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UNORDERED TYPES OF ULTRAFILTERS 

S. Shelah and M. E. Rudin 

Suppose that K is a cardinal. If U and V are ultra-

filters on K and f: K ~ K is a function, we say that 

f(U) = V if {f(H) IH E U} = V. We say that V ~ U if there 

exists an f with f(U) V. We say that U and V are of the 

same type (or U = V) if both V < U and U < V~ This is an 

equivalence relation and < then induces a partial order 

(called the Rudin-Keisler order [1,3,4]) on the types of 

ultrafilters in SK (the set of all ultrafilters on K). 

Throughout this paper, a set of ultrafilters on K is 

called unordered if its members are pairwise incompatible 

in the Rudin-Keisler order. Information about this partial 

order clearly has applications to the study of SK as the 

Stone-Cech compactification of the discrete space of car­

dinality K and to the construction of other counterexamples 

in topology. An absence of set-theoretic restrictions is 

especially important. 

It has previously been shown [3] that there are 2 K 

unordered types of ultrafilters on K. It is the purpose of 

this paper to present a proof of S. Shelah that there are 
K 

22 unordered types of ultrafilters on K. 

The free set lemma of A. Hajnal [2] says that if Ixi = a 

and 8 < a and F: X ~ ~(X) satisfies x f F(x) and IF(X) I < S, 

for all x E X, the~ there is aYe X with x ~ F(y) and 

y t F(x) for all x and y in Y and IYI = a. 

2 K K +If 2 > (2 ) , then setting X = SK' a 
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and F(U) = {V E S Iv < U} for all U E S , then we have im-
K K 

2 K 
,mediately from the free set lemma that there are 2 unordered

types of ultrafilters on K. The following theorem thus com­

pletes the proof. 

K +Theorem (Shelah). There are (2) unordered types of 

ultrafilters on K. 

Proof· If § c 7' (K) , let §' § U {K - GIG E §} and 

§* = {nKIK c y, K is finite, and G E K implies (K - G) i. K 

and G ~ ~}. If K = ~, then nK = K. 

Let] be an independent family of subsets of K: i.e., 

(1) J c 7'(K), (2) J = JI, and (3) no term of ]* is empty. 

Choose J of cardinaltiy 2 K
• 

Define E = {2 K
} if 2K is regular. Otherwise let E be a 

cofinal in 2K set of uncountable regular cardinals with no 

limit of members of E belonging to E. 

Our task would be relatively simple if 2 K were regular. 

Since 2K may be singular the standard technique of partition­

ing 2K into E is necessary as i$ the defining of Py below for

y < 2 K and the reindexing of KK and J in the middle of our 

inductive construction. For infinite y, observe by induction

that the cardinality of P is Iyl; only in retrospect is it 
y 

clear that P is precisely those subsets of K which might
y 

have been used by the yth stage of our induction. 

K 2 K 2 KIndex K = {gyly < } and] = {F Iy < }.
y 

We now define P c 7' (K) for each y < 2K by induction. 
y 

Let Qy = Uo<yP o and Ry = Uo<yQy · 

If T E R* F E - R ) f for some 0 < y, and(Qy y , = g8y' 

there is an S E (] - R') * such that ~ ~ (T n S) c f-l(F), 
y 
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then define S(T,F,f) = S for some such S. Otherwise 

S(T,F,f) is undefined. 

Define P to be the set of all X C K such that at least 
y 

one of the following: 

(1) X E Q~ U Q* U {F } U {K - F } where 0 is minimal for y o o

F o E (J - Q~), or 

(2) X f~l(y) for some 0 < Y and Y E Qy' or 

(3) X S(T,F,f) for some T E R* , F E Q - R , and f 
y Y Y 

for some 0 <,' Y. 

K
Reindex J = {G Iy < 2 } in such a way that, if ° E L,

Y 

then {G Iy < o} = J n P . 
Y ° 

The construction. By induction for each a < (2 K)+ we 

construct an ultrafilter U on Ki we then prove that the 
a 

U s are unordered. 
a 

So fix a < (2 K) + and assume that Us has been defined 

for all S < a. Index {S < a} = {ayl y < 2 K}. Then reindex 

K{S < a} {SyIY < 2 K}, K = {f Iy < 2 K} and 1>(K) = {T Iy < 2 K}
Y Y 

in such a way that, if ° E L, f = go for some 0 < 0, S = a p 

for some p < 0, and T E Po' then {y < ols = s, f f, and
Y Y 

Ty = T} is stationary in 0. Since there are a disjoint sta­

tionary subsets of 0, and {gala < o}, {aplp < o} and Po all 

have cardinality at most 0, this is no problem. 

For each y < 2 K we now inductively construct a filter 

Ua(y)i U will be an extension of Uy<2KUa(y) to an ultra­a 

filter. 

K
So assume that y < 2 and let Va(y) = Ua<yUa(o) be given. 

Let ° be the minimal member of L greater than y. 

Define Z = {z C P Iv (y) C Z, Z - V~(y) is finite, Z 
y ° \.IIa 
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is a	 filter, and no term of (Z U (] - Z'» * is empty}. 

Our induction hypothesis is that Ua(o) E Zo for all 

o < y. 

Define Ua(y) = Va(Y) unless for some limit A we have 

one of the following cases. 

Case	 (0). Y = A and there are Z E Zy' F E USA' and 

*	 -1o 1 Y E Z such that Y c fA (K - F). In this case let 

Z for some such Z. 

this case. 

Case (1) . y A + 1, T EPa' fA = go for some 0 < a,A 

and there is an F E «Pa n ]) Va(y) ') such that S(TA,F,f )A

is defined. In this case let Ua(y) = {K - F} U Va(Y) for 

some such F. 

Case (2). Y = A + 2. Let 0 be minimal for Go E (] ­

Va(Y) I); let F be the one of Go and (K - Go) such that f-l(F) 

does not belong to USA. Define Ua(y) = Va(Y) U {F} in this 

case. Observe that this case assures us that fA (USA) 1 U a 

and that ua(a)' ~ P n J.a 

Let U be an arbitrary extension of {U (Y) Iy < 2 K
} to an a a 

ultrafilter. It remains to prove that {U la < (2 K)+} are 
a 

unordered; (I) and (II) below complete this proof. 

Assume S < a < (2 K)+ and f E KK. There are ~ and n in 

K
2 and a E ~ such that f = g~ and S = an' ~ < a and n < a. 

Let A = {A < alA is a limit and SA = S and fA f (in the 

a indexing)}. 

(I) 
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Proof. By our indexing there is a A E A and by case (2) 

*Proof· For T E (U n Po) , let a 

~T = {o < a\S(T,F,f) is defined for some 

F E «J n Po) - Po)}. 

Case (a). There is a T with ~T = a.
 

Choose A E A with T = T. There is ayE a with
A 

U (A) c P • 
a y 

Choose a limit AI < a in the S indexing with f and= f AI 

T = TAl and (J n Py ) C VS(A') 'i by our indexing and case (2) 

this is possible. Since there is a 0 < a with VS(A')' C Po 

and ~T = a, there is an F E «Po n J) - VS(A') ') such that 

S(T,F,f) is defined. Thus, by case (1), there is a 

(K - F) E Us for some such F. Since F ~ VS(A')' ~ (P n J),y 

F E Q - R for some p > (y + 1). Thus S = S(T,F,f) E 
p p
 

(J - Rpl* (J - Pyl* C (J - Da(AI '1*; also S E po" Thus
C 

by our inductive hypotheses, Z = (Va (A) U S) E ZA. Since 

T E Va(A), Y = (T n S) E z*. Since Y c f-1(F) and (K - F) E 

US' by case (0), we chose such a Z = Ua(A), hence such an 

f-l(FI E U " SO (K - Fl E Us implies U t US" a a 

Case (b). ~T < a for all T. 

For each 0 < a choose 0* < a such that, for all T E Ua(O), 

* * ~T co, «Po n J) c Ua(o ) ') and Ua(o)' c P *. Choose o 

A E A such that y < A implies y * < A. Then choose F E (P A n 

J) - Q~ and let F be the one of F and (K - F) which belongs 

to US. 
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If ({f-l(K - F)} U Va(A» E ZA' then, by case (0) 

f(Ua ) ~ US· 

If ({f-l(K - F)} U Va(A» f ZA' then there is an 

* *S E	 (] - Va(A) I) and T E Va(A) such that ~ ~ (S n T) c 

f-l(F). Since, for all 0 < A, (Po n]) c Ua(O*)1 and 

Ua(o)' c Po*' (QA n }) c Va(A) 1 and Va(A) C QA. Thus 

* * F E (QA+l - RA+l ) , S E () - R~+l) , and T E RA+l . Hence 

S(T,F,f) is defined. But T E Ua(o) for some 0 < A, 0* < A, 

* and	 ~T co. Since F t QA' this is a contradiction of the 

definition of ~T. 
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