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USING 8-SPACE CONCEPTS IN BASE 

OF COUNTABLE ORDER THEORY 

Howard H. Wicke 

1. Introduction 

This paper shows how the concept of e-space and other 

related conditions can be used to obtain monotonic uniformi

zations fundamental in base of countable order theory. From 

these results a number of sharp metrization and developability 

theorems of the factorization type are obtained. The transi

tions from e-conditions to monotonic ones are accomplished 

via the concepts of monotonic S-space [C] and monotonic semi

stratification [C] which playa basic role here. A typical 

result is that a regular T monotonic S-space has a base ofl 

countable order if and only if it is a e-space. Another 

aspect emphasized is that many important results involving 

Go-diagonal remain valid when that concept is replaced by the 

much weaker one of e-diagonal. Thus many of the results 

clarify the nature of certain classical ones by elimination 

of superfluous hypotheses. This is pointed out in several 

places in Section 5 and 6 without attempting to be exhaustive. 

In [C] the concept of an (m)-sequence of ordered covers 

was combined with monotonic S-space to obtain characteriza

tion theorems, e.g., of base of countable order. One of the 

main objects here is to point out that weaker 8-conditions 

(defined in Section 2) can be used instead of ordered covers. 

It is of interest that the notion of (m)-sequence of ordered 

covers [C] which is equivalent to primitive (m)-sequence can 
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be replaced by the weaker notion of star-(m) function (= a 

e-type condition), since it represents a departure from the 

method of primitive sequences which forms the basis of the 

approach to base of countable order theory initiated in [WoW] 

and carried out in subsequent publications (see references 

in [WW ]).
2

The use of e-space concepts permits obtaining analogues 

of results in developable space theory. For example, the 

factorization of regular T spaces having bases of countableI 

order into monotonically semistratifiable we-spaces (Theorem 

5.5) is an analogue of the theorem [HoI] that Moore spaces 

are equivalent to regular TI semi-stratifiable we-spaces. 

In section 2, a unified way of considering various kinds 

of uniformizations of topological concepts such as first 

countability is expounded. In section 3 Chaber's concepts 

are presented. The main theorem is proved in section 4, and 

the paper concludes in sections 5 and 6 with numerous theorems 

based in part, at least, on the main theorem. 

This paper relates to some of the work in [C] and [FL] , 

the reading of which was instructive. 

2. Unifol"mization of Topological Properties 

This section expounds a unifying view point for consider

ing different types of structures on a space and it contains 

definitions and terminology used later. We consider various 

methods of uniformizing topological properties (m) of se

quences. For convenience of exposition we focus on 3 such 

prop~rties labelled (d), (q), and (~) (cf. [C, Section 2]), 

but the same procedures may be used for other properties (m). 
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The	 properties are defined for sequences <B : n EN) of sub
n 

sets of a space X: 

(d)	 If x E n{B : n E N} , {B : n EN} is a base at x. n n 

( ~) If x E n{B : n E N} , then n{B : n E N} = {x} • n	 n 

(q)	 If x E n{B : n E N} and for all n E N,n 

E n{Bk : I < k ~ n}, then < Y : n E N >clusters.Yn n 

The properties listed correspond respectively to first 

countability, points being Go'S, and q-space. For the first 

two ways of uniformizing (m), let (X,T) be a space and Y ~ X 

and let ~ <~ : n EN) be a sequence of bases of Y in Xi n 

i.e. each ~n ~ T and if y E Y and y E U E T, there exists 

G E ~n such that y E G ~ U. 

2.1. Uniformization of developable type. To obtain this 

type, suppose for all representatives G of ~ (i.e. G E ~n n 

for all n EN), if Y E Y n n{G : n EN}, then require that n 

~G : n EN) has property (m) at y (and in Y, for (q)). In n 

particular, if Y = X, then 

(a)	 If (m) (d) , X is developable. 

(b)	 If (m) (~) , X has a Go-diagonal. 

(c) If (m) (q) , X is quasi-complete [Cr] . 

(Note that open covers may be used here instead of bases. )~n 

2.2. Uniformization of monotone type. Here the only 

change from 2.1 is to require that (m) is required to hold 

only for decreasing representatives G of ~, (i.e. G +l ~ G n n 

for	 all n E N) and y E Y. If Y = X, then: 

(a)	 If (m) = (d), X has a base of countable order 

[A, WoW] • 
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(b)	 If (m) = (~), X has diagonal a set of interior 

condensation [W ].2

(c)	 If (m) = (q), we say that X is a monotonic q-space 

(see Section 5 for further remarks). 

2.3. Uniformization of primitive type. For each n E N, 

let W be a well-ordered collection of open sets in X such 
n 

that W covers Y. For each x E Y, let F({X},W ) denote the n n 

first element of W that contains x. Then we require that n 

the sequence (F ( {x} , W ): n EN> have (m) for all x E Y. If 
n 

Y = X, then: 

(a)	 If (m) (d), X has a primitive base [WW2]. 

(b)	 If (m) (~), X has a primitive diagonal [WW2]. 

(c) If (m) (q), X is a primitive q-space. 

(Case (c) is called primitively quasi-complete in [WW2].) 

2.4. Uniformization of star functional type. This 

involves a function h: N x Y ~ T, where T is the topology on 

X, and for all x E Y and n E N, x E h(n+l,x) ~ h(n,x). Define 

for each x E X and n E N, h*(n,x) u{h (n , z): z E h (n , x) and 

x E h(n,z)}. Then require for all y E Y that the sequence 

(h* (n,y): n EN> has property (m) at y. If Y = X, then: 

(a)	 If (m) (d), X is a 6-space [H0 ].
2

(b)	 If (m) (~), X has a 6-diagonal. 

(c)	 If (m) (q), X is a we-space [H0 2 ]. 

2.5. Proposition. The uniformizations above satisfy 

2.1	 ~ 2.2 ~ 2.3 ~ 2.4, for a fixed (m). 

2.6. Notes. In a number of cases above, especially 

in 2.4, these are not the original definitions of the concepts. 
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The functional approach has been effectively used by Heath 

[H] and Hodel [H0 ]. The recent paper of [FL] continues2

this work and was a stimulus for the formulation of 2.4 above. 

The condition called a-diagonal is equivalent to Condition II 

of [FL]. The uniformizations in 2.2 and 2.3 arose from the 

work in [WoW] and [WW2 ]. However in those works the concept 

of primitive seq~ence is used rather than ordered covers. The 

uniformization of 2.3 could be phrased in terms of primitive 

sequences. The original definition of base of countable order 

given in [A] was not of this uniformization type. The devel

opable type formulation is by now classical. That all of 

these can be looked at as different types of uniformization 

of simple properties seems worth emphasizing. Note also that 

one could add to the above list a quasi-developable type of 

uniformization in an obvious way. 

2.7. Terminology. If (m) is a property of sequences, 

and h is a function as in 2.4, h will be called a star-(m) 

funation of Y in X, or if Y = X, just a star-(m) function. 

A sequence of bases as in 2.2 will be called a monotonic 

(m)-sequenae of bases of Y in X, or if Y = X, a monotonic 

(m)-sequence of bases. 

A sequence of ordered covers as in 2.3 is called an 

(m)-sequence of ordered covers in [C]. 

3.	 Monotonic ~-Space8 

In [C] monotonic formulations of a-space [H0 2 ] and semi

stratifiable space [Cr] are defined and used to obtain a 

unified approach to certain characterization theorems. In 

[C] these concepts are combined with certain sequences of 
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ordered covers (equivalently, with primitive sequences) or 

with point-countability weak covering conditions. In the 

sequel it is shown that in certain theorems (m)-sequences of 

ordered covers can be replaced by the weaker property of 

star-(m) function, where (m) is a monotone property (see 

Section 4) . 

3.1. Definition [C]. A space X is called a monotonic 

~-space if and only if for all x E X there is a decreasing 

sequence <B (x): n EN) of bases at x such that if, for all n 

n E N, B n E B (x ),n n B +1 n c - B ,n and n{Bn : n E N} ~ ~, then 

(x : n E N) has a cluster point.
n 

If, in addition, y E n{B : n E N} implies that <x : n n 

n EN) clusters to y, then X is called monotonically semi

stratifiable. 

Chaber points out that if in the above it is not assumed 

that the sequences <B : n E N) involved in the condition are n 

decreasing, then characterizations· of ~-space and semi

stratifiable space are obtained. It may be noted that in 

the definition of monotonically semi-stpatifiabZe it is 

equivalent to require that (x : n EN> converge s to y.n 

In [FL] a space (X,T) is defined to be a quasi-~-space 

provided that there is a function g: N x X + T such that if 

{x,x } c n{g(i,xi ): 1 < i < n} for each n E N, then <x : n n 

n E N) has a cluster point. 

3.2. Proposition. Every quasi-~-space is a monotonic 

~-space. 

Proof. Let g be a quasi-~ function for (X,T). For 

each n E N and x E X, define B (x) = {B E T: x E B c n{g(i,x):n 
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1 < i < n}}. Clearly <B (x): n EN) is a decreasing sequencen 

of bases at x. If y E B +1 c B E B (x ) for all n E N, then . "n - n n n 

{y,x } ~ n{g(i,x.): 1 < i < n}. Hence (x : n E N) clusters. n ]. - - n 

Thus monotonic a-space generali~es a-space and quasi-complete 

space. The results of Section 5 show that quasi-a space may 

be replaced by monotonic a-space in Props. 4.2, 4.3, and 4.4 

of [FL]. 

Using Definition 3.1, it may be seen that the properties 

of monotonic a-space and monotonic semi-stratifiability are 

countably productive. Using productivity it may be shown 

that for T spaces, monotonic semi-stratifiability implies2 

diagonal a set of interior condensation (i.e. in the termi

nology of 2.2, the space has a monotonic (~)-sequence of 

bases). This fact is stated in [C, Prop. 1.8] in different 

terminology. 

3.3. Terminotogy. If X is a space and Y ~ X, then 

«Bn(x): n EN): x E Y}, where the Bn(x) 's satisfy the first 

part of 3.1, is called a monotonic a-system of Y in X. If 

the Bn(x) 's also satisfy the second part of 3.1 then the 

system is called a monotonic semi-stratification of Y in X. 

A number of relationships among the concepts defined here 

and other well known notions are summarized in diagrams ap

pearing in Section 6. 

4. The Mai. Theorem 

In [CCN], if ~ and N are families of subsets of a space 

X, o~ < N means that each element of N includes an element 
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of m. Also a property (m) of sequences is called monotonic 

if <H : n E N) has (m) and 8(W : n E N) < (H : n E N) n n . n 

implies that <W : n EN> has (m). A monotonic property (m)n 

is non-complete if all sequences H such that n{H : n E N} ~ n 

have (m). Note that the properties (d), (q), and (~) are 

such properties. The following theorem is fundamental for 

most of the results of the paper. The terminology (m)-sieve 

is from [CCN] where the equivalence of (a) and (c) is proved. 

4.1. Theorem. Suppose (X,T) is a regular T space,
l 

Y ~ X has q monotonic a-system in X, and (m) is a noncom

plete monotonic property. Then the following are equivalent: 

(a) y has a monotonic (m)-sequenae of bases in X. 

(b) y has a star-(m) function in X. 

(c) Y has an (m)-sieve in X. 

Proof. If (a) holds, Y has a sequence y of bases in X 

such that decreasing representatives G of y have (m) if 

Y n n{G : n E N} ~~. From § we may derive a primitive (m)
n 

sequence H of Y in X [WW2], i. e. a sequence ( H : n EN) of n 

well ordered collections of open sebs of X covering Y such 

that for all n E N, if F(A,H ) denotes the first element of n

H that includes A, then for each H E H there is an x E Y 
n n 

such that: (1 ) H = F ({x} , H ), (2 ) if x E Y, F ({x} , H +1) c n n -

F ({x} , H ), and (3 ) if (H : n EN> s atisf ies H = F (H +1 ' H )n n n n n 

for all n EN, then <H : n EN) has (m) in Y. For each x E Y, n 

define h(n,x) = F({x},H ). Then x E h(n+l,x) c h(n,x) and n -

h*(n,x) = U{h(n,y): y E h(n,x) and x E h(n,y)} = h(n,x). For 

each x E Y, {h*(n,x): n E N} has (m) since h(n,x) 

F(h(n+l,x),H ). (Note that monotonic a-system is not used n 
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in this direction.) 

Let « B (x): n EN): x E Y} be a monotonic B-system of n 

Y in X and let h: N x X ~ T be a star-(m) function of Y in X. 

For each n E N, let ~n ~ {B E Bn(x): x E Y and B ~ h(n,x)}. 

Then each ~n is a base (in X) for all points of Y. Suppose 

y E Y	 and y E G +1 ~ G E ~ for all n E N. Each G E B (x )n n n n n n 

for some x E Y. Thus <x : n EN) clusters to some z E Y. n n 

Since each x E G , z E {x : k ~ n} ~ G ~ h(n,x ) for all n n k n n 

n E N. For each n E N, there exists j > n such that x. E 
n -	 I n 

h(n,z). Since h(jn'x . ) ~ h(n,x . ), z E h(n,x.). Thus 
J Jn n I n 

G. c	 h(j ,x. ) c h*(n,z) for all n E N. Hence O<G :
I - n I -	 n n n 

n· EN) < ( h * (n, z): n EN>, so (G : n EN) has (m).n 

4.2. Theorem. If X is a regular T monotonia B-spaael 

and (m) is a non-aomplete monotonia property, then the fol

lowing are equivalent: 

(aJ X has a monotonia (m)-sequenae. 

(bJ X has a star-(m) funation. 

(aJ X has an (m)-sieve. 

Proof. Put Y = X in 4.1. 

5. Applications 

We present some new characterizations of various kinds 

of spaces and obtain some well known theorems as corollaries. 

5.1.	 Theorem. Let X be a regular Tl monotonia S-spaae. 

Then	 the following are equivalent: 

(aJ X has a base of aountable order. 

(bJ X is a 6-spaae. 



276 Wicke 

Ppoof. That (a) implies (b) follqws from the facts that 

base of countable order implies primitive base [WW ' Th. 3.1]2 

and primitive base implies a-space [FL, Prop. 3.3]. As pointed 

out in Section 2, X is a a-space provi~ed X has a star-(d) 

function. By 4.2, X has a monotonic (d)-sequence of bases and 

thus X has a base of countable order [WoW, Th. 2]. 

5.2. Theopem. A pegula~ T monotonic a-space is monol 

tonically semi-stpatifiable if and only if it has a a-diagonal. 

Ppoof. A T monotonically semi-stratifiable space X has2 

diagonal a set of interior condensation as pointed out in 

section 3. Thus X has a monotonic (~)-sequence. From this 

a primitive (~) -sequence ( B : n EN) may be obtained [WW ' n 2 

2.10]. By defining h(n,x) = F({x},B) (see proof of 4.1) a 
n 

star-(~) function is obtained. Thus X has a a-diagonal. 

Suppose «B'(x): n EN): x E X) is a monotonic a-system
n 

for X and h is a star-(~) function. For each n E N and x E X, 

let B (x) {B E B'(x): Ii c h(n,x)}. Then B (x) is a base at 
n n - n 

x and B (x) c B'(x). Suppose y E B +1 c B E B (x ) for all n - n n - n n n 

n E N. By the argument of Theorem 4.1, there is a z such 

that B. c h*(n,z) for all n E N. Thus n{B : n E N} = {z}
I - n n 

{y}. Hence <x : n EN) clusters to y.n 

5.3. Copollapy. A pegulap monotonic S-space has 

diagonal a set of intepiop condensation if and only if it 

has a a-diagonal. 

5.4. Remapk. Theorem 5.1 (respectively 5.2) shows that 

in Cor. 2.4 (respectively, Cor. 2.5) ef [C], the concept of 

(d)-sequence (respectively, (~)-sequence) of ordered covers 
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may be replaced bye-space (respectively, e-diagonal) and 

Cor. 5.3 above shows that in Prop. 1.8 of [C], We-diagonal 

(= diagonal a set of interior condensation) may be replaced 

bye-diagonal. A similar remark holds for (p)-sequence of 

ordered covers (see [C, page 211] for (p» and star-(p) 

function in Cor. 2.6 of [C]. 

5.5. Theorem. A regular T space has a base ofl 

countable order if and only if it is a monotonically semi

stratifiable we-space. 

Proof. Let X be a regular monotonically semi-stratifia

ble we-space. Proceed as in 5.2 to get a primitive (~)

sequence <B : n EN). Using regularity and [WW2 , 2.10] we n 

can require of this sequence that if <B : n EN> is any se-
n 

quence such that each B = F(B +l,B) (see 4.1 for notation),n n n 

then each B +1 c B. Define h(n,x) = F({x},B ) to get a n - n n 

star-(~) function. Let K ~ X be compact and x E X. If each 

h(n,x) n K ~ ~, then there exists y E n{h(n,x): n E N} n K. 

Since h(n+l,x) ~ h(n,x), y E n{h(n,x): n E N} = {x}. Thus 

x E K. Hence X satisfies Condition I of [FL]. By [FL: Cor. 

to 2.2], X is a e-space. Thus sufficiency follows from 5.1. 

There is a straight-forward proof of necessity. 

5.6. Remark. Theorem 5.5 is an analogue of Hodel's 

result [HoI' Cor. 4.6]: A regular T space is a Moore spacel 

if and only if it is a semi-stratifiable we-space. Hodel's 

theorem is a corollary of the following corollary of 5.6. 

5.7. Corollary. A regular T space is a Moore space
l 

if and only if it is a e-refinable monotonically 
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semi-stpatifiable we-space (equivalently, a e-refinable mono

tonic a-space which is a e-space). 

Since every quasi-developable space is a e-space the 

result of [BB, Cor. 3.2] that every regular T e-refinablel 

B-space with a quasi-development is a Moore space follows 

from the last statement of 5.7. 

In [WW Th. 4.1] the following is proved:3 , 

5.8. Theopem. An essentially T space has a base of
l 

countable opdep if and only if it has a ppimitive base and 

closed sets ape sets of intepiop condensation. 

Recall that a subset M of a space X is called a set of 

interior condensation [WW ] if there exists a sequence (~n:
l 

n EN) of bases for M in X such that if G +1 c G E r. forn - n Yn 

all n E N, then n{G : n E N} ~ M. Note that a space X has n 

diagonal a set of interior condensation if its diagonal in 

X x X is such a set. 

In [C], Chaber points out that in the regular case one 

can replace the condition on closed sets in 5.8 by the condi

tion of being a monotonic a-space. This is explained by 

Theorem 5.1 since a space with a primitive base is a e-space. 

Another way of viewing Chaber's result is via the following. 

5.9. Ppoposition. In a pegulap monotonic a-space having 

a e-diagonal closed sets ape sets of intepiop condensation. 

Ppoof. Suppose M is closed in a regular monotonic 

a-space X having a e-diagonal. Then M has a monotonic 

a-system in X and a star-(~) function in X. By Theorem 4.1, 

M has a monotonic (~) -system y = <Y : n EN) of bases in X. n 
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If (G : n EN) is a decreasing representative of § (i.e.n 

G +1 c G E § ) then n{G : n E N} is either empty or is {x}n - n n n 

for some x E M. 

5.10. Note. Another way of seeing 5.9 is to use Theorem 

5.2 and the fact stated (without proof) in [C, Prop. 1.4] that 

closed sets are sets of interior condensation in a regular 

monotonically semi-stratifiable space. 

5.11. Corollary. If X is a regular e-refinable mono

tonic S-space with a e-diagonal then closed sets are G -sets
8

in X and X has a G8-diagonal. 

Proof. In a e-refinable space closed sets of interior 

condensation are G -sets [WW ' Th. 5.6]. Also by 5.3, X has
8 4 

diagonal a set of interior condensation and by [WW ' Th. 5.7],4 

X has a G -diagonal.
8

Monotonic q-spaces are a not necessarily first countable 

analogue of bases of countable order. The condition called 

B in [WI' Def. 2.3] implies monotonic q-space and for regularc 

spaces they are equivalent. Thus in the regular case monotonic 

g-spaces are the uniformly A-complete open continuous images 

of regular TI M-spaces [WI' Th~ 4.2]. The following diagram 

points out some relationships: 

p-space ~w~-space 

~ 
quali-comPlete space ) S-space 

1 
monotonic q-space ------------~) monotonic S-space 

1 
we-space. 
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5.12. Theorem. A regular T monotonic S-space is al 

monotonic q-space if and only if it is a w8-space. 

Proof. The necessity is clear and the sufficiency fol

lows from Theorem 4.1. 

5.13. Theorem. A regular T space has a base ofl 

countable order if and only if it is a monotonic q-space with 

a 8-diagonal. 

Proof. This follows from Theorems 5.2, 5.5 and the above 

diagram. 

Theorems 3.1 and 3.3 of [BB) are immediate corollaries 

of this theorem, the relationships in the diagram above, and 

the observation that a Tl quasi-developable space has a 

a-diagonal. 

5.14. Corollary [W2]. A regular Tl space has a base of 

countable order if and only if it is a monotonic q-space with 

diagonal a set of interior condensation. 

6. Metrization and Summary 

From the preceding results and a theorem of Arhangel'skil 

[A, Th. 2] a number of metrization theorems may be obtained. 

6.1. Theorem. Let X be a T paracompact space. Then2 

the following are equivalent: 

(aJ X is metrizable. 

(b) X is a monotonic S-space and a 8-space. 

(c) X is a monotonic q-space with a 8-diagonal. 

(d) X is monotonically semi-stratifiable with a 8-diagonal. 

Proof. Arhangel'skil's theorem [A, Th. 2] states that a 
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T paracompact space having a base of countable order is2 

metrizable. Thus the results follow from Theorems 5.1, 5.13, 

and 5.2. 

6.2. Corollary [Bo,O]. A paracompact p-space with a 

Go-diagonal is metrizable. 

6.3. Corollary [FL]. A paracompact p-space with a 

8-diagonal is metrizable. 

For regular T spaces relationships among various kinds
l 

of diagonals are summarized below. The arrows denote impli

cation and if additional hypotheses are needed they are writ

ten adjacent to the arrows. 

6.4. Diagram. 

8-refinable, mon. q. 

developable ) Go-diagonal 

8-refinable 8-refinable 

monotonic q-space 

base of count ------------------+) diagonal a set of 
able order interior condensation 

closed sets closed sets 
s.i.c. s.i.c. 

primitive q-space 

diagonalprimitif base • primitIve 

w8-space 
~------------

8-space -------------+) Condition I of [FL] 

t 
8-diagonal 
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6.5. Diagram. 

~ semi-stratifiable
developable 44--- ....,.------ a-space 

we-space e-dia~onalj
 
e-refinable 

monotonic 
-----l.~ ~ 

base of count 4 semi-stratifiable ~monotonic a-space 
able order we-space e-diagonal 

In conclusion, we discuss a theorem which has a number 

of interesting consequences. 

6.6. Theorem [FL, Lemma 3.4]. Every regular e-refinable 

a-space with a e-diagonal has a e-separating open cover. 

Definitions of a-space and e-separating open cover may' 

be found in [HoI]. The proof in [FL] is closely related to 

the proof in [H0 3 , Th. 3.2] of a related theorem. A similar 

technique involving e-refinability and Konig's lemma was used 

in [WoW, Th. 3]. We prove the following generalization more 

briefly using some known results. 

6.7. Theorem. Every regular e-refinable monotonic 

a-space with a e-diagonal has a e-separating open cover. 

Proof. By Corollary 5.11, such a space X has a Go-diago

nal . Let ( Y : n EN> be a sequence 0 f bases def ining the n 

Go-diagonal. By [BL, Lemma 4], for each n E N there is an 

open refinement U{V : mEN} of ~n such that for all x E X nm 

some V has exactly one element containing x. Supposenm 

x,y E X and x ~ y. There exists n such that y ~ st(x,y ).n 
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There also is an m such that x is in only one element V of 

V Since V ~ st(x'~n)' y ~ V. Hence u{V : n,m E N} is a nm nm 

e-separating open cover of X. 

6.8. Remark. The referee observed that 6.7 follows 

from 5.1 and [H0 3.3]. The above proof illustrates a dif 3 , 

ferent approach. 

6.9. Theorem. Every hereditarily weakly e-refinable 

monotonic 8-space with a e-diagonal has a e-separating open 

cover and a quasi-Go-diagonal. 

Proof. A space X satisfying the hypothesis has diagonal 

a set of interior condensation. Using a monotonic (~)-sequence 

of bases, in place of a (d)-sequence in the proof of [BB, 

Th. 3.4], a quasi-G<s-diagonal sequence (~n: n E N) may be 

obtained. The argument of the proof of 6.7 may be applied to 

this sequence to obtain a e-separating open cover. 

6.10.	 Questions. 

1. Is every monotonically semi-stratifiable hereditarily 

e-refinable space semi-stratifiable? 

2. Does every primitive q-space with a e-diagonal have 

a primitive base? 

References 

[A]	 A. V. Arhangel'skil, Certain metrization theorems,
 

Uspehi Mat. Nauk 18 (1963), 5 (113), 139-145 (Russian).
 

[BB]	 H. R. Bennett and E. S. Berney, On certain generaliza

tions of developable spaces, Gen. Top. and Appl. 4
 

(1974) , 43-50.
 

[BL]	 H. R. Bennett and D. J. Lutzer, A note on weak
 

e-refinability, Gen. Top. and Appl. 2 (1972) , 49-54.
 



284	 Wicke 

[Bo]	 C. R. Borges, On stratifiable spaces, Pac. J. Math.
 

17 (1966), 1-16.
 

[C]	 J. Chaber, On point-countable collections and mono

tonic properties, Fund. Math. 94 (1977), 209-219. 
v 

[CCN] , M. M. Caban and K. Nagami, On monotonic 

generalizations of Moore spaces, Cech complete spaces 

and p-spaces, Fund. Math. 84 (1974),107-119. 

[Cr] G. D. Creede, Concerning semi-stratifiable spaces, 

Pac. J. Math. 32 (1970), 47-54. 

[FL] P. Fletcher and W. F. Lindgren, 8-spaces, Gen. Top. 

App1. 9 (1978), 139-153. 

[H]	 R. W. Heath, Arc-wise connectedness in semi-metric 

spaces, Pac. J. Math. 12 (1962), 1301-1319. 

[Hal] R. E. Hodel, Moore spaces and w~-spaces, Pac. J. Math. 

38 (1971), 641-652. 

[H0 ] , Spaces defined by sequences of open covers2 
which guarantee that certain sequences have cluster 

points, Duke Math. J. 39 (1972), 253-263. 

[H0 ] , Metrizability of topological spaces, Pac.3 
J. Math. 55 (1974),441-459. 

[0]	 A. Okuyama, Some generalizations of metric spaces, 

their metrization theorems and product spaces, Sci. 

Rep. Tokyo Kyoiku Daigaku Sect A 9 (1967), 236-254. 

[WI]	 H. H. Wicke, Open continuous images of certain kinds 

of M-spaces and completeness of mappings and spaces, 

Gen. Top. and App1. 1 (1970), 85-100. 

[W ] , On spaces whose diagonal is a set of interior2 
condensation, Notices Amer. Math. Soc. 19 (1972), 

A-657. 

[WW ] and J. M. Worrell, Jr., On the open continuous1 
images of paracompact Cech complete spaces, Pac. J. 

Math. 37 (1971), 265-275. 

[WW2 ] , Primitive structures in general topology, 

in Studies in topology, eds. Stavrakis and Allen, 

Academic Press, Inc., New York, 1975, 581-599. 

[WW3 ] , A characterization of spaces having bases of 

countable order in terms of primitive bases, Can. J. 

Math. 27 (1975), 1100-1109. 



285 TOPOLOGY PROCEEDINGS Volume 3 1978 

[WW4 ] , The concept of a 8-refinable embedding, 

Gen. Top. and Appl. 6 (1976),167-181. 

[WoW] J. M. Worrell, Jr. and H. H. Wicke, Characterizations 

of developable topological spaces, Can. J. Math. 17 

(1965), 820-830. 

Ohio University 

Athens, Ohio 45701 


	c0.pdf



