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ON LC"-DIVISORS

Jerzy Dydak

1. Introduction

In [19] D. M. Hyman introduced the class of ANR-divisors
i.e. continua X such that ¥/X is an ANR for each ANR-space Y
containing X. By using Chapman's Complement Theorem [10] it
is easy to show that being an ANR-divisor is a shape invariant
(see [9]). More generally we have: being an ANR-divisor is
a hereditary strong shape invariant in the sense of Edwards-
Hastings [14] (see [9]). By using the work of Hyman [19]
and characterizations of pointed FANR's it is clear that
pointed FANR's are ANR-divisors. However an example in [12]
shows that the class of ANR-divisors is wider than the class
of pointed FANR's.

In this paper we introduce the class of Lc™-divisors in
analogy to ANR-divisors. We give a characterization of
Lc™-divisors which implies that being an Lc™-divisor is a
hereditary shape invariant. As a consequence we infer that
being an ANR-divisor is a hereditary shape invariant in the
class of continua of finite fundamental dimension.

We assume that the reader is familiar with some elemen-
tary facts from shape theory (see [6], [22], [23] and [27])

and from the theory of pro-categories (see [2], [11] and [14]).

2. Some Algebraic Preliminaries

For a definition and basic properties of pro-categories

(see [2], [11] and [14]).
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Recall that an inverse sequence A = (An,pg+l) of groups
is said to satisfy the Mittag-Leffler condition provided for

each n there exists k > n such that
. k _ . m
im p = im p_ for m > k

(see [3] and [26]).
A is said to be stable iff A is isomorphic to a group
in the category of pro-groups pro-Gr (see [11l] and [14]).
For a definition of limlé and its properties see [8],

pp. 250-252.

n+l

n ) be

- n+l =
Lemma 2.1. Let A = (An,pn ) and B = (Bn,q
inverse sequences of groups and let fn: An > B, be homomor-

phisms such that qgﬂ'fn+l = fnp2+l for n 2 1.

If lim'A = *, then lim'C = *, where C = (im £_, ™1} and
oy juled - —_ —_ n n

n+l . . n
ry is induced by q,

+1

If A and B are stable, then D = (ker fn,sg+l) is stable,

where sg+l is induced by pg+l.

Proof. Suppose limlé = *, Since
-«
0 » ker fn > An +> im fn >0
is exact for each n, then the following sequence is exact:
0> 1im D » lim A » 1lim C > lin'p » lima » lim'c > 0
-« - -« - « - “« - -« - -« -
(see [8], p. 252).
Hence, limlg = *,
-«
Suppose A and B are stable. Then we may assume that

n+l ,. n+2, . n+2 . n+l
P, /im Phylf imp o7 > impo and

n+l/. nt+2 ‘m n+2 + im n+1
9y /1M dpyy® 1M Qpyy 7 M9y

are isomorphisms for each n.
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Let x € ker f Then there is y € A with pn+3(f) =

n+l” n+3
n+l n+2 n+3 _ n+3 _ _
Py (x). Hence, 9y In+2 n+3(y) = 4q, n+3(y) - fn n (y) B
n+l _ n+l _ n+3 _
fnpn (y) = q, fn+l(x) = 0. Therefore, n+2pn+2(y)
n+3 _ . .
qn+2fn+3(y) =0 i.e. n+2(y) € ker £ n+2° Since

n+2_n+3 _ +3 _ _n+l n+2
n P ¥ y) = (y) = p, ~(x) we get Py (ker fn+2)
l(ker £ . ). Henc
n+l) - ence
. n+2 . n+2 . n+l
s, /im Sp41t ims L] > im s

is an isomorphism for each n and D is stable.

k-1, k k k-1 k k
Let P, Gn > Gn and qn a1’ Gn+l > Gn be homomor-

phisms of groups (n 2 1 and k-integer) such that

k-1,k k _ k-1 k-1, k
Py 9n,n+1 = 9n,n+1Pn
Suppose that each sequence gn = (Gn,pﬁ_l'k) is exact and let
gk = (G ,qn n+l) for each k.
Lemma 2.2. If limlgk = * for each k, then the sequence
e > 1im 6* > 1im 6571 > 1im 6K7% - L.
is exact.

Proof. Analogous to the corresponding result in [30],
where Lemma 2.2 is proved in case where gk satisfy the

Mittag-Leffler condition.

Lemma 2.3. If gl are stable for i = 0,1 and liml_C_;_3 = %,
PR

then limlG2 = *,
o=
Proof. For each n we have the following exact sequence

0 > im p2 3, G2 + ker po L 0.

By Proposition 2.3 in [8] (p. 252) there is the following
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exact sequence 0 ~» lim(im p '3) + lim G2 + lim(ker po'l) >
+ -« - « n

= oN

1 0,1

lim® (im p23) » 1im'G? ~ lim' (ker p2’1) > 0. By Lemma 2.1
- n < = n

0,1

the inverse sequence (ker P )} is stable and

2,3 0,1

11m (im P, ) = *. Hence 1im (ker P, ) = * (see [8], p. 252)

and consequently 1im1§2 = *,
«

Lemma 2.4. If gi 18 isomorphic to an inverse sequence
of countable groups for i = 1,3, then 92 is isomorphic in
pro-Gr to an inverse sequence of countable groups.

Proof. An inverse sequence (An,rg) of groups is iso-
morphic to an inverse sequence of countable groups iff for
each n there is m > n such that rm(A ) is countable.

Let n 2 1 and take k > m > n such that q (G ) is

n,m m

countable for i = 1,3 and g is countable for i = 1,3.

,k( Gy)
Take elements ay € G;, i 2 1, such that each element in

2,.2 1 1, . 1,2 .
(Gm) n qm,k(Gk) is equal to pm’ (ai) for some i.

Let a € G2 be an arbitrary element. Then q1 pl'z(a) =
k m, kTk
1,2 . =
pm (ai) for some i. Thus p (a qm k(a )) = 0 and there
3 _ 2 -1 2 _
is b € G with p (b) = aiqm k(a ). Then qn,k(a) =
2 2 _ .2, 3 3 2 A .
9, P m (b ) n,m(ai) = pn (b ) n,m(ai)’ This implies
2, . 3 3, .
that qn,k(Gk) is countable because qn,m(Gm) is countable.
_ n+l . . . .
Lemma 2.5. If G = (Gn’rn ) is isomorphic to an inverse

sequence of countable groups and limlg = *, then G satisfies
«
the Mittag-Leffler condition.

Proof. Take an increasing sequence (n 1 of natural

©
k) k=
numbers such that
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n
r k+1(G )

Ty Dyrl
is countable for each k and n, = 1.
Define H = (H ,sn+l) as follows: H
= n’"n n

IA
=/

0 for 1 < n

. n
and H =imr for n, <n <n and k 2 2,

n_q k
n+l

. . X . . . < <
Sh Hn+l - Hn is the inclusion homomorphism if n, m

k+1

n
m+l = nog for some k and sg+l is induced by rnk_l if n=n
k-2

for some k. Let f£_: G_ -+ H_ be induced by P if
n n n n,_q

n_<nsn and k 2 2 or be the zero homomorphism if n X n

k k+1 2°

Then each Hn is countable and Hn = fn(Gn). By Lemma 2.1
limlﬁ = * and R. Geoghegan [15] has proved that H satisfies
the Mittag-Leffler condition in such a case (see [16] for
the Abelian case). Since G and H are-isomorphic, then G

satisfies the Mittag-Leffler condition as well.

3. Properties of LCn-Spaces

From now on by Hk(x) we denote the reduced singular
homology group of a space X and by ﬁk(x) we denote the re-
duced Cech homology group of X (all groups are taken with
integer coefficients).

In the sequel we shall need the following:

Theorem 3.1. (see Theorem V.2.1 and Propositions
IT.9.1, II.10.1 in [17]). Let X and Y be metrizable spaces
such that XNY Zs a closed subset of both X and ¥Y. If X, ¥
and X N Y are LCn-spaces, then X U Y is an LCn-space. If

X UY and X N Y are LCn—spaces, then X and Y are LCn—spaces.

The following result of W. Hurewicz [l8] is basic in
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our considerations.

Theorem 3.2. An LCl-space X is an LC"-space (n 2 2)
1ff for each x € X and for each neighborhood U of x in X
there is a neighborhood V of x in U such that the inclusion
map i: V + U induces trivial homomorphism
Hy (i): H (V) > H (U)

for k £ n.

Theorem 3.3. If X is a connected metrizable LCn-space,
then the natural morphism from Hk(X) to pro—Hk(X) 18 an 1so-
morphism for k £ n and an epimorphism for k = n+l.

Proof. Take x € X. Theorem 8.7 in [11l] says that the
natural morphism from ﬂk(X,x) to pro—ﬂk(x,x) is an isomor-
phism for k £ n and an epimorphism for k = n+l. Hence if
f: Sin(X,x) ~» é(X,x) is the natural morphism from the geo-
metric realization of the singular complex of (X,x) to the
éech system of (X,x), then pro-ﬂk(f) is an isomorphism for
k £ n and an epimorphism for k = n+l. Now results in [24]
and [28] imply that pro—Hk(f) is an isomorphism for k £ n

and an epimorphism for k = n+l which concludes the proof.

Lemma 3.4. Let A be a closed subset of a metrizable
gspace X. If (An):=l 18 a decreasing sequence of subsets of
X such that for any neighborhood W of A in X there is A
with A < An c W, then

al pro—Hk(A) 18 an inverse limit of (pro—Hk(An),

.n+l . .n+l . . .
pro-Hk(ln )) in pro-Gr, where i, 7t An+l + An 18 the inclusion,

n+1l

b) Hk(A) 18 the inverse limit of (Hk(An),Hk(in )),
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e) 1if pro—Hk(An) is stable for each n, then pro-Hk(A)
is isomorphic to (ﬁk(An),ﬁk(i2+l)) in pro-Gr.

Proof. It follows from the assumptions that A is an

n+1l

n }) in the shape category, where

inverse limit of (An,S(i
S denotes the shape functor (see [21] and [22]).

A description of inverse limits in pro-categories given
in [2] implies that for any functor F: C » D the corresponding
functor pro-F: pro-C -» pro-D is continuous i.e. preserves

inverse limits. Taking F = H_ we get that Condition a holds.

k

The Condition b follows from Condition a and the fact that

the inverse limit functor lim: pro-Gr »+ Gr is continuous.
<

The Condition ¢ is a consequence of Conditions a and b.

4. LC"-Divisors

Definition. A continuum X is said to be an Lc-divisor
provided for each LCn—space Y containing X the quotient space
Y/X is an LCn—space.

It is proved in [4] (see also [1]) that

Proposition 4.1. Each FAR-space X is an LcP-divisor

for all n.

We need the following to show that X is an LcP-divisor
iff ¥Y/X is an LCn—space for some LCn—space Y containing X

(for each space Z we denote by C(Z) a cone over Z).

Lemma 4.2. If X ¢ Y < Q are subcontinua of the Hilbert
cube Q such that Y and Y¥/X are LCn-spaces, then Q/X is an
LCn-space.

Proof. By Theorem 3.1 Q U C(Y) is an LCn—space and by

Proposition 4.1 (Q U C(Y))/C(X) is an LCn—space. Since
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(Q Uc())/c(x) = (Q/X) U (C(Y)/C(X)) and
(Q/X) N (C(Y)/C(X)) = ¥/X, then by Theorem 3.1 Q/X is an

LCn-space. Thus the proof of Lemma 4.2 is concluded.

If A « X are subsets of a compact space Z, then we
consider X U C(A) as a space with topology induced from C(Z).
Since C(A) is contractible, then the inclusion from X U C(A)
into the pair (X U C(A),C(A)) induces isomorphisms of all
reduced singular homology groups. By the excision property
of singular homology (see [32]) we get that the inclusion
from (X,A) to (X U C(A),C(A)) induces isomorphisms of all
reduced singular homology groups. From the exact sequence
of homology groups for the pair (X,A) we get the following
exact sequence

+e. > H (A) > H (X) > H (X uc(a)) » H_ @)~ ....
Moreover, if B € Y © X and B & A, then the diagram

<ee > H(B) > H (Y) > H (¥ Uc(B)) »H _,(B) > ....
+ + + +
cee > HL(A) > H (X)) > H (X UC@R)) »H_;(B) ...

is commutative.
Recall that a continuum X is nearly l-movable ([25])
provided for each neighborhood U of X in the Hilbert space

Q there is a neighborhood V of X in U such that for any loop

L. 3 A2 + V and for each neighborhood W of X in Q there

is a finite disjoint collection of discs Di in IntA2 and an

f: S

extension of f to

£: (a2- U 1nt D;, U3 D) » (U,UN W.

Theorem 4.3. If X i8 a nearly l-movable continuum such
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that pro-Hk(X) is stable for k < m and satisfies the Mittag-
Leffler condition for k = m(m 2 1), then ¥/X is an LCm-space
for each LCm-space Y containing X.

Proof. Let (Un):= be a decreasing sequence of open

1

neighborhoods of X in Y such that Un = cl(Un+l) < Un and

+1
X=nN Un‘ By Theorem 3.3 and Lemma 3.4 the inverse sequence
(Hk(Un),Hk(i2+l)) is stable for k < m and satisfies the
Mittag-Leffler condition for k = m.

Fix n 2 1. Then for each r > n there is the following
exact sequence

0 - Ar -+ Hm(Un) -+ ...-+Hk(Un) > Hk(Un U C(Ur)%*Hk_l(Ur) TR
where A_ = im H (i7) < H (U ). Since (Hj (U, H_(i}))
satisfies the Mittag-Leffler condition, then lj._mlAr = *

by Lemma 2.1. By Lemma 2.3 we get that liml(Hk(Un u C(Ur),
Hk(ji)) = *, where ji is the inclusion map. By Lemma 2.2

the following sequence is exact

0 - Bn -+ Hm(Un) > .. Hk(Un) he Hk(Un U c(x))~ Hk_l(X) F eees

where Bn = 1im Ar is the image of Hm(x) in Hm(Un). Observe

that the diagram
0 - Bp -+ Hm(Up) > eee > Hk(Up) -+ Hk(Up U c(x)) - Hk_l(X) > e

¥ ¥ ¥ ¥ ¥
0 ~+ Bn -+ Hm(Un) + e.. Hk(Un) -+ Hk(Un U C(X)) » Hk_l(X) + ee.

is commutative for p > n.-

By applying Lemma 2.3, 2.4 and 2.5 we infer that

2+l)) satisfies the Mittag-Leffler condi-

tion for k £ m, where 12+1

(H, (U, U C(X),H (1
is the inclusion map. Since

lim H,  (U_U C(X) = H_(C(X)) = 0 (see Lemma 3.4), then
- k'“n k
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(ﬁk(un U C(X),ﬁk(12+l)) is isomorphic to the trivial group
in pro-Gr for k < m by a result of J. Keesling [20] (see
also [13]). Hence for each n there exists p > n such that
the inclusion 1§ induces zero homomorphisms of éech homology
groups in dimensions less than or equal to m. Since the
projection Un U Cc(xX) » Un/X is a shape equivalence for each
n, we get that the inclusion Up/x -> Un/x induces zero homo-
morphisms on éech homology groups up to dimension m. By a
result in [12] the space Y/X is an LCl—space and by the

result of W. Hurewicz [18] the space ¥/X is an LCm—space.

Lemma 4.4. Let X be a subcontinuum of the Hilbert cube
Q. If Q/X Zig an LCm—space (m 2 1), then X is nearly l-movable
and pro-Hk(x) 18 stable for k < m and satisfies the Mittag-
Leffler condition for k = m.

Proof. By a result of N. Shrikhande [31] X is nearly
l-movable (see also [12]).

Take a decreasing sequence (An):= of ANR's in Q such

1
that X =f1An. Then we have the following exact sequence for

each n

> H 1 (Q) > H 1 (QU C@A)) » H (A ) » H(Q + ...

i.e. the homomorphism from Hk+1(Q V] C(An)) into Hk(An) is an
isomorphism for each k. Thus pro-Hk(x) is isomorphic to

.n+1 .n+1l . . .
(Hk+1(Q U C(An),Hk+1(1n )), where i is the inclusion map.

Since the projections Q U C(An) > Q/An are homotopy equiva-

. . . n+1l
lences, pro—Hk(x) is isomorphic to (Hk+1(Q/An),Hk+1(pn )Y,

where p2+1: Q/An+l - Q/An is the natural projection.

Now Q/X = lim (Q/An,p2+1) and therefore pro—Hk(x) is
+
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isomorphic to pro-Hk+l(Q/x). Since pro-Hk+1(Q/X) is stable
for k < m and satisfies the Mittag-Leffler condition for

k = m (see Theorem 3.3), the proof of Lemma 4.4 is finished.

As an immediate consequence from Theorem 4.3, Lemma 4.2

and Lemma 4.4 we get

Theorem 4.5. For a continuum X the following conditions
are equivalent for n 2 1l:

a) X is an LCn-divisor,

b) Y/X 18 an LCn-space for some LCn-space Y containing X,

e) X is nearly l-movable and pro-Hk(X) i8 stable for

k < n and satisfies the Mittag-Leffler condition for k = n.

Corollary 4.6. Being an Lc-divisor is a hereditary
shape invariant.

Proof. If Sh(Y) £ Sh(X) and X is an LC"-divisor, then
by Theorem 4.5 X is nearly l-movable and pro—Hk(X) is stable
for k < n and satisfies the Mittag-Leffler condition for
k = n. Since pro-Hk(Y) is dominated by pro—Hk(x) in pro-Gr
for each k, then pro—Hk(Y) is stable for k < n and satisfies
the Mittag-Leffler condition for k = n. Now Corollary 4.6
follows from Theorem 4.5 and the fact that being nearly

l-movable continuum is a hereditary shape invariant (see [25]).

Theorem 4.7. Let X be a continuum such that FA(X) =
n < +», Then the following conditions are equivalent:

a) X 18 an ANR-divisor,

b) X is an LCn+l—divisor,

e) X is nearly l-movable and pro—Hk(X) is stable for

~
1A
o
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Proof. It suffices to prove Theorem 4.7 for the case
dim X = n (in view of [29] and Theorem 4.5).

a) > b) It follows from Lemma 4.2.

b) + a) By a result of Bothe [7] there is an ANR-space
Y containing X such that dim Y £ n+tl. Then Y/X is an LCn+l—
space and dim(Y/X) £ n+l. Hence Y/X is an ANR (see [5],
p. 122) and by results of Hyman X is an ANR-divisor.

b) + c) It follows from Theorem 4.5 in view of the fact

that pro—Hn+l(X) = 0.

Corollary 4.8. In the class of continua of finite
fundamental dimension the property of being an ANR-divisor
18 a hereditary shape invariant. In particular each FANR-
space i1s an ANR-divisor.

Proof. Analogous to the proof of Corollary 4.6.

Example 4.9. We construct an ANR-divisor X whose fun-

damental dimension is not finite.

1 1

For each n let fn: st vs®+s v s bea map such that

fn/S = id and fn/Sn: s » Sl v 8" is the composition of maps

o o
g : s+ vslande: v sT > Sl v Sn, where 7_(e_) is an
n . i n i n'"n

i=1 n=1
isomorphism and 9, represents the difference [S?] - [Sg] of

@
two generators of w_( v sTy.
n'. "1

Then Hk(fn) = 0 for each k and the induced map

[ ]
£ et L syt » (st v s?)/s! is homotopically trivial.
_ ok n+l_ ;
Let Xn = V 8" and let hn : Xn+1 > Xn be defined by

k=1
n+1l k

hM*l(x) = £, (x) for x € s, k £ n, and g+l

is mapped onto

the base point.
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Let X = 1im (Xn,h2+l). Then S1 c X and X/S1 is an FAR.
Since FAR's are ANR-divisors we infer by a result of Hyman
[19] that X is an ANR-divisor.

Observe that Fd(X) is not finite because finitenness of
Fd(X) would imply triviality of Nn(fn)k for n = FA(X) + 1

and some k.

Remark. Example 4.9 is constructed in the spirit of

an example in [12].

Analogous to the corresponding results for ANR-divisors

in [19] one can prove the following

Theorem 4.10. Let X and Y be continua. If X, Y and
X N Y are Lc™-divisors, then X U Y is an LC™-divisor. If
XUYand XN Y are LCn-divisors, then X and Y are LCT-divi-
sors. If X cY and X and Y/X are Lc-divisors, then Y is an

Lc®-divison.

The author is grateful to Jack Segal for his help during

the preparation of this paper.
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