TOPOLOGY PROCEEDINGS

Volume 3, 1978

Pages 199-204

http://topology.auburn.edu/tp/

UNORDERED TYPES OF ULTRAFILTERS

by

S. Shelah and M. E. Rudin

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

UNORDERED TYPES OF ULTRAFILTERS

S. Shelah and M. E. Rudin

Suppose that κ is a cardinal. If U and V are ultrafilters on κ and $f\colon \kappa \to \kappa$ is a function, we say that f(U) = V if $\{f(H) \mid H \in U\} = V$. We say that $V \leq U$ if there exists an f with f(U) = V. We say that U and V are of the same type (or U = V) if both $V \leq U$ and $U \leq V$. This is an equivalence relation and \leq then induces a partial order (called the Rudin-Keisler order [1,3,4]) on the types of ultrafilters in $\beta \kappa$ (the set of all ultrafilters on κ).

Throughout this paper, a set of ultrafilters on κ is called unordered if its members are pairwise incompatible in the Rudin-Keisler order. Information about this partial order clearly has applications to the study of $\beta\kappa$ as the Stone-Cech compactification of the discrete space of cardinality κ and to the construction of other counterexamples in topology. An absence of set-theoretic restrictions is especially important.

It has previously been shown [3] that there are 2^K unordered types of ultrafilters on κ . It is the purpose of this paper to present a proof of S. Shelah that there are 2^{2^K} unordered types of ultrafilters on κ .

The free set lemma of A. Hajnal [2] says that if $|X| = \alpha$ and $\beta < \alpha$ and $F: X \to \mathcal{P}(X)$ satisfies $x \notin F(x)$ and $|F(x)| < \beta$, for all $x \in X$, then there is a $Y \subset X$ with $x \notin F(y)$ and $y \notin F(x)$ for all x and y in Y and $|Y| = \alpha$.

If $2^{2^K} > (2^K)^+$, then setting $X = \beta_K$, $\alpha = 2^{2^K}$, $\beta = (2^K)^+$

200 Shelah and Rudin

and $F(U) = \{V \in \beta_K \mid V < U\}$ for all $U \in \beta_K$, then we have immediately from the free set lemma that there are 2^{2^K} unordered types of ultrafilters on κ . The following theorem thus completes the proof.

Theorem (Shelah). There are $(2^K)^+$ unordered types of ultrafilters on $\kappa.$

Proof. If $\mathcal{G} \subset \mathcal{P}(\kappa)$, let $\mathcal{G}' = \mathcal{G} \cup \{\kappa - G | G \in \mathcal{G}\}$ and $\mathcal{G}^* = \{ \bigcap \mathcal{K} | \mathcal{K} \subset \mathcal{G}, \ \mathcal{K} \text{ is finite, and } G \in \mathcal{K} \text{ implies } (\kappa - G) \notin \mathcal{K}$ and $G \neq \emptyset \}$. If $\mathcal{K} = \emptyset$, then $\bigcap \mathcal{K} = \kappa$.

Let \mathcal{F} be an independent family of subsets of κ : i.e., (1) $\mathcal{F} \subset \mathcal{P}(\kappa)$, (2) $\mathcal{F} = \mathcal{F}'$, and (3) no term of \mathcal{F}^* is empty. Choose \mathcal{F} of cardinalty 2^{κ} .

Define $\Sigma = \{2^K\}$ if 2^K is regular. Otherwise let Σ be a cofinal in 2^K set of uncountable regular cardinals with no limit of members of Σ belonging to Σ .

Our task would be relatively simple if 2^K were regular. Since 2^K may be singular the standard technique of partitioning 2^K into Σ is necessary as is the defining of P_γ below for $\gamma < 2^K$ and the reindexing of κ^K and $\mathcal F$ in the middle of our inductive construction. For infinite γ , observe by induction that the cardinality of P_γ is $|\gamma|$; only in retrospect is it clear that P_γ is precisely those subsets of κ which might have been used by the γth stage of our induction.

Index $\kappa^K = \{g_{\gamma} | \gamma < 2^K\}$ and $\mathcal{F} = \{F_{\gamma} | \gamma < 2^K\}$.

We now define $P_{\gamma} \subset \mathcal{P}(\kappa)$ for each $\gamma < 2^{K}$ by induction. Let $Q_{\gamma} = U_{\delta < \gamma} P_{\delta}$ and $R_{\gamma} = U_{\delta < \gamma} Q_{\gamma}$.

If $T \in R_{\gamma}^{*}$, $F \in (Q_{\gamma} - R_{\gamma})$, $f = g_{\delta}$ for some $\delta < \gamma$, and there is an $S \in (\mathcal{F} - R_{\gamma}^{!})^{*}$ such that $\emptyset \neq (T \cap S) \subset f^{-1}(F)$,

then define S(T,F,f) = S for some such S. Otherwise S(T,F,f) is undefined.

Define P_{γ} to be the set of all $X \subseteq \kappa$ such that at least one of the following:

- (1) X \in Q' \cup Q' \cup {F $_{\delta}$ } \cup { κ F $_{\delta}$ } where δ is minimal for F $_{\delta}$ \in (\mathcal{F} Q'), or
 - (2) $X = f_{\delta}^{-1}(Y)$ for some $\delta < \gamma$ and $Y \in Q_{\gamma}$, or
- (3) X = S(T,F,f) for some T \in R $_{\gamma}$, F \in Q $_{\gamma}$ R $_{\gamma}$, and f = g $_{\delta}$ for some $\delta < \gamma$.

Reindex $\mathcal{F}=\{G_{\gamma}|\gamma<2^K\}$ in such a way that, if $\sigma\in\Sigma$, then $\{G_{\gamma}|\gamma<\sigma\}=\mathcal{F}\cap P_{\sigma}$.

The construction. By induction for each $\alpha<(2^K)^+$ we construct an ultrafilter U_α on κ ; we then prove that the $U_\alpha s$ are unordered.

So fix $\alpha<(2^K)^+$ and assume that U_β has been defined for all $\beta<\alpha$. Index $\{\beta<\alpha\}=\{\alpha_\gamma|\gamma<2^K\}$. Then reindex $\{\beta<\alpha\}=\{\beta_\gamma|\gamma<2^K\}$, $\kappa^K=\{f_\gamma|\gamma<2^K\}$ and $\mathcal{P}(\kappa)=\{T_\gamma|\gamma<2^K\}$ in such a way that, if $\alpha\in\Sigma$, $f=g_\delta$ for some $\delta<\sigma$, $\beta=\alpha_\rho$ for some $\rho<\sigma$, and $T\in P_\sigma$, then $\{\gamma<\sigma|\beta_\gamma=\beta$, $f_\gamma=f$, and $T_\gamma=T\}$ is stationary in σ . Since there are σ disjoint stationary subsets of σ , and $\{g_\delta|\delta<\sigma\}$, $\{\alpha_\rho|\rho<\sigma\}$ and P_σ all have cardinality at most σ , this is no problem.

For each $\gamma<2^K$ we now inductively construct a filter $U_\alpha(\gamma);\ U_\alpha \text{ will be an extension of } U_{\gamma<2^K}U_\alpha(\gamma) \text{ to an ultrafilter.}$

So assume that γ < 2^K and let $V_{\alpha}(\gamma) = \bigcup_{\delta < \gamma} U_{\alpha}(\delta)$ be given. Let σ be the minimal member of Σ greater than γ .

Define $Z_{\gamma} = \{ z \subset P_{\sigma} | V_{\alpha}(\gamma) \subset z, z - V_{\alpha}(\gamma) \text{ is finite, } z \}$

202 Shelah and Rudin

is a filter, and no term of $(Z \cup (\mathcal{F} - Z'))^*$ is empty}.

Our induction hypothesis is that ${\rm U}_{\alpha}(\delta)$ \in Z_{δ} for all δ < γ .

Define ${\rm U}_{\alpha}(\gamma)={\rm V}_{\alpha}(\gamma)$ unless for some limit λ we have one of the following cases.

 $\begin{array}{lll} \textit{Case} & \text{(0).} & \gamma = \lambda \text{ and there are } Z \in \textit{Z}_{\gamma}, \ F \in \textbf{U}_{\beta_{\lambda}}, \ \text{and} \\ \textbf{0} \neq \textbf{Y} \in \textbf{Z}^{\star} \text{ such that } \textbf{Y} \subset \textbf{f}_{\lambda}^{-1}(\kappa - F). & \text{In this case let} \\ \textbf{U}_{\alpha}(\gamma) = \textbf{Z} \text{ for some such } \textbf{Z}. & \text{Observe that } \textbf{f}_{\lambda}(\textbf{U}_{\alpha}) \neq \textbf{U}_{\beta_{\lambda}} \text{ in this case.} \end{array}$

Case (1). $\gamma = \lambda + 1$, $T_{\lambda} \in P_{\sigma}$, $f_{\lambda} = g_{\delta}$ for some $\delta < \sigma$, and there is an $F \in ((P_{\sigma} \cap \mathcal{F}) - V_{\alpha}(\gamma)')$ such that $S(T_{\lambda}, F, f_{\lambda})$ is defined. In this case let $U_{\alpha}(\gamma) = \{\kappa - F\} \cup V_{\alpha}(\gamma)$ for some such F.

Case (2). $\gamma = \lambda + 2$. Let δ be minimal for $G_{\delta} \in (\mathcal{F} - V_{\alpha}(\gamma))$; let F be the one of G_{δ} and $(\kappa - G_{\delta})$ such that $f^{-1}(F)$ does not belong to $U_{\beta_{\lambda}}$. Define $U_{\alpha}(\gamma) = V_{\alpha}(\gamma) \cup \{F\}$ in this case. Observe that this case assures us that $f_{\lambda}(U_{\beta_{\lambda}}) \neq U_{\alpha}$ and that $U_{\alpha}(\sigma)' \supset P_{\alpha} \cap \mathcal{F}$.

Let U_{α} be an arbitrary extension of $\{U_{\alpha}(\gamma) \mid \gamma < 2^K\}$ to an ultrafilter. It remains to prove that $\{U_{\alpha} \mid \alpha < (2^K)^+\}$ are unordered; (I) and (II) below complete this proof.

Assume $\beta < \alpha < (2^K)^+$ and $f \in \kappa^K$. There are μ and η in 2^K and $\sigma \in \Sigma$ such that $f = g_{\mu}$ and $\beta = \alpha_{\eta}$, $\mu < \sigma$ and $\eta < \sigma$. Let $\Lambda = \{\lambda < \sigma | \lambda \text{ is a limit and } \beta_{\lambda} = \beta \text{ and } f_{\lambda} = f \text{ (in the } \alpha \text{ indexing)}\}.$

(I)
$$f(U_{\beta}) \neq U_{\alpha}$$
.

Proof. By our indexing there is a $\lambda \in \Lambda$ and by case (2) $f(U_{\rho}) \neq U_{\alpha}.$

(II)
$$f(U_{\alpha}) \neq U_{\beta}$$
.

Proof. For $T \in (U_{\alpha} \cap P_{\sigma})^*$, let $\Delta_{T} = \{\delta < \sigma | S(T,F,f) \text{ is defined for some } F \in ((\mathcal{F} \cap P_{\sigma}) - P_{\delta})\}.$

Case (a). There is a T with $\Delta_{\mathbf{T}} = \sigma$.

Choose λ \in Λ with \mathbf{T}_{λ} = T. There is a γ \in σ with $\mathbf{U}_{\alpha}\left(\lambda\right)$ \subset \mathbf{P}_{γ} .

Choose a limit λ ' < σ in the β indexing with $f = f_{\lambda}$, and $T = T_{\lambda}$, and $(\mathcal{F} \cap P_{\gamma}) \subset V_{\beta}(\lambda')$ '; by our indexing and case (2) this is possible. Since there is a δ < σ with $V_{\beta}(\lambda')$ ' $\subset P_{\delta}$ and $\Delta_T = \sigma$, there is an $F \in ((P_{\sigma} \cap \mathcal{F}) - V_{\beta}(\lambda'))$ ') such that S(T,F,f) is defined. Thus, by case (1), there is a $(\kappa - F) \in U_{\beta}$ for some such F. Since $F \notin V_{\beta}(\lambda')$ ' $\supset (P_{\gamma} \cap \mathcal{F})$, $F \in Q_{\rho} - R_{\rho}$ for some $\rho > (\gamma + 1)$. Thus $S = S(T,F,f) \in (\mathcal{F} - R_{\rho})^* \subset (\mathcal{F} - P_{\gamma})^* \subset (\mathcal{F} - U_{\alpha}(\lambda))^*$; also $S \in P_{\sigma}$. Thus by our inductive hypotheses, $Z = (V_{\alpha}(\lambda) \cup S) \in \mathcal{F}_{\lambda}$. Since $T \in V_{\alpha}(\lambda)$, $Y = (T \cap S) \in Z^*$. Since $Y \subset f^{-1}(F)$ and $(\kappa - F) \in U_{\beta}$, by case (0), we chose such a $Z = U_{\alpha}(\lambda)$, hence such an $f^{-1}(F) \in U_{\alpha}$. So $(\kappa - F) \in U_{\beta}$ implies $U_{\alpha} \neq U_{\beta}$.

Case (b). $\Delta_{\mathbf{m}} < \sigma$ for all T.

For each $\delta < \sigma$ choose $\delta^* < \sigma$ such that, for all $T \in U_{\alpha}(\delta)$, $\Delta_T \subset \delta^*$, $((P_{\delta} \cap \mathcal{F}) \subset U_{\alpha}(\delta^*)')$ and $U_{\alpha}(\delta)' \subset P_{\delta^*}$. Choose $\lambda \in \Lambda$ such that $\gamma < \lambda$ implies $\gamma^* < \lambda$. Then choose $F \in (P_{\lambda} \cap \mathcal{F})$ and let F be the one of F and $(\kappa - F)$ which belongs to U_{δ} .

If $(\{f^{-1}(\kappa - F)\} \cup V_{\alpha}(\lambda)) \in Z_{\lambda}$, then, by case (0) $f(U_{\alpha}) \neq U_{\beta}$.

If $(\{f^{-1}(\kappa - F)\} \cup V_{\alpha}(\lambda)) \not\in Z_{\lambda}$, then there is an $S \in (\mathcal{F} - V_{\alpha}(\lambda)')^*$ and $T \in V_{\alpha}(\lambda)^*$ such that $\emptyset \neq (S \cap T) \subset f^{-1}(F)$. Since, for all $\delta < \lambda$, $(P_{\delta} \cap \mathcal{F}) \subset U_{\alpha}(\delta')$ and $U_{\alpha}(\delta)' \subset P_{\delta^*}$, $(Q_{\lambda} \cap \mathcal{F}) \subset V_{\alpha}(\lambda)'$ and $V_{\alpha}(\lambda) \subset Q_{\lambda}$. Thus $F \in (Q_{\lambda+1} - R_{\lambda+1})$, $S \in (\mathcal{F} - R_{\lambda+1})^*$, and $T \in R_{\lambda+1}^*$. Hence S(T,F,f) is defined. But $T \in U_{\alpha}(\delta)$ for some $\delta < \lambda$, $\delta^* < \lambda$, and $\Delta_T \subset \delta^*$. Since $F \notin Q_{\lambda}$, this is a contradiction of the definition of Δ_m .

Bibliography

- C. C. Chang and H. J. Keisler, Model theory, North Holland, New York.
- I. Juhasz, Cardinal functions in topology, Math. Centre tracts 34, Amsterdam, 1975 (A. 3.5) 96.
- 3. K. Kunen, *Ultrafilters and independent sets*, Trans. Amer. Math. Soc. 172 (1972), 299-306.
- 4. M. E. Rudin, Partial orders on types in βN , Trans. Amer. Math. Soc. 155 (1971), 353-362.

The Hebrew University

Jerusalem

and

University of Wisconsin Madison

Madison, Wisconsin 53706