TOPOLOGY PROCEEDINGS Volume 3, 1978

Pages 319–333

http://topology.auburn.edu/tp/

ON LC^n -DIVISORS

by

Jerzy Dydak

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOONT	0140 4104

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ON LCⁿ-DIVISORS

Jerzy Dydak

1. Introduction

In [19] D. M. Hyman introduced the class of ANR-divisors i.e. continua X such that Y/X is an ANR for each ANR-space Y containing X. By using Chapman's Complement Theorem [10] it is easy to show that being an ANR-divisor is a shape invariant (see [9]). More generally we have: being an ANR-divisor is a hereditary strong shape invariant in the sense of Edwards-Hastings [14] (see [9]). By using the work of Hyman [19] and characterizations of pointed FANR's it is clear that pointed FANR's are ANR-divisors. However an example in [12] shows that the class of ANR-divisors is wider than the class of pointed FANR's.

In this paper we introduce the class of LCⁿ-divisors in analogy to ANR-divisors. We give a characterization of LCⁿ-divisors which implies that being an LCⁿ-divisor is a hereditary shape invariant. As a consequence we infer that being an ANR-divisor is a hereditary shape invariant in the class of continua of finite fundamental dimension.

We assume that the reader is familiar with some elementary facts from shape theory (see [6], [22], [23] and [27]) and from the theory of pro-categories (see [2], [11] and [14]).

2. Some Algebraic Preliminaries

For a definition and basic properties of pro-categories (see [2], [11] and [14]).

Recall that an inverse sequence $\underline{A} = (A_n, p_n^{n+1})$ of groups is said to satisfy the Mittag-Leffler condition provided for each n there exists k > n such that

$$\operatorname{im} p_n^k = \operatorname{im} p_n^m \quad \text{for } m > k$$

(see [3] and [26]).

<u>A</u> is said to be stable iff <u>A</u> is isomorphic to a group in the category of pro-groups pro-Gr (see [11] and [14]).

For a definition of $\lim_{\leftarrow} \frac{1}{\underline{A}}$ and its properties see [8], pp. 250-252.

Lemma 2.1. Let $\underline{A} = (A_n, p_n^{n+1})$ and $\underline{B} = (B_n, q_n^{n+1})$ be inverse sequences of groups and let $f_n: A_n \rightarrow B_n$ be homomorphisms such that $q_n^{n+1}f_{n+1} = f_n p_n^{n+1}$ for $n \ge 1$.

If $\lim_{t \to \infty} \frac{1}{A} = *$, then $\lim_{t \to \infty} \frac{1}{C} = *$, where $\underline{C} = (\lim_{t \to \infty} f_n, r_n^{n+1})$ and r_n^{n+1} is induced by q_n^{n+1} .

If <u>A</u> and <u>B</u> are stable, then <u>D</u> = (ker f_n, s_n^{n+1}) is stable, where s_n^{n+1} is induced by p_n^{n+1} .

Proof. Suppose $\lim_{t \to \infty} \frac{1}{A} = *$. Since 0 $\rightarrow \ker f_n \rightarrow A_n \rightarrow \inf f_n \rightarrow 0$

is exact for each n, then the following sequence is exact: $0 \rightarrow \lim_{\leftarrow} \underline{D} \rightarrow \lim_{\leftarrow} \underline{A} \rightarrow \lim_{\leftarrow} \underline{C} \rightarrow \lim_{\leftarrow} \frac{1}{\underline{D}} \rightarrow \lim_{\leftarrow} \frac{1}{\underline{A}} \rightarrow \lim_{\leftarrow} \frac{1}{\underline{C}} \rightarrow 0$ (see [8], p. 252).

Hence, $\lim_{t \to \infty} \frac{1}{C} = *$.

Suppose A and B are stable. Then we may assume that

$$p_n^{n+1}/\text{im } p_{n+1}^{n+2}$$
: im $p_{n+1}^{n+2} \neq \text{im } p_n^{n+1}$ and
 $q_n^{n+1}/\text{im } q_{n+1}^{n+2}$: im $q_{n+1}^{n+2} \neq \text{im } q_n^{n+1}$

are isomorphisms for each n.

Let
$$x \in \ker f_{n+1}$$
. Then there is $y \in A_{n+3}$ with $p_n^{n+3}(y) = p_n^{n+1}(x)$. Hence, $q_n^{n+2}q_{n+2}^{n+3}f_{n+3}(y) = q_n^{n+3}f_{n+3}(y) = f_n p_n^{n+3}(y) = f_n p_n^{n+1}(y) = q_n^{n+1}f_{n+1}(x) = 0$. Therefore, $f_{n+2}p_{n+2}^{n+3}(y) = q_{n+2}^{n+3}f_{n+3}(y) = 0$ i.e. $p_{n+2}^{n+3}(y) \in \ker f_{n+2}$. Since
 $p_n^{n+2}p_{n+2}^{n+3}(y) = p_n^{n+3}(y) = p_n^{n+1}(x)$ we get $p_n^{n+2}(\ker f_{n+2}) = p_n^{n+1}(\ker f_{n+1})$. Hence
 $s_n^{n+1}/\operatorname{im} s_{n+1}^{n+2}$: $\operatorname{im} s_{n+1}^{n+2} \to \operatorname{im} s_n^{n+1}$

is an isomorphism for each n and D is stable.

Let
$$p_n^{k-1,k}$$
: $G_n^k \rightarrow G_n^{k-1}$ and $q_{n,n+1}^k$: $G_{n+1}^k \rightarrow G_n^k$ be homomor-

phisms of groups (n \geq 1 and k-integer) such that

$$p_n^{k-1,k}q_{n,n+1}^k = q_{n,n+1}^{k-1}p_n^{k-1,k}$$

Suppose that each sequence $\underline{G}_n = (G_n^k, p_n^{k-1,k})$ is exact and let $\underline{G}^k = (G_n^k, q_{n,n+1}^k)$ for each k.

Lemma 2.2. If $\lim_{\leftarrow} \frac{1}{\underline{G}^{k}} = *$ for each k, then the sequence ... $\rightarrow \lim_{\leftarrow} \underline{G}^{k} \rightarrow \lim_{\leftarrow} \underline{G}^{k-1} \rightarrow \lim_{\leftarrow} \underline{G}^{k-2} \rightarrow \dots$

is exact.

Proof. Analogous to the corresponding result in [30], where Lemma 2.2 is proved in case where \underline{G}^k satisfy the Mittag-Leffler condition.

Lemma 2.3. If \underline{G}^i are stable for i = 0, 1 and $\lim_{t \to 0} \frac{1}{\underline{G}^3} = *$, then $\lim_{t \to 0} \frac{1}{\underline{G}^2} = *$.

Proof. For each n we have the following exact sequence $0 \rightarrow \text{im } p_n^{2,3} \rightarrow G_n^2 \rightarrow \text{ker } p_n^{0,1} \rightarrow 0.$

By Proposition 2.3 in [8] (p. 252) there is the following

exact sequence $0 \rightarrow \lim_{\leftarrow} (\operatorname{im} p_n^{2,3}) \rightarrow \lim_{\leftarrow} \underline{G}^2 \rightarrow \lim_{\leftarrow} (\ker p_n^{0,1}) \rightarrow \lim_{\leftarrow} (\operatorname{im} p_n^{2,3}) \rightarrow \lim_{\leftarrow} \underline{G}^2 \rightarrow \lim_{\leftarrow} (\ker p_n^{0,1}) \rightarrow 0$. By Lemma 2.1 the inverse sequence $(\ker p_n^{0,1})$ is stable and $\lim_{\leftarrow} (\operatorname{im} p_n^{2,3}) = *$. Hence $\lim_{\leftarrow} (\ker p_n^{0,1}) = *$ (see [8], p. 252) and consequently $\lim_{\leftarrow} \underline{G}^2 = *$.

Lemma 2.4. If \underline{G}^{i} is isomorphic to an inverse sequence of countable groups for i = 1, 3, then \underline{G}^{2} is isomorphic in pro-Gr to an inverse sequence of countable groups.

Proof. An inverse sequence (A_n, r_n^m) of groups is isomorphic to an inverse sequence of countable groups iff for each n there is m > n such that $r_n^m(A_m)$ is countable.

Let $n \ge 1$ and take k > m > n such that $q_{n,m}^{i}(G_{m}^{i})$ is countable for i = 1,3 and $q_{m,k}^{i}(G_{k}^{i})$ is countable for i = 1,3. Take elements $a_{i} \in G_{m}^{2}$, $i \ge 1$, such that each element in $p_{m}^{1,2}(G_{m}^{2}) \cap q_{m,k}^{1}(G_{k}^{1})$ is equal to $p_{m}^{1,2}(a_{i})$ for some i.

Let $a \in G_k^2$ be an arbitrary element. Then $q_{m,k}^1 p_k^{1,2}(a) = p_m^{1,2}(a_i)$ for some i. Thus $p_m^{1,2}(a_i q_{m,k}^2(a^{-1})) = 0$ and there is $b \in G_m^3$ with $p_m^{2,3}(b) = a_i q_{m,k}^2(a^{-1})$. Then $q_{n,k}^2(a) = q_{n,k}^2 p_m^{2,3}(b^{-1}) q_{n,m}^2(a_i) = p_n^{2,3} q_{n,m}^3(b^{-1}) q_{n,m}^2(a_i)$. This implies that $q_{n,k}^2(G_k^2)$ is countable because $q_{n,m}^3(G_m^3)$ is countable.

Lemma 2.5. If $\underline{G} = (G_n, r_n^{n+1})$ is isomorphic to an inverse sequence of countable groups and $\lim_{\leftarrow} \frac{1}{\underline{G}} = *$, then \underline{G} satisfies the Mittag-Leffler condition.

Proof. Take an increasing sequence ${n \choose k}_{k=1}^{\infty}$ of natural numbers such that

 $r_{n_k}^{n_{k+1}}(G_{n_{k+1}})$

is countable for each k and $n_1 = 1$.

Define $\underline{H} = (H_n, s_n^{n+1})$ as follows: $H_n = 0$ for $1 \le n \le n_2$ and $H_n = \operatorname{im} r_{n_{k-1}}^n$ for $n_k < n \le n_{k+1}$ and $k \ge 2$, $s_n^{n+1} \colon H_{n+1} \to H_n$ is the inclusion homomorphism if $n_k < m < m < m+1 \le n_{k+1}$ for some k and s_n^{n+1} is induced by $r_{n_{k-2}}^{n_{k-1}}$ if $n = n_k$ for some k. Let $f_n \colon G_n \to H_n$ be induced by $r_{n_{k-1}}^n$ if

 $n_k < n \le n_{k+1}$ and $k \ge 2$ or be the zero homomorphism if $n \le n_2$.

Then each H_n is countable and $H_n = f_n(G_n)$. By Lemma 2.1 $\lim_{\leftarrow} H = *$ and R. Geoghegan [15] has proved that <u>H</u> satisfies the Mittag-Leffler condition in such a case (see [16] for the Abelian case). Since <u>G</u> and <u>H</u> are isomorphic, then <u>G</u> satisfies the Mittag-Leffler condition as well.

3. Properties of LCⁿ-Spaces

From now on by $H_k(X)$ we denote the reduced singular homology group of a space X and by $\check{H}_k(X)$ we denote the reduced Čech homology group of X (all groups are taken with integer coefficients).

In the sequel we shall need the following:

Theorem 3.1. (see Theorem V.2.1 and Propositions II.9.1, II.10.1 in [17]). Let X and Y be metrizable spaces such that $X \cap Y$ is a closed subset of both X and Y. If X, Y and X \cap Y are LC^n -spaces, then X \cup Y is an LC^n -space. If X \cup Y and X \cap Y are LC^n -spaces, then X and Y are LC^n -spaces.

The following result of W. Hurewicz [18] is basic in

our considerations.

Theorem 3.2. An LC^1 -space X is an LC^n -space $(n \ge 2)$ iff for each $x \in X$ and for each neighborhood U of x in X there is a neighborhood V of x in U such that the inclusion map i: V + U induces trivial homomorphism

$$\dot{H}_{k}(i): \dot{H}_{k}(V) \rightarrow \dot{H}_{k}(V)$$

for $k \leq n$.

Theorem 3.3. If X is a connected metrizable LC^{n} -space, then the natural morphism from $H_{k}(X)$ to $pro-H_{k}(X)$ is an isomorphism for $k \leq n$ and an epimorphism for k = n+1.

Proof. Take $x \in X$. Theorem 8.7 in [11] says that the natural morphism from $\pi_k(X,x)$ to $\operatorname{pro-\pi}_k(X,x)$ is an isomorphism for $k \leq n$ and an epimorphism for k = n+1. Hence if f: $\operatorname{Sin}(X,x) \rightarrow \check{C}(X,x)$ is the natural morphism from the geometric realization of the singular complex of (X,x) to the \check{C} ech system of (X,x), then $\operatorname{pro-\pi}_k(f)$ is an isomorphism for $k \leq n$ and an epimorphism for k = n+1. Now results in [24] and [28] imply that $\operatorname{pro-H}_k(f)$ is an isomorphism for $k \leq n$ and an epimorphism for k = n+1 which concludes the proof.

Lemma 3.4. Let A be a closed subset of a metrizable space X. If $(A_n)_{n=1}^{\infty}$ is a decreasing sequence of subsets of X such that for any neighborhood W of A in X there is A_n with $A \subset A_n \subset W$, then

a) $pro-H_{k}(A)$ is an inverse limit of $(pro-H_{k}(A_{n}), pro-H_{k}(i_{n}^{n+1}))$ in pro-Gr, where $i_{n}^{n+1}: A_{n+1} \rightarrow A_{n}$ is the inclusion, b) $H_{k}(A)$ is the inverse limit of $(H_{k}(A_{n}), H_{k}(i_{n}^{n+1})),$ c) if $pro-H_k(A_n)$ is stable for each n, then $pro-H_k(A)$ is isomorphic to $(\check{H}_k(A_n),\check{H}_k(i_n^{n+1}))$ in pro-Gr.

Proof. It follows from the assumptions that A is an inverse limit of $(A_n, S(i_n^{n+1}))$ in the shape category, where S denotes the shape functor (see [21] and [22]).

A description of inverse limits in pro-categories given in [2] implies that for any functor F: C \rightarrow D the corresponding functor pro-F: pro-C \rightarrow pro-D is continuous i.e. preserves inverse limits. Taking F = H_k we get that Condition a holds. The Condition b follows from Condition a and the fact that the inverse limit functor lim: pro-Gr \rightarrow Gr is continuous. The Condition c is a consequence of Conditions a and b.

4. LCⁿ-Divisors

Definition. A continuum X is said to be an LC^n -divisor provided for each LC^n -space Y containing X the quotient space Y/X is an LC^n -space.

It is proved in [4] (see also [1]) that

Proposition 4.1. Each FAR-space X is an LC^n -divisor for all n.

We need the following to show that X is an LC^n -divisor iff Y/X is an LC^n -space for some LC^n -space Y containing X (for each space Z we denote by C(Z) a cone over Z).

Lemma 4.2. If $X \subset Y \subset Q$ are subcontinua of the Hilbert cube Q such that Y and Y/X are LC^n -spaces, then Q/X is an LC^n -space.

Proof. By Theorem 3.1 Q \cup C(Y) is an LCⁿ-space and by Proposition 4.1 (Q \cup C(Y))/C(X) is an LCⁿ-space. Since

 $(Q \cup C(Y))/C(X) = (Q/X) \cup (C(Y)/C(X))$ and $(Q/X) \cap (C(Y)/C(X)) = Y/X$, then by Theorem 3.1 Q/X is an LC^{n} -space. Thus the proof of Lemma 4.2 is concluded.

If $A \subset X$ are subsets of a compact space Z, then we consider X U C(\hat{A}) as a space with topology induced from C(Z). Since C(A) is contractible, then the inclusion from X U C(A) into the pair (X U C(A),C(A)) induces isomorphisms of all reduced singular homology groups. By the excision property of singular homology (see [32]) we get that the inclusion from (X,A) to (X U C(A),C(A)) induces isomorphisms of all reduced singular homology groups. From the exact sequence of homology groups for the pair (X,A) we get the following exact sequence

... \rightarrow H_k(A) \rightarrow H_k(X) \rightarrow H_k(X \cup C(A)) \rightarrow H_{k-1}(A) \rightarrow Moreover, if B \subset Y \subset X and B \subset A, then the diagram

is commutative.

Recall that a continuum X is nearly 1-movable ([25]) provided for each neighborhood U of X in the Hilbert space Q there is a neighborhood V of X in U such that for any loop f: $S^1 = \partial \Delta^2 + V$ and for each neighborhood W of X in Q there is a finite disjoint collection of discs D_i in Int Δ^2 and an extension of f to

$$\overline{f}: (\Delta^2 - \cup \operatorname{Int} D_i, \cup \partial D_i) \rightarrow (U, U \cap W).$$

Theorem 4.3. If X is a nearly 1-movable continuum such

that $pro-H_k(X)$ is stable for $k \le m$ and satisfies the Mittag-Leffler condition for $k = m(m \ge 1)$, then Y/X is an LC^m -space for each LC^m -space Y containing X.

Proof. Let $(U_n)_{n=1}^{\infty}$ be a decreasing sequence of open neighborhoods of X in Y such that $U_{n+1} \subset cl(U_{n+1}) \subset U_n$ and $X = \cap U_n$. By Theorem 3.3 and Lemma 3.4 the inverse sequence $(H_k(U_n), H_k(i_n^{n+1}))$ is stable for k < m and satisfies the Mittag-Leffler condition for k = m.

Fix n \geq 1. Then for each r > n there is the following exact sequence

 $0 \rightarrow B_n \rightarrow H_m(U_n) \rightarrow \ldots \rightarrow H_k(U_n) \rightarrow H_k(U_n \cup C(X)) \rightarrow H_{k-1}(X) \rightarrow \ldots,$ where $B_n = \lim_{\leftarrow} A_r$ is the image of $H_m(X)$ in $H_m(U_n)$. Observe that the diagram

is commutative for p > n.

By applying Lemma 2.3, 2.4 and 2.5 we infer that $(\ddot{H}_{k}(U_{n} \cup C(X), \ddot{H}_{k}(l_{n}^{n+1}))$ satisfies the Mittag-Leffler condition for $k \leq m$, where l_{n}^{n+1} is the inclusion map. Since $lim H_{k}(U_{n} \cup C(X) = H_{k}(C(X)) = 0$ (see Lemma 3.4), then $(\check{H}_{k}(U_{n} \cup C(X), \check{H}_{k}(1_{n}^{n+1}))$ is isomorphic to the trivial group in pro-Gr for $k \leq m$ by a result of J. Keesling [20] (see also [13]). Hence for each n there exists p > n such that the inclusion 1_{n}^{p} induces zero homomorphisms of Čech homology groups in dimensions less than or equal to m. Since the projection $U_{n} \cup C(X) + U_{n}/X$ is a shape equivalence for each n, we get that the inclusion $U_{p}/X + U_{n}/X$ induces zero homomorphisms on Čech homology groups up to dimension m. By a result in [12] the space Y/X is an LC^{1} -space and by the result of W. Hurewicz [18] the space Y/X is an LC^{m} -space.

Lemma 4.4. Let X be a subcontinuum of the Hilbert cube Q. If Q/X is an LC^m -space (m \ge 1), then X is nearly 1-movable and pro-H_k(X) is stable for k < m and satisfies the Mittag-Leffler condition for k = m.

Proof. By a result of N. Shrikhande [31] X is nearly 1-movable (see also [12]).

Take a decreasing sequence $(A_n)_{n=1}^{\infty}$ of ANR's in Q such that $X = \bigcap A_n$. Then we have the following exact sequence for each n

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array} & H_{k+1}\left(Q \ \cup \ C(A_n) \right) \ \neq \ H_k\left(A_n \right) \ \neq \ H_k\left(Q \right) \ \neq \ \ldots \end{array} \end{array} \\ \label{eq:holomorphism} i.e. the homomorphism from $H_{k+1}\left(Q \ \cup \ C(A_n) \right) $ into $H_k\left(A_n \right) $ is an isomorphism for each k. Thus $pro-H_k(X)$ is isomorphic to $(H_{k+1}\left(Q \ \cup \ C(A_n) \right), H_{k+1}\left(i_n^{n+1} \right))$, where i_n^{n+1} is the inclusion map. Since the projections $Q \ \cup \ C(A_n) \ \neq \ Q/A_n$ are homotopy equivalences, $pro-H_k(X)$ is isomorphic to $(H_{k+1}\left(Q/A_n \right), H_{k+1}\left(p_n^{n+1} \right))$, where p_n^{n+1}: $Q/A_{n+1} \ \neq \ Q/A_n$ is the natural projection. } \end{array}$

Now $Q/X = \lim_{\leftarrow} (Q/A_n, p_n^{n+1})$ and therefore pro-H_k(X) is

isomorphic to $\text{pro-H}_{k+1}(Q/X)$. Since $\text{pro-H}_{k+1}(Q/X)$ is stable for k < m and satisfies the Mittag-Leffler condition for k = m (see Theorem 3.3), the proof of Lemma 4.4 is finished.

As an immediate consequence from Theorem 4.3, Lemma 4.2 and Lemma 4.4 we get

Theorem 4.5. For a continuum X the following conditions are equivalent for $n \ge 1$:

a) X is an LCⁿ-divisor,

b) Y/X is an LC^n -space for some LC^n -space Y containing X,

c) X is nearly 1-movable and pro-H $_{\rm k}(X)$ is stable for k < n and satisfies the Mittag-Leffler condition for k = n.

Corollary 4.6. Being an LCⁿ-divisor is a hereditary shape invariant.

Proof. If $Sh(Y) \leq Sh(X)$ and X is an LC^{n} -divisor, then by Theorem 4.5 X is nearly 1-movable and $pro-H_{k}(X)$ is stable for k < n and satisfies the Mittag-Leffler condition for k = n. Since $pro-H_{k}(Y)$ is dominated by $pro-H_{k}(X)$ in pro-Grfor each k, then $pro-H_{k}(Y)$ is stable for k < n and satisfies the Mittag-Leffler condition for k = n. Now Corollary 4.6 follows from Theorem 4.5 and the fact that being nearly 1-movable continuum is a hereditary shape invariant (see [25]).

Theorem 4.7. Let X be a continuum such that $Fd(X) = n < +\infty$. Then the following conditions are equivalent:

a) X is an ANR-divisor,

b) X is an LCⁿ⁺¹-divisor,

c) X is nearly 1-movable and $\text{pro-H}_k(X)$ is stable for $k \leq n.$

Proof. It suffices to prove Theorem 4.7 for the case dim X = n (in view of [29] and Theorem 4.5).

a) + b) It follows from Lemma 4.2.

b) \rightarrow a) By a result of Bothe [7] there is an ANR-space Y containing X such that dim Y \leq n+1. Then Y/X is an LCⁿ⁺¹space and dim(Y/X) \leq n+1. Hence Y/X is an ANR (see [5], p. 122) and by results of Hyman X is an ANR-divisor.

b) \leftrightarrow c) It follows from Theorem 4.5 in view of the fact that pro-H_{n+1}(X) = 0.

Corollary 4.8. In the class of continua of finite fundamental dimension the property of being an ANR-divisor is a hereditary shape invariant. In particular each FANRspace is an ANR-divisor.

Proof. Analogous to the proof of Corollary 4.6.

Example 4.9. We construct an ANR-divisor X whose fundamental dimension is not finite.

For each n let $f_n: S^1 \vee S^n \to S^1 \vee S^n$ be a map such that $f_n/S^1 = \text{id and } f_n/S^n: S^n \to S^1 \vee S^n$ is the composition of maps $g_n: S^n \to \bigvee_{i=1}^{\infty} S_i^n$ and $e_n: \bigvee_{n=1}^{\infty} S_i^n \to S^1 \vee S^n$, where $\pi_n(e_n)$ is an isomorphism and g_n represents the difference $[S_1^n] - [S_2^n]$ of two generators of $\pi_n(\bigvee_{i=1}^{\infty} S_i^n)$.

Then $H_k(f_n) = 0$ for each k and the induced map $f_n^{*}: (S^1 \vee S^n)/S^1 + (S^1 \vee S^n)/S^1$ is homotopically trivial. Let $X_n = \bigvee_{k=1}^n S^k$ and let $h_n^{n+1}: X_{n+1} \to X_n$ be defined by $h_n^{n+1}(x) = f_k(x)$ for $x \in S^k$, $k \leq n$, and S^{n+1} is mapped onto the base point. Let $X = \lim_{\leftarrow} (X_n, h_n^{n+1})$. Then $S^1 \subset X$ and X/S^1 is an FAR. Since FAR's are ANR-divisors we infer by a result of Hyman [19] that X is an ANR-divisor.

Observe that Fd(X) is not finite because finitenness of Fd(X) would imply triviality of $\pi_n(f_n)^k$ for n = Fd(X) + 1 and some k.

Remark. Example 4.9 is constructed in the spirit of an example in [12].

Analogous to the corresponding results for ANR-divisors in [19] one can prove the following

Theorem 4.10. Let X and Y be continua. If X, Y and $X \cap Y$ are LC^n -divisors, then X $\cup Y$ is an LC^n -divisor. If $X \cup Y$ and $X \cap Y$ are LC^n -divisors, then X and Y are LC^n -divisors. If $X \subset Y$ and X and Y/X are LC^n -divisors, then Y is an LC^n -divisor.

The author is grateful to Jack Segal for his help during the preparation of this paper.

References

- S. Armentrout, Decompositions and absolute neighborhood retracts, Lecture Notes in Math. 438, Springer, New York, 1975.
- [2] M. Artin and B. Mazur, Etale homotopy theory, Lecture Notes in Math. 100, Springer, 1969.
- [3] M. F. Atyiah and G. Segal, Equivariant K-theory and completion, J. Diff. Geometry 3 (1969), 1-18.
- [4] S. Bogatyi, On a Vietoris theorem in the category of homotopies and a problem of Borsuk, Fund. Math. 84 (1974), 209-228.

- [5] K. Borsuk, Theory of retracts, Monografie Matematyczne 44, Warszawa, 1967.
- [6] _____, Theory of shape, Monografie Matematyczne 59, Warszawa, 1975.
- H. Bothe, Eine Einbettung m-dimensionaler Mengen in einen (m+1)-dimensionalen absoluten Retrakt, Fund. Math. 51 (1962), 209-224.
- [8] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math. 304 (1972), Springer, New York.
- [9] Z. Čerin, C_p-movable at infinity spaces, compact ANRdivisors and property UVWⁿ, Publ. de l' Institut Math.
 23 (1978), 53-65.
- [10] T. A. Chapman, On some applications of infinitedimensional manifolds to the theory of shape, Fund. Math. 76 (1972), 181-193.
- [11] J. Dydak, The Whitehead and Smale theorems in shape theory, Dissertationes Mathematicae 156 (1979), 1-50.
- [12] ____, Some properties of nearly 1-movable continua, Bull. Ac. Pol. Sci. 25 (1977), 685-689.
- [13] ____, An algebraic condition characterizing FANRspaces, Bull. Ac. Pol. Sci. 24 (1976), 501-503.
- [14] D. A. Edwards and H. M. Hastings, Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Math. 542, Springer, New York, 1976.
- [15] R. Geoghegan, A note on the vanishing of lim¹, (preprint).
- [16] B. I. Gray, Spaces of the same n-type for all n, Topology 5 (1966), 241-243.
- [17] S.-T. Hu, Theory of retracts, Wayne University Press, Detroit, 1965.
- [18] W. Hurewicz, Homotopie, Homologie, und lokaler Zusammenhang, Fund. Math. 25 (1935), 467-485.
- [19] D. M. Hyman, ANR-divisors and absolute neighborhood contractibility, Fund. Math. 62 (1968), 61-73.
- [20] J. E. Keesling, On the Whitehead theorem in shape theory, Fund. Math. 92 (1976), 247-253.

- [21] G. Kozlowski and J. Segal, Local behavior and the Vietoris and Whitehead theorems in shape theory, Fund. Math. 99 (1978), 210-219.
- [22] S. Mardešic, Shapes for topological spaces, Gen. Top. Appl. 3 (1973), 265-282.
- [23] and J. Segal, Shape of compacta and ANR-systems, Fund. Math. 72 (1971), 41-59.
- [24] S. Mardesic, On the Whitehead theorem in shape theory II, Fund. Math. 91 (1976), 93-103.
- [25] D. R. McMillan, One-dimensional shape properties and three manifolds, Studies in Topology, Academic Press, 1975, pp. 367-381.
- [26] J. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1966), 337-341.
- [27] K. Morita, On shapes of topological spaces, Fund. Math. 86 (1975), 251-259.
- [28] ____, The Hurewicz and the Whitehead theorems in shape theory, Sci. Rep. of the Tokyo Kyoiku Daigaku, Sec. A, 12 (1974), 246-258.
- [29] S. Nowak, Some properties of the fundamental dimension, Fund. Math. 85 (1974), 211-227.
- [30] R. H. Overton, Čech homology for movable compacta, Fund. Math. 77 (1973), 241-251.
- [31] N. Shrikhande, Homotopy properties of decomposition spaces, Abstract 75T-638, Notices AMS, Apr. 1975.
- [32] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.

University of Washington Seattle, Washington 98195 and Institute of Mathematics of the Polish Academy of Sciences Warsaw, ul. Śniadeckich 8, Poland