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SUBCLASSES OF p-SPACES AND 

STRICT p-SPACES 

Raymond F. Gittings 

1. Introduction
 

The purpose of this paper is to introduce and investi 

gate certain concepts which are defined in terms of the way 

a space X is err~edded in its Stone-Cech compactification, eX. 

The definitions of these concepts are motivated by characteri 

zations obtained recently in [10]. 

The word "space" will always mean "completely regular 

Tl-space." Throughout, N denotes the set of positive inte

gers and <x >denotes the sequence whose n
th 

term is x . If n n 

A C X we denote the closure of A in X by ClxA. 

2. Preliminaries and Definitions
 

If U is a collection of subsets of a space X and x E X,
 

we	 define 

u{U E U: x E U} 

and, for k ~ 2, we define 

Stk(x,U) = U{U E U: U n Stk-1(x,U) ~ ~}. 

A sequence <B) of subsets of a space X is said to be a ren 

fining sequence (1) if, for every n E N, B + < B (i.e.,n l n 

B is a refinement of B ).n+l n
 

Let (B ) be a refining sequence of covers of a space X
 n 

by sets open in ex. For each kEN, consider the following 

(1) This terminology should not be confused with the use 
of the term "refining set of· coverings" to mean development 
in [0]. 
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conditions on the sequence <B ):
n 

00 k Bnn=lSt (x, n) C X for each x E X. 
00 k 

nn=lSt (x, B ) {x} for each x E X. n 

For each x E X and n E N, there exists n(x) E N 

such that ClsxStk(x,Bn(X)) c Stk(x,B ).n

For each x E X and n E N, there exists n(x) E N 

k+l k
such that ClsxSt (x,Bn(x}) c St (x,B ).n 

A space X with such a sequence <B ) is a Moore space if <B > 
n n 

satisfies (B l ) and (Cl ), a metrizable space if (B >satisfies n 

(Bk ) and (Ck ) for any k ~ 2, and a paracompact M-space if 

<B > satisfies (Ak ) and (D ) for any kEN [10]. Conversely,n k 

for any Moore space, metrizable space or paracompact M-space 

there exists such a sequence <B > satisfying the appropriate
n 

conditions. 

Because of the above characterizations, it is natural to 

consider the following concepts. A space X is called a 

Pk-space if there exists such a sequence (B~ for X satisfying 

(A ). If in addition, the sequence <B > satisfies (C ), thenk n k 

X is called a strict Pk-space. Actually, the concept of a 

PI-space is equivalent to that of a p-space [1] and the con

cept of a strict PI-space is equivalent to that of a strict 

p-space [6]. If j > k, it is clear that every pi-space is a 
] 

Pk-space. Unfortunately, we do not know if a strict Pj-space 

is a strict Pk-space whenever j > k. However, the following 

concept, which is at least formally weaker than that of a 

strict pk-space, satisfies the desired implication for j > k. 

A space X is called a weak strict Pk-space if there exists a 

sequence <B > of covers of X by sets open in SX such that 
n 

00 k Bnn=lClsxSt (x, n) C X. Moreover, this weaker concept is 
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sufficient for the results that follow and is, in fact, the 

primary concept studied in this paper. 

The following implications among the concepts discussed 

above are immediate from the definitions. (The value of k is 

assumed to be fixed.) 

paracompact M-space locally compact space 

strict Pk-space j
~ 

weak strict Pk-space ~ Pk-space 

The following internal characterization of a weak strict 

Pk-space will be useful in the next section. 

Theorem 2.1. A space X is a weak strict Pk-space if and 

only if there exists a sequence (Y >of open covers of X sat-n 

isfying the following conditions: 

00 k r.
nn=lClxSt (x'Jn) is a compact subset of X for 

each x E X. 

(bJ if P C U3 an open subset of X3 there exists a j E N x 
k

such that ClxSt (x, Yj) cU. 

Proof. Suppose <B > is a sequence of covers of X illusn 

trating that X is a weak strict Pk-space. We may assume that 

B + < B for each n E N. For each n E N, let Y {B n X: n l n n 

B E B } and note that Stk(x,r.) = Stk(x,B) n X for each n In n 

x E X and n E N. Using this fact and the fact that 

00

nn=lClsxSt
k 

(x,Bn ) C X, the reader can easily show that 

00 kook 
nn=lClxSt (x'§n) = nn=lClsxSt (x,Bn )· Hence Px 

00 k 
nn=lClxSt (x'§n) is a compact subset of x. The fact that 

<yj satisfies condition (b) follows in the usual manner; i.e. 
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as in the proof of [6, Theorem 2.2]. 

Conversely, suppose <~> is a sequence of open covers of n 

X satisfying conditions (a) and (b) of the theorem. For each 

n E N, let B = {B open in SX: B n X E ~n} and note that n 

Stk(x,~ ) = Stk(x,B ) n X. Let x E X, Y E SX - X and W be an n n 

open set in SX with P eWe C1SXW C SX - {y}. By condition x
 

(b), there is an n E N such that P c ClxStk(x,~ ) c W n X c
 x n 
k

C1SXW n X. Since St (x'~n) c C1SXW, it follows that 

k
St (x,B ) - C1SXW is an open subset of SX - X and therefore n 

must be empty. Thus, Stk(x,B ) C ClsxW and so ClsxStk(x,B )n n 
k 

c C1SXW c SX - {y}. Hence, y ~ ClsxSt (x,B ). Because yn 

was an arbitrary element of SX - X, it follows that 

00 k 
nn=lC1SxSt (x,Bn ) C X. 

The internal characterizations for Pk-spaces and strict 

Pk-spaces are contained in Theorems 2.2 and 2.3. As the tech

nique used to prove these results is similar to that used in 

Theorem 2.1 (also see [4, Theorem 1.3] and [6, Theorem 2.2]), 

the proofs are left to the reader. 

If lj is a collection of subsets of a space X and x E X, 

a k-tuple (U(l),···,U(k) with U(i) E lj for i = 1,2,···,k, 

such that x E U(l) and U(i) n U(i+l) ~ ~ for i = 1,2,···,k-l 

is called a k-chain at x from u. 

Theorem 2.2. A space X is a Pk-space if and onZy if 

there exists a sequence (~n) of open covers of X such that~ 

for every x E x~ if <G (l),···,G (k) is a k-chain at x fpomn n 

~n~ then 

(aJ C x 

(bJ if C C U~ an open subset of X~ there exists a j E N 
x 
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Theorem 2.3. A space X is a strict Pk-space if and only 

if there is a refining sequence <~n) of open covers of X sat

isfying the following conditions: 

00 k
(a') P = nn=lSt (x'~n) is a compact subset of X for each x 

x E X. 

(b ' ) {nj=lstk (x t Yj): n E N} is a basis of neighborhoods 

for the set P . x 

Remark. The author does not know if a space X with a 

refining sequence of open covers satisfying (a) and (b) of 

Theorem 2.1 is a strict Pk-space. However, it can be shown 

that (a) of Theorem 2.1 and (b') of Theorem 2.3 are sufficient 

to show that X is a strict Pk-space. 

We haven't introduced any terminology for a space with 

a sequence <Bn > of covers satisfying condition (Bk ). How

ever, the following characterization is an easy consequence 

of the definitions of a Pk-space and of a space having a 

Go (k) -diagonal [12] (1) • 

Theorem 2.4. A space X is a Pk-space with a Go(k)

diagonal if and only if there exists a sequence <B > ofn 

covers of X by sets open in SX satisfying condition (B ).k 

3. Weak Strict Pk -Spaces
 

In this section we show that the class of weak strict
 

Pk-spaces (k ~ 2) is contained in the class of wM-spaces. In 

addition, we see that the concept of a weak strict P2-space 

(l)The concept of a Go (l)-diagonal coincides with the 
characterization of Go-diagonal obtained in [7]. 
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posseses sufficient additional structure to provide some in

teresting results which are not valid for wM-spaces. 

According to [11], a space X is a wM-space if there 

exists a sequence (Un> of open covers of X such that if 

2 x E St (x, Un)' then the sequence <x > has a cluster point.n n 

Theopem 3.1. If X is a weak stpict Pk-space (k > 2), 

then X is a wM-space. 

Ppoof. It suffices to show that every weak strict P2

space is a wM-space. Suppose (U >is a sequence of open
n 

covers of X satisfying conditions (a) and (b) of Theorem 2.1 

for k = 2. If x E St
2

(x, Un) , it is easy to see that the n 

sequence (x ) has a cluster point in the set P. Thus X is n x 

a wM-space. 

The Niemytzki plane (see [16, Example 82]) is a strict 

p-space (hence, a weak strict p-space) which is not a wM

space. Thus, Theorem 3.1 is not true for k = 1. The space 

[D,n), where n is the first uncountable ordinal, is a wM

space which is not a weak strict pk-space (for any kEN) . 

Thus, the converse of Theorem 3.1 is not true. However, we 

obtain a partial converse in Theorem 3.2. 

A space X is called isocompact [2] if every closed 

countably compact subset of X is compact. 

Theorem 3.2. Every isocompact wM-space is a weak stpict 

Pk-space (for any kEN). 

Proof. Let X be a wM-space. Suppose (U > is a sequence
n 

of open covers illustrating that X is a wM-space. We may as

sume that U + < Un for all n E N. It suffices to show that n l 

the sequence (U > satisfies conditions (a) and (b) of Theorem 
n 
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< "\ < kx rr x
00 

n 2.1. Let be a sequence with xJ c P = nn=lClxSt (x,U ) 

and note that, for each n E N, x E ClxStk(x,U ) c Stk+l(x,U ).
n n n 

It follows from [11, Lemma 2.5] that the sequence (x > has a 
n 

cluster point. Since any such cluster point is surely in P ' 
x 

the set P is countably compact and thus compact because of x 

the isocompactness of X. Hence, the sequence <U > satisfies 
n 

condition (a) of Theorem 2.1. 

Suppose U is an open subset of X and P c U. If 
x 

ClxSt
k 

(x, Un) ¢ U for every n E N, there is a sequence <x > 
n 

such that x E ClxSt
k 

(x, Un) - U. As was noted in the proofn 

of Theorem 3.1, the sequence <x > has a cluster point x and n 0 

X E P c U. Since this is impossible, we must have o x 

ClxStk(x,U ) c U for some n. Hence, the sequence (Un) sat
n 

isfies condition (b) of Theorem 2.1 showing that X is a weak 

strict pk-space. 

Corollary 3.3. If X is an isocompact space~ the fol

lowing are equivalent: 

(1) X is a wM-space. 

(2) X is a weak strict P2-space. 

(3) X is a weak strict Pk-space (k > 3). 

In [4], Burke shows that the class of p-spaces coincides 

with the class of strict p-spaces in the class of e-refinable 

spaces. Since any locally compact nonmetrizable Moore space 

is a e-refinable pk-space (for any k ~ N) and is not a weak 

strict pk-space (for any k > 2), this coincidence does not 

hold if k > 2. However, we do have the following: 

Theorem 3.4. If X is a paracompact space~ the 
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following are equivalent: 

(1) X is a Pk-space (for any kEN). 

(2) X is a strict Pk-space (for any kEN). 

(3) X is a weak strict Pk-space (for any kEN). 

Proof. To show (1) ~ (2) it suffices to show that a 

paracompact p-space is a strict Pk-space (for any kEN) . 

A paracompact p-space is a paracompact M-space [1, 13] and 

thus has a refining sequence <B > satisfying conditions (A )n k 

and (Dk ) of the introduction [10]. Hence the sequence <Bd 
satisfies conditions (Ak ) and (C ) showing that X is a strict

k 

Pk-space. 

To show (2) ~ (1) it suffices to show that a paracompact 

strict p-space is a strict Pk-space (for any k ~ 2). But 

this is immediate since a strict p-space is a p-space. 

To show (3) ~ (1) it suffices to show that a paracom

pact weak str~ct p-space is a Pk-space (for any kEN). But, 

by Corollary 3.3 a.paracompact weak strict p-space is a weak 

strict pk-space (for any k > 2) and hence a Pk-space (for any 

kEN) • 

For the remaining results of this section, we need the 

following theorem due to Chaber [8]. 

Theorem 3.5. A locally compact space X is 8-refinable 

if for every open cover Uof X there exists a sequence <V )n 

of open covers of X and a cover {An: n E N} such that, for 

each n > 1 and x E An' St(x,V ) C U for some finite subset n x 

U 0 f U.x 

Theorem 3.6. A locally compact weak strict p-space is 
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8-refinable. 

Proof· Let X be a weak strict p-space and let <U >be 
n 

a sequence of open covers of X satisfying conditions (a) and 

(b) (for k = 1) of Theorem 2.1. Suppose U is an open cover 

of X. For each n E N, let A {x E X: St(x, Un) c uU for n x 

some finite subset U of U} • By conditions (a) and (b),x 

{A : n E N} is a cover of X. It follows from Theorem 3.5 n 

that X is 8-refinable. 

The proof of the following corollary follows exactly as 

that of Corollary 2.2.2 in [8]. 

Corollary 3.7. A locally compact, weak strict p-space 

with a Go-diagonal is a Moore space. 

For weak strict P2-spaces we have the following results. 

Theorem 3.8. A locally compact, weak strict P2-space 

is paracompact. 

Proof. By Theorem 3.6, such a space is 8-refinable and, 

by Theorem 3.1, a weak strict P2-space is a wM-space. But a 

8-refinable wM-space is paracompact [15, Theorem 5.1] . 

Corollary 3.9. A locally compact weak strict P2-space 

with a Go-diagonal is metrizable. 

Proof. This is an immediate consequence of Theorem 3.8 

and the fact that every paracompact Moore space is metrizable 

[3] • 

As the example in [14, Section 4] shows, Theorem 3.8 

does not necessarily hold for wM-spaces. In fact, the space 

Y in that example is not even isocompact. 
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In [51, Burke gave an example of a locally compact space 

with	 a Go-diagonal that is not a Moore space. Hence, a Pk

space with a Go-diagonal need not be a Moore space. 

In [9], Cook and Gibson construct, for each j > 1, a 

locally compact nonmetrizable Moore space with the j-link 

property (= Go (j)-diagonal property). Since every locally 

compact space is a pk-space, those examples show that the 

analogue of Corollary 3.9 does not hold for Pk-spaces (for 

any	 kEN) • 
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