in U such that (U(x))xEX refines 

§. Since U is a neighborhood of the diagonal of X we have 

that every open cover is even and therefore X is paracompact. 
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The preceding result used the fact that a space is para­

compact if and only if every open cover is even. If y is an 

infinite cardinal number it does not appear to be known if X 

is y-paracompact if and only if every open cover of power at 

most y is even. However we do have the following. 

4.6 Theorem. Suppose that X is a normal topological 

space and that y is an infinite cardinal number. If X is 

y-paracompact then every open cover of power at most y is 

even. 

Proof. The result follows from the fact that in a normal 

space every locally finite open cover is normal and hence 

even. 

In the case that y is K we can sharpen the above result o 

as follows. 

4.7 Theorem. If X is a topological space then the fol­

lowing statements are equivalent: 

(1) The space X is countably paracompact and normal. 

(2) Every countable open cover of X is Ko-even. 

(3) Every countable open cover of X is 3-even. 

Proof. (1) impZies (2). If ~ is a countable open cover 

of X then, since X is countably paracompact, y has a locally 

finite open refinement H. Since X is normal H is normal and 

therefore Ko-even. 

(2) implies (3). This implication is clear. 

(3) implies (1). If Y is a countable open cover then, 

by (3), Yis 3-even and therefore by [8, Theorem 3.7] y has 

a locally finite even refinement and hence X is countably 
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paracompact. 

We now show that X is normal. By [1, Theorem 11.7] it 

will suffice to show that every countable locally finite 

open cover (Gn)nEN has a refinement (Fn)nEN such that 

cl F C G for all n E N. But this follows immediately from n n
 

[8, Theorem 3.6].
 

Thus we again see the special role of ~o in the study 

of properties of families of subsets of varying cardinalities 

in topology. As contrasted with Theorem 4.7 the next theorem 

shows that a converse to Theorem 4.6 can be obtained in the 

class of strongly collectionwise normal spaces. 

4.8 Theorem. If X is a strongly collectionwise normal 

topological space and if y is an infinite cardinal number 

then the following statements are equivalent: 

(1) The space X is y-paracompact. 

(2) Every open cover of power at most y is even. 

Proof. By 4.6, (1) implies (2). To prove (2) implies 

(1), let ~ be an open cover of power at most y. By (2) Y 
is even and hence by 2.2 ~ is normal. Since a normal open 

cover has a locally finite open refinement the proof is com­

plete. 

4.9 Corollary. If X is a completely regular topological 

space and if U is the universal uniformity on X then X is o 

U -paracompact if and only if X is paracompact.o 

Proof. If X is Uo-paracompact then, by 4.5, X is para­

compact. Conversely, if ~ is an open cover of the paracompact 

space X, then § is even. So there exists a neighborhood W of 
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the diagonal of X such that (W(x))xEX refines~. But X is 

paracompact so X is strongly collectionwise normal. Hence W 

is an element of the universal uniformity. It follows that 

X is Uo-paracompact. 

Since a compact space has a unique uniformity it follows 

from the above and the fact that a compact space is paracom­

pact that every compact space is U-paracompact. Actually a 

paracompact almost compact space is U-paracompact for every 

(one!) admissible uniformity U. In 4.13 we will show the 

converse of this statement but first we present an example 

which shows that neither paracompact nor U -paracompact im­o 

plies ~paracompact for an arbitrary uni£ormity. 

4.10 Example. Suppose that X is an infinite discrete 

topological space and that U is the universal uniformity.o 

Then X is paracompact and therefore by 4.3, X is U -paracom­o 

pact. Moreover X is not almost compact so there is a uni­

formity U compatible with the topology on X such that U ~ U • o 

We show that X is not U-paracompact. 

Let ~ = ({x})XEX and observe that ~ is an open cover 

of x. If ~ is U-even then there is a U E U such that 

(U{x))xEX refines~. This implies that U(x) = {x} and 

U = {{x,x) E X x X: x E X} whence U = U ' a contradiction. o 

Thus ~ is not U-even so X is not U-paracompact. 

We will now sharpen the relationship between compact, 

U-paracompact and almost compact but first we must show the 

relationship to completeness. 
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4.11 Theorem. If (X,U) is a U-paracompact uniform space 

then (X,U) is complete. 

Proof. Suppose that there exists a Cauchy filter J with 

no cluster point. Thus for all x E X there exists U E U and 
x 

Ax E J such that Ax n Ux(x) =~. Let A = (Ux(x))xEX. Then 

A is a cover of X. Since X is U-paracompact there exists 

V E U such that (V(x))xEX refines A. Now J is a Cauchy fil­

ter, hence there exists F E J such that F x F c V. Let x E F 

be fixed. Then F c V(x). Also (V(x))xEX refines A so there 

exists y E X such that V(x) c U (y). Thus FeU (y). Since 
y y 

U (y) n A ~ we have that F n A ~, a contradiction. y y y 

If U is the universal uniformity then 4.9 and the above 

yields the following known result. 

4.12 Corollary. A paracompact space is complete in its 

universal uniformity. 

4.13 Theorem. A uniform space (X,U) is compact if and 

only if it is U-paracompact and almost compact. 

Proof. From the discussion after 4.9 we have that a 

compact space is U-paracompact and almost compact. Conversely, 

if (X,U) is U-paracompact then (X,U) is complete (4.11) and it 

is easy to see that a complete almost compact space is com­

pact. 

4.14 Remark. Clearly U-paracompact implies UY-paracom­

pact for every infinite cardinal number Y and this implies 

~o-paracompact, UT-paracompact, and U2-paracompact. More­

over, UT-paracompact does not in general imply U-paracompact. 

However we will show that UT-paracompact and U2-paracompact 
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are equivalent. In order to do this we need to investigate 

fhe relationship between ljY-paracompactness and ljY-collection­

wise normality in further detail so we now proceed to inves­

tigate ljY-collectionwise normal spaces. 

4.15 Theorem. Suppose that (X,lj) is a completely regu­

lar uniform space and that Y is a cardinal number. If (X,lj) 

is ljY-paracompact then X is ljY-collectionwise normal. 

Proof. Suppose that J = (Fa)aEI is a discrete family of 

closed subsets of X of power at most y. For each a E I let 

G = and let § = Since J is discrete it a UZ;EI, z;~aF Z; (Ga ) aEI· 

follows that G is open for each a E I. Thus § is an open
a 

cover of X. Since X is ljY-paracompact there exists an open 

symmetric WI in lj such that (WI(x))XEX refines §. Further­

more, since lj is a uniformity there exists an open symmetric 

W2 in lj such that W
2 
2 C WI · Let UJ2 = (W2 (x) ) xEX and for each 

a E I set H = st(F ,UJ2 ) and let H= (Ha)aEI. We assert that a a 

H is a family of pairwise disjoint open sets such that F cH 
a a 

for all a E I. Clearly H is open and Fa cH for a E I. If a a 

H n H ~ for a, S E I then there exists W (b) and W (c)
a S ~ 2 2 

in UJ such that W2 (b) n Fa ~~, W2 (c) n F ~ ~ and a E W2 (b)2 S 
n W2 (c) for some a E X. Hence there exists x E W2 (b) n Fa and

y E W (c) n F • But then x E W (b) cst(a,W ) cWI(a). Since2 S 2 2

(WI (x) ) xEX refines § there exists 0 E I such that WI (a) c Go. 

It follows that x E Go and therefore x , F~ if ~ ~ 0, whence 

o = a. A similar argument shows that 0 = S. Thus if 

We will now show that in the finite case the situation 
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is quite special. Specifically in 4.18 we will show the 

equivalence of J2-paracompact, lj2-collectionwise normal, 

ljT_paracompact, and ljT-collectionwise normal. We will do 

this in two steps. First we have the following result. 

4.16 Theorem. If (X,lj) is a uniform space then the 

following statements are equi'valent: 

(1) The space (X, lj) is tJ -paracompact. 

(2) The space (X,lj) is tJ-collectionwise norma l. 

Proof· (1) implies (2). Suppose that] = (F ,F2 ) isl 

a family of two discrete closed subsets of X. For i = 1,2 

let G = X - F and let ~ = (G ,G ). Then ~ is a binaryi i l 2

open cover of the J2-paracompact space X hence there exists 

a U E lj such that (U(x))XEX refines~. Furthermore lj is a 

2uniformity so there exists a symmetric V E lj such that v c U. 

We need only show V(f ) n V(F2 ) ~. If y E V(F ) n V(F )l I 2

then there exists an a E F and b E F2 such that (a, y) E V l 
2and (b,y) E V, hence (a,b) E v c U. Since (U(x))xEX refines 

~, U(b) c G But then a E U(b) C G = X - F a contradic­l . 
I

,
I 

tion. 

(2) implies (1). Let A = (A ,A ) be a binary open cover.l 2 

Set F. X - Ai' i = 1,2 and note that Fl n F2 =~. If 
1 

FI = ~ or F2 = ~ the statement clearly holds. So assume each 

is nonempty. By (2) there exists U E lj such that U(F ) nI 

U(F2 ) =~. Since lj is a uniformity there exists an open 

2symmetric V such that v C U. We assert that (V(x}}XEX re­

fines A. Suppose that there exists x E X such that Vex) ~ Al 

and vex) ¢ A2 . Then there exists zl E Vex) such that zl f Al 

and z2 E Vex) such that z2 t A2 • But then (x'Zl) E V and 
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2
(x,Z2) E V so (zl,z2) E V C U. Now zl ~ Al so z1 E X - Al 

~ and therefore z2 E U(zl) C U(F l ). Also z2 t A soFl 2 

z2 E X - A = F hence z2 E F C U(F ). It follows that2 2 2 2

U(Fl ) n U(F 2 ) ~ ~, a contradiction. 

4.17 Corollary. If (X,lj) is u2- paracompact then X is 

normal. 

We can now show that in the finite case ljT_paracompact 

and ljT-collectionwise normal are equivalent to each other and 

to lj2_paracompact and lj2-collectionwise normal. 

4.18 Theorem. If (X,lj) is a uniform space then the fot­

towing statements are equivatents: 

2
(1) The uniform space (X,lj) is lj -paracompact. 

(2) The uniform space (X,lj) is ljT-paracompact. 

(3) The uniform space (X,lj) is lj2-cottectionwise normat. 

(4) The uniform space (X,lj) is ljT-cottectionwise normat. 

Proof· (1) imp ties (2). Let A = (AI'··· ,An) be a 

finite open cover of X. By 4.17, X is normal, hence by 

[1, 11.7], there exists an open cover B = (Bl,···,B ) such n 

that cl B CA for i = l,···,n. For each i, let F = X -i i i 

cl Bi . Then li = (Ai,F ) is a binary open cover of X andi 

hence by (1) there exists Ui E lj such that (Ui(x))xEX refines 

li. Let U = n~=lui and note that U E lj. We assert that 

(U(x))xEX refines A. For, if x is an element of X and if 

U(x) is not contained in Ai for all i = l,···,n then, since 

(Ui(x))xEX refines li' U(x) C Ui(x) C F i for all i = l,···,n. 

n n n
Therefore, U(x) C ni=lFi ni=l(X - c1 Bi ) = X - Ui =lc1 Bi = ~ 

a contradiction. 
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The implication (2) implies (3) follows from 4.15. 

Clearly (3) implies (4). Finally, (4) implies (1) follows 

from 4.16. The proof is now complete. 

Finally, we give an example of a uniform space that is 

UT-paracompact but not U-paracompact. 

4.19 Example of a uniform space (X,U) that is UT-para­

compact but not U-paracompact. 

Let X be the topological space of all ordinal numbers 

less than the first uncountable ordinal number wI. One often 

writes this space as W(w ). For a description of this spacel 

see [1] or [5]. In particular X is almost compact but not 

compact. Since X is almost compact it has a unique uniformity 

which we denote by U. By 4.13, X is not U-paracompact. 

To see that X is ur-paracompact we show that X is 

if-collectionwise normal. Suppose that F and F are twol 2 

(discrete) closed subsets of X. Since X is normal there 

exists a real valued continuous function f from X into the 

closed unit interval [0,1] such that f(x) = 0 if x is in Fl 

and f(x) = 1 if x is in F 2 • Let d be the continuous pseudo­

metric associated with f and let U {(x,y) E X x X: d(x,y) 

< 1/2}. Then U is an element of the universal uniformity 

which must be in U and one easily shows that U(F ) n U{F ) _.
l 2
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