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FACTORING OPEN SUBSETS
 

OF Roo WITH CONTROL
 

R. E. Heisey 

In this paper we show that if U is an open subset of 

Roo dir lim Rn , then the projection map TI: U x Roo ~ U can 

be approximated by homeomorphisms. One corollary of this 

result is that any homotopy equivalence f: U ~ V between 

open subsets of Roo is homotopic to a homeomorphism. A 

second corollary is that if h: IKI ~ ILl is a homotopy 

equivalence, where K and L are countable simplicial com­

plexes, then f x id: IKI x Roo ~ ILl x Roo is homotopic to a 

homeomorphism. 

1. Background and Statement of Rettulta 

L~t R denote the re~is~ and let Roo = lim Rn • · Let M 
-+ 

and N denote paracompact,'connected Roo-manifolds. It is not 

known if M is stable, i.e. if M x Roo is homeomorphic to M. 

In [2] it is shown that (1) M x Roo en~eds as an open subset 

of Roo, and that (2) if M and N have the same homotopy type, 

then M x Roo and N x Roo are homeomorphic. Thus, if it were 

known that Roo-manifolds are stable then it would follow that 

M embeds as an open subset of Roo and that if M and N have 

the same homotopy type then they are homeomorphic. In [4] 

it is shown that if U is an open subset of Roo then U x Roo 

is homeomorphic to U. Here w~ improve this result and show 

that there are homeomorphisms U x Roo -+ U arbitrarily close 

to the projection map (Theorem 1 below). Hopefully, the 

techniques used here will be useful in proving stability for 
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general Roo-manifolds. Note, too, that because of (1) above 

and Theorem 1 the existence of any homeomorphism M x Roo + M 

will now imply the existence of homeomorphisms M x Roo + M 

arbitrarily close to the projection map. 

Theopem I: If U is an open subset of Roo and V is an 

open covep of U, then there is a homeomorphism g: U x Roo + U 

which is V-close to the projection map TI: U x Roo + U. 

By g V-close to TI we mean that for every (x,y) E U x Roo 

there is a V E V such that {g(x,y),x = TI(x,y)} c V. Thus, 

Theorem 1 says that the projection map can be approximated 

by homeomorphisms. The proof of Theorem 1, given in section 

3, refines the argument in [4] using some of the techniques 

developed in [3]. It also uses a theorem from piecewise 

linear (p.l.) topology which we prove in section 2 as 

Theorem 2. This p.l.' theorem seems to be known, but we 

could not find a proof in the literature. 

Since Roo is locally convex, e.g. [2, Theorem IV.l], we 

may take the cover V in Theorem 1 to consist of convex sets. 

Any homeomorphism g: U x Roo + U which is V-close to ~ will 

then be homotopic to TI via the straight line homotopy. Thus, 

we obtain the following. 

Copollary 1. Fop any open subset U of Roo there is a 

homeomorphism g: U x Roo + U which is homotopic to the pro­

jection map. 

Now, let f: U + V be a homotopy equivalence where U 

and V are open subsets of Roo. By [2, Theorem 11.9 and Prop. 

III.l] there is a homeomorphism h: U x Roo + V x Roo which is 
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homotopic to f x ide By Corollary 1 there are homeomorphisms 

h : V x Roo ~ V and h : U x Roo ~ U, each homotopic to the v u 
-1corresponding projection. It follows that hvhh : U ~ Vu 

is a homeomorphism homotopic to f. We have proved the 

following. 

Corollary 2. Any homotopy equivalence f: U ~ V between 

open subsets of Roo is homotopic to a homeomorphism. 

With regard to Corollary 2 we remark that although 

(nonempty) open subsets of R are not metrizable they do 

have the homotopy type of ANR's [2, Theorem 11.10]. Thus, 

Corollary 2 holds as well if f is a weak homotopy equivalence. 

As indicated at the end of IS], if K and L are count­

able simplicial complexes, then IKI x Roo and ILl x Roo are 

homeomorphic to open subsets of Roo. Thus, as a special 

case of Corollary 2 we obtain the following. 

Corollary 3. If K and L are countable simplicial com­

plexes, and if f: IKI ~ ILl is a homotopy equivalence, then 

f x id: IKI x Roo ~ ILl x Roo is homotopic to a homeomorphism. 

2. Preliminary results 

For convenience, if x is an element of a space X we 

will often write x for {x}. If (X,d) is a metric space, 

C c X and E > 0, then by B(C,E) we denote {x E Xl d(C,x)<E}. 

Let I = [0,1]. If H: X x I ~ Y is a homotopy define H ,t 

t E I, by Ht(X) = H(x,t) . If Y = X, HO 
= id and each Ht is 

a homeomorphism we say that H is an ambient isotopy. If H 

is also p.l. we say that H is a p.l. ambient isotopy. 
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Theorem 2. Let P be a finite polyhedron of dimension 

Rn Rn lk. Let H: P x I + C + , n ~ 2k+l, be a homotopy such 

that	 HO = f and HI = g are p.l. embeddings. Then given 

· 1 A n+l Rn+ l 
£ > O there ~s a p.. amb··~ent ~sotopy : R x I + 

such that (aJ Alf = g and (bJ for every x E Rn+ l either 

A(xxI) = x or A(xXI) c B(H(pxI),E) some pEP. 

Rn lProof. Let 0 = £/6. Define HI: P x I + + by 

HI (p,t) = (H(p,t) ,to). Let Po = P x {O,l}. Then HI/PO is 

a p.l. embedding. Let d be the usual metric on Rn+l • By 

[6, Theorem 5.4, p. 61] there is a p.l. embedding 

lRnG: P x I + + such that d(G,H ' ) < 0 and G/PO = HI/PO. 

Note that d(G,H) < 20 and GO = f. Let g = Gl = (g,o). 

Choose w < 0/2 such that d(x,y) < w implies 

d(gf-l(x), gf-l(y» < 0/2 for every x,y E f(P). Choose 

11 > 0	 such that for every pEP 

i) diam(G(p x [0'11]» < w/2 and 

ii) diam (G(p x [1-11,1]» < w/2. 

Choose y > 0 such that y < wand (1) d(G(P x (11,1]), GO (P» > y 

and (2) d (G (P x [0, 1-n] ), Gl (P» > y. Let U = ~ - neighbor­

hood of Gl(P). By an engulfing theorem of Bing [1, Theorem 

B, p. 8] (taking L = ~' C = Gl(P) in the notation of (1]) 

l lRn Rnthere	 is a p.l. ambient isotopy F: + x I + + such that 

F/(Gl(P) x I) = id, for every x E Rn+ l either F(xxI) = x or 

F(xxI) c B(G(pxI), y/2) some pEP, and G(PxI) c Fl(U). 

Define E: Rn+l x I + Rn+l by E(x,t) = F Fi1 (X). Then El _t 

is a p.l. ambient isotopy with the same properties as F 

except that the last condition becomes El(G(PXI» c U. 

We proceed to show that d(Elf,g) < 20. For pEP 
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choose S(p) E P as follows. If F(f(p) x I) = f(p) take 

S(p) p. Otherwise take S(p) = q where q is any point P 

such that E(f(p)xI) c B(G(qxI), y/2). Then, in either case, 

E(f(p)xI) C B(G(S(p)xI), y/2). Since f(p) = EOf(p) E 

B(G(S (p) xl), y/2) there is a E I such thatto 

d(f(p) = GO (p), G(S (p), to)) < y /2. By (1) and then (i) 

above it follows that to < n and d (G ( e(p), to)' GO (e (p) ) 

f (S (p))) < w/2. Thus d (f (p) , f (S (p)) < Y/2 + w/2 < w so 

that, by choice of w, d(g(p), g(S(p))) < 0/2. Choose 

t E I such that d(Elf(p), G(S(p), tl)) < y/2. Then, since
l 

E (G(pxI)) C 0, d(G(S (p), t ), G (P)) < y. Applying (2) and
l l l 

then (ii) above we obtain t > 1 - nand d(G(S(p), tl)'l 

Gl(S(p)) = g(S(p))) < w/2. Thus d(Elf(p), g(8(p))) < y/2 + 

w/2 < w, and d(Elf(p), g(p)) ~ d(Elf(p), g(S(p))) + 

d(g(S(p)), g(p)) < W + 0/2 < o. Therefore, d(Elf,g) < 20. 

By the unknotting theorem in [7, p. Ill] (with P = L) 

. 1 mb" n+l n+l h ht here lS a p .. a lent lSOtOpy F: R x I ~ R suc t at 

FlElf = g, diam(F(xxI)) < 20 for every x, and F(xXI) = x 

for every x such that d(x, Elf(p)) ~ 20. Define 

Rn Rnl lA: + x I ~ + by At = FtE . Then A is a p.l. ambientt 

isotopy satisfying the conclusion of the theorem. To see 

that (b) holds in the case where E(xxI) = x and F(xxI) ~ x, 

note first that d(x, Elf(p) < 20. Thus, d(x,g(p) = 

Hl(p» < 40 so that A(xxI) c B(H(pxI), 60 = s) as required. 

3. Proof of Theorem 1 

In addition to the notation introduced at the beginning 

of section 2 we will use the following. If H: X x I ~ Y is 

a homotopy and § is an open cover of Y we say that H is 
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limited by § if for each x E X, H(xxI) c G, some G E §. If 

§ is an open cover of Y and X is any space then X x § = 

{X x GIG E §}. If § is an open cover of Y and A c Y then 

A n § = {A n GIG E §}. We use d
k 

to denote the usual metric 

on Rk . If A C Rk we denote by IntkA the topological interior 

of A in Rk , and, for e: > 0, we denote by Bk (A, e:) the set 

{x E Rkldk(A,X) < e:}. We identify Rn with Rn x {a} C Rn+l . 

In this way Roo = u{Rnln = 1,2,3, ... }. If X c Roo we let 

Xn X n Rn
• 

We will need two lemmas. The proof of the first is 

straightforward, and we omit the proof. Lemma 2 is proved 

in [3]. 

Lemma 1. Let C be a compact subset of a locally compact 

metric space (X,d). Let § be a collection of open subsets 

of X whose union contains C. Then there is an e: > 0 such 

that for each x E C, B (x, e:) c G some G E §. 

Lemma 2. [3, Lemma 4] • Let H: X x I + Y be a homotopy 

where X is a compact metric space and y is a metric space. 

Let § be an open cover of Y such that H is limited by § . 

Then there is an E > 0 such that for every x E X there is a 

G E § such that B(H(xxI),e:) < G. 

Proof of Theorem 1. For convenience, we may assume that 

U is connected. Using elementary reasoning (e.g. see [2, 

Prop. 111.1 and Prop. 111.2]), U = U{Cnln = 4,5,6,7, ... } 

where C c R
n 

is compact, C C C + l ' and where a subset G n n n 

of U is open in U iff G n C is open in Cn' n ~ 4. In what n 

follows "manifold" will be used only for a compact, p.l. 
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manifold, possibly with boundary. We observe that if K is 

any compact set and K c W where W is open in Rn , then there 

is an	 n-manifold M such that K c IntwM c MeW. Given £ > a 

and n	 ~ 2, let D(n,£) = {x (xl, ... ,xn)lx E Rn and 

l,2, ... , n} . 

Choose a 4-dimensional manifold M such that C c2 4 
4M c	 u . By Lemma 1 there is an £2 > 0 such that for every4 

8 8 Vx E M B (x,2£2) c V , some V E . Choose a manifold M2 , 3 

of dimension 8 such that [M x D(2'£2)] U C c Int8M c2 8 3 

M3 c u8 
. Choose P2 > 0 such that P2 < mim{1,d8 (M2 x E2 , 

R
oo 
\Int 3 )}. Let E = D(2'£2) and F = D(2,2). Define a8M 2	 2 

p.l.	 homeomorphism h 2 : M x E + M x F by h (m,e)2 2 2 2 2 

(m, (2/£2)e). Let F D(6,3), and define i 2 : M x E +3 2 2 

M x F 3 by i (m,e) = «(m,e),O),O) and 82 : M x F + M x F3 2 2 2 3 3 

by 8 (m,f) = «m,O), (f,O)). Define H2 : M x E x I +2 2 2 

M x F by H (m,e,t) = {( (m, (l-2t)e) ,0), t E t[OE,1/r2l/]2,1] }.
3 3 2 ( (m, 0) , ( (2/£ 2) e, 0) ) ,
 

8
Then,	 regarding H2 as a map into u x R6 , H2 is limited by 

6V8 
x	 R . By Theorem 2 there is a p.l. ambient isotopy 

14 14A3 : R x I + R such that (A3 )li = 8 h 2 and such that2 2

for every x E R14 either A3(XXI) x or A3 (XX I ) c 

B14 (H2 «m,e) x I) '03) some (m,e) E M2 x E2 . It follows that 

(A 3 )t(M3 x F 3 ) = M3 x F 3 . Thus, we may regard A3 as a p.l. 

ambient isotopy A3 : M3 
x F x I + M x · As such A3 is3 3 F 3

limited by (M x F ) n (V 8 x R6 ). Set g23 3 h 2 · 

Suppose, inductively, that for n ~ 3 we have defined 

Mk , Fk , 2 ~ k ~ ni Ek- 1 , 8k- l : Mk - l x Fk - l + Mk x Fk , 

gk-l:	 Mk- l x Ek - l + Mk- l x Fk- l , i k - l : Mk - l x Ek - l + Mk x Fk , 

3 ~ k	 ~ ni An: M x F x I + M x Fni and ak- 2 : Mk- 2 x Ek- 2 +n n n 

Mk- l x Ek - l , 3 ~ k ~ n, (the condition on the a's being only 
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for n > 3) such that Mk is a 2k-dimensional manifold in 
k 

U
2

, (Mk- l x Ek- l ) U C k C Int kMk' Fk= D(2
k
-2,k), 

2 2 
Bk- l (m, f) = «m, 0) , (f, 0)), i k- l (m,e) = «m,e), 0), gk-l is a 

p.l. homeomorphism, gk-Ia k-2 = Bk- 2gk- 2 (this condition, 

again, only for n > 3), and such that An is a p.l. ambient 
n n 

isotopy limited by (M x F ) n (V2 x R2 -2) with (An)li ­n n n l 

Bn-lgn- l · 

We proceed to construct M +l , F +l , En' an' gn' an-I' inn n

and A +l satisfying analogous conditions. Define B : M x F + n n n n 
2n+1 2n+ l _2

U x R by B (m, f) = «m, 0) , (flO) ) • n 
2n+1 2n+I _2

limited by V x R . By Lemma 2 there is a Yn > 0 

2n+2_ 2such that for every xE M x F , B (BnAn(Xx1),y ) Cn n n 
2n+1 2n+I _2 

V x R . Choose E > ° such that En < Yn and such 
2n~I_2 

that M x D(2n-2,E ) C U Let E D(2n-2,E).n n n n 
1Choose manifold M +l of dimension 2n+ such that n 

2n+1 
[(M x En) U C +1 l c Int2n+lMn+l c M +1 cU. Choosen n2n
p > ° such that P < mim{l,d +1(M x E ,Roo\Int +IM +ll. 

n n 2n n n 2n n 

Let F +l = D(2n+1-2,n+l). Define a p.l. homeomorphismn 

by in(m,e) = «m,e),O) and an_l(m,e) «m,e),O). Note that 

CBn(M x En) M +l x F +l and consider the following diagram.n n n


a n-l x E
Mn-l x En-l .. Mn n ,I ~ i 

gn-l nI ! h 

B

'~n

~.. 
Bn- l n 

M x F ~ M x F -.-... M +l x F n+ln- l n-l n n n
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(An)lh · Then gn is a p.l. homeomorphism, andn 

(An)l n-l = Sn-lgn-l· Define Hn : M x En x I ~ n 

Mn+l x Fn+l by 

( \ 

I «m, (l-4t) e) ,0), t E [0, 1/4] I 
I 

H (m,e,t) «rn,O), ([n{4t-1)!E:n1e,O», t E [1/4,1/21~ n tBnA (h (rn,e) ,2t-1), t E [1/2,11. J n n 

Then H is a homotopy between the p.l. embeddings in and n 

Bng · Also, if TI + l : M + l x F + l ~ M + l is the projection,n n n n n 

then TIn+lHn(xxI) is contained in the yn-neighborhood of 

'lT + l SnAn (h (x) x I). Thus, by choice of Y n' H is limited n n n 
2n+l_2

(V 2n+l 
by (M + l x F + l ) n x R ). By Lemma 2 there is n n 

a 0n+l > 0 such that 0n+l ~ P and such that for everyn 
n+2 2n+ l 2n+1_22 x E M x En' B -2(Hn(XXI), 0n+l) c V x R , some n 

V E V. By Theorem 2 there is a p.l. ambient isotopy 
2n+ 2_2 2n+ 2_2 

A + l : R x I ~ R such that (A +l)li = S 9 and n +2 n n n n 
2n -2

such that for every x E Reither An+l(XXI) = x or 
2n +2_ 2

An+l(XX I ) C B (Hn(m,e) x I), 0n+l) some (m,e) E M x En. n 

It follows that (An+l)t is the identity off M + l x F + l ,n n 

t E I. Thus, we may regard An+ l as a p.l. ambient isotopy 

A + l : M + l x F + l x I ~ M + l x F + l . As such, A +l isn n n n n n 

limited by (M + l x F + l ) n (V 2n+l 
x R2n+ 2- 2 ). This completesn n 

the inductive step. 

By induction we have a , S , 9 , n ~ 2, such that the n n n 

following diagram commutes for every n. 

a 
M x E n 

x En n ------. Mn+ l n+ l 

1 !9n+l9n 
Sn 

M x F 
n n Mn +l x Fn" +l 
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The	 gn's induce a homeomorphism of direct limits, 

As shown in [4,p. 379] dir 1im{M x EniU } is homeomorphicn n 

to U and dir lim{M x FniS } is homeomorphic to U x Roo. n n 
-1

Thus, (goo) induces a homeomorphism g: U x R
00 

~ U. To see 

that 9 is V-close to TI, let (m,x) E U x Roo. Then y 

g(m,x) E M , some n, and (m,x) = goo(y) = gn(y,O) = Sngn(y,O)n
 

( (m, 0), (x , 0) ) . Since {(A +1 ) 1 i (( y , 0» = S 9 ((Y , 0) )
n n n n 2n +l 
( (m, 0) , (x, 0) ), (A +1) Oi ((y, 0» = ((y, 0) , O)} c V x
 

I nn 2n+l
2n+	 -2
R some V E V, we have {(m,O),(y,O)} c V , some 

V E	 V, as required. The proof is now complete. 
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