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SOME PROPERTIES OF WHITNEY CONTINUA 

E. Abo-Zeid 1,2 

1.	 Introduction 

A continuum is a compact connected metric space. The 

letter X will always denote a continuum with metric d, and 

C(X) is the hyperspace of nonempty subcontinua of X metrized 

by the Hausdorff metric H. For basic facts about hyperspaces, 

see [12]. If A E C(X), then C(A) = {Y E C(X) IY ~ A} and 

A = {{a}la E A}. A continuous map ~: C(X) ~ R is called a 

Whitney map if it satisfies: (1) ~ ({x}) = 0 for each x E X, 

and (2) if A ~ B and A ~ B, then ~(a) < ~(B). Whitney [16] 

has shown that such maps always exist. Throughout this 

paper, ~ will stand for an arbitrary Whitney map on C(X). 

It is known [4] that ~ is monotone, i.e., ~-l(t) is a sub­

continuum of C(X) for each t. The continua ~-l(t) are called 

the Whitney continua. Notice that if A E C(X), then C(A) n 

~-l(t) is a continuum since it is a Whitney continuum in 

C(A) . 

A topological property P is said to be a Whitney property 

provided that whenever a continuum X has property P, so does 

-1 
~ (t) for each Whitney map ~ for C(X) and each t with 

o < t < ~(X). Whitney properties were investigated by 

several authors (see [8], [14], [15], and, for a summary 

of results, see [12]). Nadler [12] defines a topological 

lThis work is part of the author's doctoral dissertation 
done at the University of Saskatchewan, Saskatoon, Sask. 

2This work was partially supported by N.R.C. (Canada) 
grant #A8205. 
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propertyP to be a strong Whitney-reversible property (resp., 

Whitney-reversible property) provided that whenever X is a 

continuum such that ~-l(t) has property P for some Whitney 

map (resp., all Whitney maps) ~ for C(X), and all t with 

o < t < ~(X), then X has property P. Nadler ([12], [13]) has 

shown that some topological properties are Whitney-reversible 

and he asked [12, (14.57)] if certain other properties are 

Whitney-reversible. In section 2 we show that hereditary 

decomposability, hereditary arcwise connectedness, and 

C*-smoothness are strong Whitney-reversible properties. 

In section 3 we study the relation between convexity of 

the Whitney continua and that of the underlying continuum. 

The author wishes to thank Professor S. B. Nadler, Jr. 

for suggesting the topic of this paper and for many helpful 

discussions. 

2. Whitney-Reversible Properties 

A continuum is said to be decomposable provided that it 

is the union of two proper subcontinua. It is said to be 

indecomposable provided that it is not decomposable. A pro­

perty P of a continuum X is said to be hereditary provided 

that each subcontinuum of X has P. We will denote by 0 the 

union function 0: C(C(X» + C(X) defined by o(a) = U{AjA E a}, 

and by i the function i: C(X) + C(C(X» defined by i(A) = A. 
It is known that 0 is continuous [6], and that i is an isometry 

[12, (16.6)]. 

It is known [12, p. 413] that indecomposability is not 

a Whitney property. However, this result shows that inde­

composability of X is reflected in ~-l(t). 
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2.1. Theorem. Let X be an indecomposable continuum. 

Let ~ be a Whitney map for C(X). Then for each t E (O,~(X)) 

there exists an indecomposable continuum St ~ ~-l(t) such that 

a(St) = x. 

Proof. Let t E (O,~(X)) be fixed. It follows by the 

continuity of the union function a and Brouwer's reduction 

theorem that ~-l(t) contains a continuum St which is irre­

ducible with respect to the property that a(St) = X. We 

show that St is indecomposable. For, if St were the union 

of two proper subcontinua Sl and S2' then a(Sl) and a(S2) 

would be proper subcontinua of X such that X = a(Sl) U a(S2). 

This contradicts the fact that X is indecomposable. 

It is known (see [12, p. 454]) that decomposability is 

not a Whitney property. 

2.2. Theorem. Assume there is a sequence {t } E such nnw 

that t ~ a as n ~ 00 3 and ~-l(tn) is hereditarily decomposablen 

for each n = 1,2,3'---3 then X is hereditarily decomposable. 

Hence 3 hereditary decomposability is a strong Whitney-

reversible property. 

Proof. Suppose on the contrary that X contains an in-

decomposable continuum Y. It follows easily from the con­

tinuity of ~, and the hypothesis of the theorem that there 

exists t E {t In E w} such that C(Y) n ~-l(t ) is a non-o n 0 

-1degenerate subcontinu~m of ~ (to). Then, by 2.1, there 

exists an indecomposable continuum S c C(Y) n ~-l(t ). This 
- 0 

contradicts the fact that ~-l(to) is hereditarily decomposa­

ble. 
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The result just proved answers one of the questions in 

[12, (14 . 57) ] . 

A continuum X is unicoherent provided that A n B is 

connected whenever A and Bare subcontinua of X such that 

A U B = X. A triod is a continuum M which contains a sub-

continuum N such that the complement of N in M is the union 

of three nonempty mutually separated sets. A continuum is 

a-triodio provided it contains no triode A continuum X is 

chainable provided that for each € > 0, there exists a con­

tinuous function f: X + R such that diam(f-l(r» < € for 

each r E f(X). 

Nadler has proved the following result (see [12, (14.46), 

(14.49-51) ] . 

2.3. Theorem [Nadler]. Assume there is a sequence 

{t } E such that t + 0 as n + and ~-l(tn) is unicoherent00 
nnw n 

(or, respectively, a-triodic, an arc, a circle), then X is 

unicoherent (or, respectively, a-triodic, an arc, a circle). 

The following two results provide partial answers to the 

question of whether chainability is a Whitney-reversible 

property. 

2.4. Theorem. Assume there is a sequence {tn}nEw such 

-1that t + 0 as n + 00 and ~ (t ) is an hereditarily decom­
n n 

posable chainable continuum for each n = 1,2,3,···, then X 

is an hereditarily decomposable chainable continuum. 

Ppoof. It follows by 2.2 that X is hereditarily decom­

posable. Since a chainable continuum is hereditarily uni­

coherent and a-triodic, it follows by 2.3 that X is hereditarily 
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unicoherent and a-triodic. Bing [2, Theorem 11] has proved 

that an hereditarily decomposable continuum is chainable if 

and only if it is a-triodic and hereditarily unicoherent. 

A continuum X is said to have propertY[K] provided that 

for each E > 0, there exists 0 > a such that if a,b E X, 

d{a,b) < 0, and a E A E C{X), then there exists B E C{X) 

such that b E B, and H{A,B) < E. It is known [6] that if X 

has property[K], then the function F : X x [O,~{X)] + C{C{X» 
~ 

defined by F (x,t) = {A E ~-l{t) Ix E A} is continuous. 
~ 

2.5. Theorem. Let X be a continuum which has pro­

perty[K]. Assume there is a sequence {tn}nEw such that 

-1
t + 0 as n + 00 3 and ~ (t ) is chainable for each n = n n 

1,2'---3 then X is chainable. 

Proof. Let E > a be given. By the continuity of ~, 

and the hypothesis of the theorem, there exists to E {tnln E w} 

such that diam{M) < E/2 for each M E ~-l{to). Since ~-l{to) 

is chainable, there exists a continuous map g: ~-l{t ) ~ o 

[0,1] such that diam{g-l{r» < E/2 for each r E [0,1]. De­

fine f: X + [0,1] by f{x) = centre{g{F (x,t »). Since X 
~ 0 

has property[K], f is continuous. Let r E f(X), and let 

a,b E f- l (r) . Then there exist A E F (a,t ) and B E F (b,t ) 
~ 0 ~ 0 

such that r g{A) g{B). Since g is an E/2-map, H{A,B) < 

E/2. Thus, d{a,b) < E. This shows that f is an E-map. 

Hence, X is chainable. 

It is known {see [12, (14.48)]) that arcwise connected­

ness is not a Whitney-reversible property. Let us note the 

following: 
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2.6. Theorem. Assume that ~-l(t) is hereditarily arc-

wise connected for each t E (O,~(X)), then X is an arc or a 

circle. Hence, hereditary arcwise connectedness is a strong 

Whitney-reversible property. 

Proof. It is known [9, p. 212] that each arcwise con­

nected continuum is decomposable. Thus, each ~-l(t) is hered­

itarily decomposable for each t E (O,~(X)). Then, by 2.2, 

X is hereditarily decomposable. It follows by [8, (3.3)] that 

X is a-triodic. Now, we show that C(X)\{E} is arcwise con­

nected for each proper subcontinuum E of X. Let E be an 

arbitrary but fixed subcontinuum of X. We may assume that 

E is non-degenerate. To prove that C(X)\{E} is arcwise con­

nected, it suffices from the arc structure of C(X) to show 

that if A is a proper subcontinuum of E, then A and X can be 

joined by an arc in C(X)\{E}. Let t > 0 be chosen such that 

~(A) 2 t < ~(E). Let B E ~ 
-1 

(t) such that A c B, and let a l 

be an order arc from A to B (see [12]). Let g E X'E, and let 

G E ~-l(t) such that g E G. Since ~-l(t) is arcwise con­

nected, there exists an arc a joining Band G in ~-l(t).2 

Let a be an order arc from G to X. It follows that a U a 3 l 2 

U a is an arc joining A and X in C(X)\{E}. This shows that
3 

C(X)'{E} is arcwise connected. Since X is a-triodic and 

hereditarily decomposable, it follows by [12, (11.16)] that 

X is chainable or circle-like. 

If X is chainable, then since the property of being a 

chainable continuum is a Whitney property [7], each ~-l(t) 

is chainable, 0 < t < ~(X). Since each arcwise connected 

chainable continuum is an arc, each ~-l(t) is an arc. Then, 

by 2.3, X is an arc. On the other hand, if X is circle-like 
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and not chainable (i.e., proper circle-like), then since the 

property of being a proper circle-like continuum is a Whitney 

property [7], each ~-l(t) is a proper circle-like continuum, 

o < t < ~(X). Thus, each ~-l(t) is an hereditarily arcwise 

connected circle-like continuum. By [11, Theorem 6], each 

~-l(t) is a circle. Thus, by 2.3, X is a circle. 

A continuum X is said to be C*-smooth provided that the 

function C*: C(X) ~ C(C(X)) defined by C*(A) = C(A) is con­

tinuous [12, (15.5)]. 

2We denote by H the Hausdorff metric on C(C(X)) corre­

3sponding to H as a metric on C(X), and	 by H the Hausdorff 

2metric on C(C(C(X))) corresponding to H as a metric on 

C(C (X)) • 

2.7. Lemma. For each E > 0 there exists 8 > 0 such 

that if t < 8~ A is any subcontinuum of X~ ~-l(t) is heredi­

tarily unicoherent~ and B is any subcontinuum of ~-l(t) such 

that o(S) = A~ then H3(CC~),C(B)) < E. 

Proof. Let E > 0 be given. By the continuity of ~ and 

the compactness of C(X), there exists 8 > 0 such that if 

o	 < t < 0, and M E ~-l(t), then diam(M) < E. Assume that 

-1 
~ (t) is hereditarily unicoherent for some t < o. Let 

A E C(X), and let B c C(~-l(t)) such that o(B) = A. Now, 

3 2H (C(A),C(B)) max{ sup ( in~ H (M,N)), sUI;? ( inf H2 (M,N))}. 
MEC(B) NEC(A) NEC(A) MEC(B) 

If M E C (B) , let N (oM) . Then it is easy to see that 

2H (M,N) < E. On the other hand, if N E C C~) , let X(o(N), 

~,t) = {G E ~-l(t)IG n o(N) ~ ,0}. Then, by [8, (3.2) ] , 

X(o(N),~,t) is a subcontinuum of ~-l(t). Let 
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M = X (a(N) , lJ, t) n S. Since "11-1 (t) is hereditarily unicoherent, 

M is a continuum, and once again H2 (M,N) < £. This shows that 

< £. 

2.8. Example. The following example shows that the 

assumption that lJ-l(t) is hereditarily unicoherent cannot be 

dropped from Lemma 2.7. Let X be the unit circle, and let lJ 

be any Whitney map for C(X). Note that lJ-l(t) is a circle 

for each t E (O,lJ(X)) [7]. Let £ = 1/10. We show that for 

any t E (O,lJ(X)), there exists a subcontinuum S ~ lJ-l(t) 

3such that a(S) = X, and H (CCX),C(S) > 1/10. Let t E (O,lJ(X)) 

be arbitrary but fixed. It suffices to assume that diam(M) 

< 1/4 for each M E lJ-l(t). Let ~ > 0 such that diam(M) > ~ 

for each M E lJ-l(t). Let S be an open interval of X of 

-1
length ~, and let Xl = X\S. Let S = {M E lJ (t) 1 M n Xl ~ ~}. 

Then S is a subcontinuum of lJ-l(t) such that a(S) = X. Let 

N be the arc of X of length = 1 which contains S in its mid­

2dle. It is easy to see that H (N,y) > 1/10 for each subcon­

3 A

tinuum y ~ S, and consequently H (C(X),C(S)) > 1/10. 

2.9. Theorem. Assume there is a sequence {tn}nEw such 

-1that t ~ 0 as n ~ 00, and lJ (t ) is C*-smooth for each n n 

n = 1,2,···. Then, X is C*-smooth. Hence, C*-smoothness is 

a strong Whitney-reversible property. 

Proof. Let {An}nEw be a sequence in C(X) such that 

lim An = A. To prove that X is C*-smooth, it suffices to 
n~oo 

show that if {C(A )}'E is any convergent subsequence of the 
n j J w 

sequence {C(An)}nEw' then ~im C(A .) = C(A). We may assume 
J~OO 

n J 

that A is non-degenerate. Let A = lim C(A ), and let £ > 0 . n.JJ~OO 
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be arbitrary. Let 8 > 0 be chosen as in Lemma 2.7 with s 

replaced by s/3. Let t E {tnln E w} such that t < 8, and 

such that C(A) n ~-l(t) is a non-degenerate continuum. Then, 

by [5, (2.1)], lim(C(A ) n ll-l(t)) = A n ~-l(t). Since 
j -+00 n j 

~-l(t) is C*-smooth, there exists a natural number N such 

that for each j ~ N, 

3H (C (C (A ) n ~ -1 (t) ) , C (A n ~ -1 (t) )) < s/3. (1)
n. 

J 
-1

We may assume that for each j 2.N, o(C(A .) n ~ (t» A n n. 
J J 

Since each C*-smooth continuum is hereditarily unicoherent 

[5], it follows by 2.7 that 

H3 (C(A ) n ~-I(t)),C(A )) < s/3. (2)
n. n. 

J J 

Since the union function a is continuous, A = o(A n ~-I(t)). 

Hence, by 2.7 

H
3 

(C(A),C(A n ~-l(t)) .2. s/3. (3) 

It follows from (1), (2), and (3) and the triangle inequality 

3
that H (C(A),C(A )) < s for each j ~ N. Since for each n. 

J 
2M E C(A), and each N E C(A ), H (M,N) H(o(M),o(N)), it fol­n. 

J
 
2


lows that H (C(A) ,C(A )) < s for each j > N. Consequently,n. 
J 

H2 (C(A) ,A) < s. Since s is arbitrary, A C(A) and the proof 

is complete. 

2.10. Remark. In contrast with 2.9, let us show that 

C*-smoothness is not a Whitney property. By [12, (15.11)] a 

locally connected continuum is C*-smooth if and only if it is 

a dendrite. Let X be a simple triod (a continuum homeomorphic 

to {(O,y) E R210 < y.2. I} U {(x,l) E R21-1.2. x.2. I}). Then 

X is C*-smooth. It follows by [12, (14.9)] that ~-l(t) is a 
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locally connected continuum for each t E (O,~(X)). It is 

-1 
easy	 to see that ~ (t) contains a 2-cell for each t E 

(O,~(X)), and, therefore, ~-l(t) is not C*-smooth. 

3.	 Convexity 

A continuum.X is said to be convex provided that for 

each pair of points x,y E X, there exists a point z E X\{x,y} 

such that d(x,z) + d(z,y) = d(x,y). It is known that if X 

is convex, then each pair of points of X can be joined by a 

segment in X. 

Let us note the following theorem for which we will show 

the converse is false. 

3.1. Theorem. Assume there is a sequence {t} such n nEw 
-1

that	 t + 0 as n + oo~ and ~ (t ) is convex (with respect to n n 

the Hausdorff metric)~ then X is convex (with respect to the 

originaZ metric d on X). 

Proof. Since ~ is an open map [4], and lim t = 0,n 
n+oo 

x. Since each ~ 
-1 (t ) is convex, it follows 

n 

by [3, (4.8)] that Xis convex, and consequently X is con­

vex. 

3.2. ExampZe. The following is an example of a convex 

arc X, and a Whitney map ~ for C(X), such that ~-l(t) is not 

convex for any t E (0,1]. Let X = [0,3] with the Euclidean 

metric. Define a homeomorphism f: [0,3] + [0,6] as follows: 

x , if x E [0,1] 

f (x) x 2 , if x E [1,2] 

2x, if x E [2,3]. 
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Define ~: C(X) ~ [0,00) by ~([a,b]) = feb) - f(a). Then, ~ is 

a Whitney map for C(X). We show that ~-l(t) is not convex. 

Let t E (0,1] be fixed. Let A [O,t], B = [3-t/2,3], and 

D = [1,/1+t]. Then A, Band D E ~-l(t). It is known that 

~-l(t) is an arc [7]. Note that A and B are the end points 

-1
of ~ (t). It is easy to see that H(A,D) = 1, H(D,B) = 

3 - 11+t, and H(A,B) = 3 - t/2. Thus, H(A,B) ~ H(A,D) + H(D,B). 

This shows that ~-l(t) is not convex. 

3.3. Remark. It is known [1] that a convex continuum 

is locally connected, and that local connectedness is a Whitney 

property [12, (14.9)]. Bing [1] and Moise [10] have shown in­

dependently that every locally connected continuum admits a 

convex metric. In view of these facts, we see that if X is 

a convex continuum, ~-l(t) admits a convex metric. However, 

as 3.2 shows, it may happen that ~-l(t) is not convex with 

respect to the Hausdorff metric. 
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