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ON THE CHARACTER OF SUPERCOMPACT SPACES

Jan van Mill and Charles F. Mills!

1. Introduction, Definitions and Conventions

A collection of subsets F of a space X is called a
m-network for x € X provided that every neighborhood of x
contains a member from F. The supertightness p(x,X) of x in
X is defined to be the least cardinal « for which every
m-network J for x consisting of finite subsets of X contains
a subfamily 7’ < 7 of cardinality <« which is a m-network for
X. In addition, the supertightness p(X) of X is defined by

p(X) = w-sup{p(x,X)|x € X}.
It is clear that t(X) < p(X) for every topological space X
(for the definitions of cardinal functions such as t,w,d,c,X
see Juhdsz [7]); in addition the reader can easily verify
that p(X) = t(X,Hf(X)), where Hf(x) denotes the hyperspace
of finite nonempty subsets of X.

For every compact Hausdorff space X and k € w we say
that cmpn(X) < k provided that there is an open subbase (/ for
X such that every covering of X by elements of { contains a
subcovering consisting of at most k elements of (. In addi-
tion, cmpn(X) = k if cmpn(X) < k and cmpn(X) £ k and cmpn (X)
= o in case cmpn(X) £ k for all k € w. Cmpn(X) is called the
compactness number of X (cf. Bell & van Mill [3]). It is
known that for every k € w there is a compact Hausdorff

space X, for which cmpn(xk) = k; also cmpn(Bw) = «» (cf. Bell

k
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& van Mill [3]). Spaces with compactness number less than or
equal to 2 are just the supercompact spaces as defined by

de Groot in [6]. Many spaces are supercompact, for example
all compact metric spaces (cf. Strok & Szymafiski ([14]; ele-
mentary proofs of this fact have recently been discovered by
van Douwen [4] and Mills [12]). The first examples of non-
supercompact compact Hausdorff spaces were found by Bell [1].

In section 2 of the present paper we will prove a theorem
from which the following statement is a corollary:

If X is supercompact then x(X) < d(X):p(X).

The supercompactness of X is essential; we will give an
example of a space X such that cmpn(X) = 3, d(X) = p(X) = w
and x(X) = 2¥. In addition we show that the inequality can-
not be sharpened by considering t instead of p. We construct
an example of a supercompact spaée X such that d(X) = t(X) = w
while x(X) = p(X) = 2°.

We are indebted to Eric van Douwen for some helpful com-

ments.

2. On the Character of Supercompact Hausdorff Spaces

All topological spaces under discussion are assumed to
be Tychonoff.

Let X be a set and let «k be a cardinal. We define (as

usual)
x1 = (a cx||A| = k}
x1°% = {a ¢ X||A| <}
X]<° = (a c x‘|A| < k).

Let X be a space, B be a closed subset of X, and Y be

the space obtained from X by identifying B to one point. Let
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f: X > Y be the identification. For ¢ € {t,p,x} let
¢(B,X): = ¢(£[B],Y).

In case X is supercompact, the supercompactness of X
can also be described in terms of a closed subbase: a space
is supercompact iff it has a closed subbase with the property
that any of its linked (= every two of its members meet) sub-
collections has nonvoid intersection. Such a subbase 1is
called binary. Without loss of generality we may assume that
a binary subbase is closed under arbitrary intersections.
Let 5 be a binary subbase for X. For A c X define I(A) c X
by

I(A): = n{s € 5|a c s}.

Notice that clx(A) c I(A), since each element of § is closed,
that I(I(A)) = I(A) and that I(A) ¢ I(B) if A < B c X. The
following lemma was proved in van Douwen & van Mill [5].

For the sake of completeness we will give its proof also here.

2.1. Lemma (van Douwen & van Mill [5]). Let § be a
binary subbase for X and let p € X. If U is a neighborhood
of p and if A is a subset of X with p € ch(A), then there is
a subset B of A with p € ch(B) and I(B) < U.

Proof. Since X is regular, p has a neighborhood V such
that p € clx(V) © U. Let J be the collection of all finite
intersections of elements of §. Choose a finite F ¢ y such
that cl, (V) = UF c U. Now 7 is finite, and A n V c UF, and
P € cly(A n V); hence there is an § ¢ 7 with p € cl (A n Vv
N S). Let B: = ANVANS. Then p € clx(B), and B « A, and

I(B) « S <« U} c U.

We now can prove the main result of this section.



230 van Mill and Mills

2.2. Theorem. Let Y be a continuous image of a super-
ecompact space. Then x(Y) < d(Y)-.p(¥Y).

Proof. Let S be a binary subbase for X which is closed
under arbitrary intersections and let f: X » Y be a continuous
surjection. Let k: = d(Y)-.p(Y) and fix a dense subset
D = {d |a < «} of Y. Choose y €Y and define

Fo = {Uyly € [S]<w and 3 neighborhood U of y
such that £ 1(U) uf.
Notice that for every neighborhood U of y there is an F € ¥

such that f-l(y) cF < £ 1(U) since § is a subbase. For each

F € 7 let F: = {. SF, where S° € § for all i < n(F). For
i<n(F)"1 i =
each a < k take d& € X such that f(d&) = da'
. _ F ,
Fix ¢ < k and F = Uiin(F)Si € 7. For each i < n(F)

pick a point

a F
e, €N FI({d&’S}) n Si‘

+ sGSi

Notice that, since JS is binary, it is possible to take such
a point. Let E®(F): = {ej,+++,eX ). Then {(£(E*(F))[F € F)
is a collection of finite subsets of Y such that each neigh-
borhood of y contains a member of it. Since p(y,Y) < k we
can find a subfamily }a « F of cardinality at most x such
that each neighborhood of y contains a member of {f(Ea(F))l
F € }a}.

We claim that

-1

(*) n(ua<KJa) N clyfdlle < x} = £7(y) N clyddfa < x}

which proves that y(y,Y) < « since |y F | < kex =x. To

o<k ol —
this end, first observe that f-l(y) c n(ua<K}a). Assume that
X\ s . o \
(*) is not true; then there is an x € (n(Ua<K}a) n CIX{daI

o < k) - (£ n c1,{d!|a < k}). Then clearly £(x) # y
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and consequently we may take disjoint neighborhoods U and V
of, respectively, y and f(x). By lemma 2.1 we can find a

subset D6 c {d&la < k} such that x ¢ I(Db) [ f_l(V). Pick

d; € D) arbitrarily. In addition, take F € Ju such that
0

[0

E 0(F) < f—l(U). Since x € n(uu K]u) we have that x € F =

<

< n(F) such that x ¢ SE
0

U hence there is an i

F

i<n(F)®if 0
%0 F F

1 ] )

Then e, "~ € nses. I({da ,s}) n s; < I({da X} n s; < I(Do)
0 i, 0 0 0 0

_l(V). This is a contradiction, however, since

n SE c f
0
o

e.% ¢ £ 1(u) ana £
1o

Ly n 1wy = p.

2.3. Corollary. Let X be a supercompact space and let

B be a closed subset of X. Then x(B) < d(X)+p(B,X).

We will now describe the examples announced in the
introduction. We start with a useful result, the proof of
which was suggested to us by Eric van Douwen. Our original

proof was much more complicated.

2.4. Theorem. Let YX be a compactification of a separa-
ble metric space X such that YX - X is homeomorphic to the one
point compactification of a discrete space. Then p(yX) = w.

Proof. Write yX - X as D y {«»}, where » is the non-
isolated point. Evidently p(x,vX) = w for all x # ». It
remains to show that p(x,yX) = w. Let B be a countable base
for X closed under finite union.

For A, < P(yX) and S c YX we say that (| covers A(rel S)
if for every neighborhood U of « with U > S the following

holds: if there is there is A € A with A c U then there is
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C € (with C c U. We say that ( covers A if ( covers
Alxel 2).
We prove that p(e«,yX) = w by proving something formally
stronger:
(1) for all 7 ¢ [yX] Y there is F' € [F12¥ which covers
So let ¥ c [yX]“®. For B € B8 and n €  define
}B,n ={F €F FNXcB,|F nD| =nj}.
[We do not care if » € F or not.] Using the fact that 8 is
closed under finite unions, one can easily prove that (1)
follows from
(2) for all B € 8 and n € u there is }é,n € [}B,n Lw
which covers JB,n(rel B).
But evidently (2) follows from
(3) for all n € w, if A c [D]1™ then there is A’ ¢ [A]ZY
which covers A.
We prove (3) with induction on n. For n = 0 there is nothing
to prove. Suppose (3) holds for a certain n € w, and let
A c [D]n+l. Let /1 be a maximal disjoint subfamily. If /] is

infinite let A’ be any member of [M¥®. If A is finite

A, = {A € A: x ¢ A} (x € uMm) Q

For each x € U/} there is A; € [Ax]iw which covers Ax' Now

r _ 14
let A’ = uxeumﬂx.
This theorem gives us our first example.

2.5. Example. A compact space X such that cmpn(X) = 3,

d(X) = p(X) = w while x (X) = 2.

Indeed, let X be the one point compactification of the

Cantor tree 92 U ) (cf. Rudin [13]). In van Douwen &
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van Mill {5} it was shown that this space has compactness
number 3 (this was also shown independently by M. G. Bell).

Theorem 2.5 gives us p(X) = w while clearly d(X) = w and

We will now describe our second example.

2.6. Example. A supercompact space Z for which

d(z) = t(2) = w and x(X) = 2%,

Indeed, let L be the "double arrow line," i.e. the space
{0,1] x 2 lexicographically ordered. Let A < L2 be the set
Kx,y>y > x}. Then set z = LZ/A, and let m: L2 + X be the
projection. Since L is first countable, so is LZ; we conclude
that t(LZ) = w. This implies that t(Z) = w since 7 is closed.
Clearly d(Z) = w. Since L2 - A contains {(¢¢a,l),¢(a,0))) |
a € [0,11} as a closed discrete subset of cardinality 2w’

A is not a GG in L2 so that x(Z) > w. In fact, it is easily
seen that x(z2) = 2¥. It remains only to show that X is super-
compact.

To this end, let AO be the set of all clopen rectangles
in L2 which do not meet A (a rectangle is the product of two
intervals). In addition, let Al: = {[a,b]2|[a,b] is clopen
in L}. It is easily verified that {v[B]|B ¢ AO u Al is a

binary closed subbase for Z.

The above space Z of example 2.7 has another surprising
property; it is the continuous image of a normally supercom-
pact space while x(Z) £ d(2)-t(z2). Below we will prove that
for every normally supercompact space X the inequality

x(X) < d(X)-t(X) holds. Hence, in contrast with Theorem 2.2,
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this is not true for continuous images of normally super-
compact spaces.

Recall that a normally supercompact space is a space X
which possesses a binary subbase § which in addition is normal,
S, € § there are T

i.e. for all disjoint S T, € S such that

0’'"1 0’
S0 o T0 - Tl’ S1 C:Tl - T0 and T0 u T1 = X. This is not such
a strange condition, since in van Mill & Schrijver [10] it
was shown that if § is a binary subbase for X then J§ is

weakly normal, i.e. for all disjoint S € § there is a

051
finite covering /1 of X by elements of S such that each ele-
ment of /] meets at most one of S0 and Sl' However, the
normally supercompact spaces have much stronger properties
than the supercompact spaces, see van Mill [9]. We also
want to notice that there is a geometric characterization of
normally supercompact spaces, see van Mill & Wattel [11].
Since it is easily seen that each product of linearly
orderable compact spaces is normally supercompact we see that

the space Z of example 2.6 is the continuous image of a

normally supercompact space.

2.7. Lemma. Let § be a binary normal subbase for X,
let X € X and let U be a neighborhood of x. Then there is
a neighborhood V of x such that x € V <« I(V) < U.

Proof. Without loss of generality we may assume that

U is open. Let F ¢ [51°%

such that x £ U} o X - U. For
each F ¢ 7 choose F' € § such that x ¢ inty (F') and F' N F = §.
This is possible since § is normal and since {x} = n{s ¢ S|

. . . L . o
x € 8} and since S is binary. Then V: Npegint (F') is

as required.
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2.8. Theorem. Let X be a normally supercompact space.
Then x(X) < d(X)-t(X).
Proof. Use Lemma 2.8 and the same technique as in Theorem

2.2,
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