TOPOLOGY PROCEEDINGS Volume 3, 1978 Pages 363–373

http://topology.auburn.edu/tp/

FACTORING OPEN SUBSETS OF \mathbf{R}^∞ WITH CONTROL

by

R. E. Heisey

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOONT	01.10.110.1

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

FACTORING OPEN SUBSETS OF \mathbb{R}^{∞} WITH CONTROL

R. E. Heisey

In this paper we show that if U is an open subset of R^{∞} = dir lim R^{n} , then the projection map π : U × R^{∞} + U can be approximated by homeomorphisms. One corollary of this result is that any homotopy equivalence f: U + V between open subsets of R^{∞} is homotopic to a homeomorphism. A second corollary is that if h: |K| + |L| is a homotopy equivalence, where K and L are countable simplicial complexes, then f × id: $|K| × R^{\infty} + |L| × R^{\infty}$ is homotopic to a homeomorphism.

1. Background and Statement of Results

Let R denote the reals, and let $R^{\infty} = \lim_{\to} R^n$. Let M and N denote paracompact, connected R^{∞} -manifolds. It is not known if M is stable, i.e. if $M \times R^{\infty}$ is homeomorphic to M. In [2] it is shown that (1) $M \times R^{\infty}$ embeds as an open subset of R^{∞} , and that (2) if M and N have the same homotopy type, then $M \times R^{\infty}$ and $N \times R^{\infty}$ are homeomorphic. Thus, if it were known that R^{∞} -manifolds are stable then it would follow that M embeds as an open subset of R^{∞} and that if M and N have the same homotopy type then they are homeomorphic. In [4] it is shown that if U is an open subset of R^{∞} then U $\times R^{\infty}$ is homeomorphic to U. Here we improve this result and show that there are homeomorphisms U $\times R^{\infty} \rightarrow$ U arbitrarily close to the projection map (Theorem 1 below). Hopefully, the techniques used here will be useful in proving stability for general \mathbb{R}^{∞} -manifolds. Note, too, that because of (1) above and Theorem 1 the existence of any homeomorphism $M \times \mathbb{R}^{\infty} \to M$ will now imply the existence of homeomorphisms $M \times \mathbb{R}^{\infty} \to M$ arbitrarily close to the projection map.

Theorem 1. If U is an open subset of \mathbb{R}^{∞} and V is an open cover of U, then there is a homeomorphism g: U × \mathbb{R}^{∞} + U which is V-close to the projection map π : U × \mathbb{R}^{∞} + U.

By g V-close to π we mean that for every $(x,y) \in U \times \mathbb{R}^{\infty}$ there is a $V \in V$ such that $\{g(x,y), x = \pi(x,y)\} \subset V$. Thus, Theorem 1 says that the projection map can be approximated by homeomorphisms. The proof of Theorem 1, given in section 3, refines the argument in [4] using some of the techniques developed in [3]. It also uses a theorem from piecewise linear (p.1.) topology which we prove in section 2 as Theorem 2. This p.1. theorem seems to be known, but we could not find a proof in the literature.

Since \mathbb{R}^{∞} is locally convex, e.g. [2, Theorem IV.1], we may take the cover V in Theorem 1 to consist of convex sets. Any homeomorphism g: $U \times \mathbb{R}^{\infty} \rightarrow U$ which is V-close to π will then be homotopic to π via the straight line homotopy. Thus, we obtain the following.

Corollary 1. For any open subset U of \mathbb{R}^{∞} there is a homeomorphism g: U × $\mathbb{R}^{\infty} \rightarrow U$ which is homotopic to the projection map.

Now, let f: U \rightarrow V be a homotopy equivalence where U and V are open subsets of R^{∞}. By [2, Theorem II.9 and Prop. III.1] there is a homeomorphism h: U \times R^{∞} \rightarrow V \times R^{∞} which is homotopic to $f \times id$. By Corollary 1 there are homeomorphisms $h_V: V \times R^{\infty} \rightarrow V$ and $h_U: U \times R^{\infty} \rightarrow U$, each homotopic to the corresponding projection. It follows that $h_V h h_U^{-1}: U \rightarrow V$ is a homeomorphism homotopic to f. We have proved the following.

Corollary 2. Any homotopy equivalence $f\colon U \to V$ between open subsets of R^∞ is homotopic to a homeomorphism.

With regard to Corollary 2 we remark that although (nonempty) open subsets of R are not metrizable they do have the homotopy type of ANR's [2, Theorem II.10]. Thus, Corollary 2 holds as well if f is a weak homotopy equivalence.

As indicated at the end of [5], if K and L are countable simplicial complexes, then $|K| \times R^{\infty}$ and $|L| \times R^{\infty}$ are homeomorphic to open subsets of R^{∞} . Thus, as a special case of Corollary 2 we obtain the following.

Corollary 3. If K and L are countable simplicial complexes, and if f: $|K| \rightarrow |L|$ is a homotopy equivalence, then f × id: $|K| \times R^{\infty} \rightarrow |L| \times R^{\infty}$ is homotopic to a homeomorphism.

2. Preliminary results

For convenience, if x is an element of a space X we will often write x for $\{x\}$. If (X,d) is a metric space, $C \subset X$ and $\varepsilon > 0$, then by $B(C,\varepsilon)$ we denote $\{x \in X \mid d(C,x) < \varepsilon\}$. Let I = [0,1]. If H: $X \times I \rightarrow Y$ is a homotopy define H_t , $t \in I$, by $H_t(x) = H(x,t)$. If Y = X, $H_0 = id$ and each H_t is a homeomorphism we say that H is an *ambient isotopy*. If H is also p.l. we say that H is a p.1. *ambient isotopy*. Theorem 2. Let P be a finite polyhedron of dimension k. Let H: $P \times I \rightarrow R^{n} \subset R^{n+1}$, $n \geq 2k+1$, be a homotopy such that $H_{0} = f$ and $H_{1} = g$ are p.l. embeddings. Then given $\varepsilon > 0$ there is a p.l. ambient isotopy A: $R^{n+1} \times I \rightarrow R^{n+1}$ such that (a) $A_{1}f = g$ and (b) for every $x \in R^{n+1}$ either $A(x \times I) = x$ or $A(x \times I) \subset B(H(p \times I), \varepsilon)$ some $p \in P$.

Proof. Let $\delta = \varepsilon/6$. Define H': $P \times I \to R^{n+1}$ by H'(p,t) = (H(p,t),t\delta). Let $P_0 = P \times \{0,1\}$. Then H'/ P_0 is a p.l. embedding. Let d be the usual metric on R^{n+1} . By [6, Theorem 5.4, p. 61] there is a p.l. embedding G: $P \times I \to R^{n+1}$ such that $d(G,H') < \delta$ and $G/P_0 = H'/P_0$. Note that $d(G,H) < 2\delta$ and $G_0 = f$. Let $\overline{g} = G_1 = (g,\delta)$.

Choose $\omega < \delta/2$ such that $d(x,y) < \omega$ implies $d(\overline{g}f^{-1}(x), \overline{g}f^{-1}(y)) < \delta/2$ for every $x,y \in f(P)$. Choose $\eta > 0$ such that for every $p \in P$

- i) diam(G(p × $[0,\eta]$)) < $\omega/2$ and
- ii) diam (G(p × $[1-\eta, 1]$)) < $\omega/2$.

Choose $\gamma > 0$ such that $\gamma < \omega$ and (1) $d(G(P \times [\eta, 1]), G_0(P)) > \gamma$ and (2) $d(G(P \times [0, 1-\eta]), G_1(P)) > \gamma$. Let $U = \frac{\gamma}{2}$ -neighborhood of $G_1(P)$. By an engulfing theorem of Bing [1, Theorem B, p. 8] (taking $L = \phi$, $C = G_1(P)$ in the notation of [1]) there is a p.l. ambient isotopy F: $\mathbb{R}^{n+1} \times I \to \mathbb{R}^{n+1}$ such that $F/(G_1(P) \times I) = id$, for every $x \in \mathbb{R}^{n+1}$ either $F(x \times I) = x$ or $F(x \times I) \subset B(G(p \times I), \gamma/2)$ some $p \in P$, and $G(P \times I) \subset F_1(U)$. Define E: $\mathbb{R}^{n+1} \times I \to \mathbb{R}^{n+1}$ by $E(x,t) = F_{1-t}F_1^{-1}(x)$. Then E is a p.l. ambient isotopy with the same properties as F except that the last condition becomes $E_1(G(P \times I)) \subset U$.

We proceed to show that $d(E_1f,g) < 2\delta$. For $p \in P$

choose $\theta(p) \in P$ as follows. If $F(f(p) \times I) = f(p)$ take $\theta(p) = p$. Otherwise take $\theta(p) = q$ where q is any point P such that $E(f(p) \times I) \subset B(G(q \times I), \gamma/2)$. Then, in either case, $E(f(p) \times I) \subset B(G(\theta(p) \times I), \gamma/2)$. Since $f(p) = E_0 f(p) \in$ $B(G(\theta(p) \times I), \gamma/2)$ there is a $t_0 \in I$ such that $d(f(p) = G_0(p), G(\theta(p), t_0)) < \gamma/2$. By (1) and then (i) above it follows that $t_0 < n$ and $d(G(\theta(p), t_0), G_0(\theta(p)) =$ $f(\theta(p))) < \omega/2$. Thus $d(f(p), f(\theta(p)) < \gamma/2 + \omega/2 < \omega$ so that, by choice of ω , $d(\overline{g}(p), \overline{g}(\theta(p))) < \delta/2$. Choose $t_1 \in I$ such that $d(E_1f(p), G(\theta(p), t_1)) < \gamma/2$. Then, since $E_1(G(P \times I)) \subset U$, $d(G(\theta(p), t_1), G_1(P)) < \gamma$. Applying (2) and then (ii) above we obtain $t_1 > 1 - n$ and $d(G(\theta(p), t_1),$ $G_1(\theta(p)) = \overline{g}(\theta(p))) < \omega/2$. Thus $d(E_1f(p), \overline{g}(\theta(p))) < \gamma/2 + \omega/2 < \omega$, and $d(E_1f(p), \overline{g}(p)) \leq d(E_1f(p), \overline{g}(\theta(p))) +$ $d(\overline{g}(\theta(p)), \overline{g}(p)) < \omega + \delta/2 < \delta$. Therefore, $d(E_1f, g) < 2\delta$.

By the unknotting theorem in [7, p. 111] (with P = L) there is a p.l. ambient isotopy F: $R^{n+1} \times I \to R^{n+1}$ such that $F_1E_1f = g$, diam(F(x×I)) < 2 δ for every x, and F(x×I) = x for every x such that d(x, $E_1f(p)$) $\geq 2\delta$. Define A: $R^{n+1} \times I \to R^{n+1}$ by $A_t = F_tE_t$. Then A is a p.l. ambient isotopy satisfying the conclusion of the theorem. To see that (b) holds in the case where $E(x\times I) = x$ and $F(x\times I) \neq x$, note first that d(x, $E_1f(p)$) < 2 δ . Thus, d(x,g(p) = $H_1(p)$) < 4 δ so that $A(x\times I) \subseteq B(H(p\times I), 6\delta = \varepsilon)$ as required.

3. Proof of Theorem 1

In addition to the notation introduced at the beginning of section 2 we will use the following. If H: $X \times I \rightarrow Y$ is a homotopy and \mathcal{G} is an open cover of Y we say that H is limited by \mathcal{G} if for each $x \in X$, $H(x \times I) \subset G$, some $G \in \mathcal{G}$. If \mathcal{G} is an open cover of Y and X is any space then $X \times \mathcal{G} =$ $\{X \times G | G \in \mathcal{G}\}$. If \mathcal{G} is an open cover of Y and $A \subset Y$ then $A \cap \mathcal{G} = \{A \cap G | G \in \mathcal{G}\}$. We use d_k to denote the usual metric on \mathbb{R}^k . If $A \subset \mathbb{R}^k$ we denote by $\operatorname{Int}_k A$ the topological interior of A in \mathbb{R}^k , and, for $\varepsilon > 0$, we denote by $\mathbb{B}^k(A, \varepsilon)$ the set $\{x \in \mathbb{R}^k | d_k(A, x) < \varepsilon\}$. We identify \mathbb{R}^n with $\mathbb{R}^n \times \{0\} \subset \mathbb{R}^{n+1}$. In this way $\mathbb{R}^\infty = \bigcup \{\mathbb{R}^n | n = 1, 2, 3, \ldots\}$. If $X \subset \mathbb{R}^\infty$ we let $X^n = X \cap \mathbb{R}^n$.

We will need two lemmas. The proof of the first is straightforward, and we omit the proof. Lemma 2 is proved in [3].

Lemma 1. Let C be a compact subset of a locally compact metric space (X,d). Let \mathcal{G} be a collection of open subsets of X whose union contains C. Then there is an $\varepsilon > 0$ such that for each $x \in C$, $B(x,\varepsilon) \subset G$ some $G \in \mathcal{G}$.

Lemma 2. [3, Lemma 4]. Let $H: X \times I \rightarrow Y$ be a homotopy where X is a compact metric space and Y is a metric space. Let \mathcal{G} be an open cover of Y such that H is limited by \mathcal{G} . Then there is an $\varepsilon > 0$ such that for every $x \in X$ there is a $G \in \mathcal{G}$ such that $B(H(x \times I), \varepsilon) < G$.

Proof of Theorem 1. For convenience, we may assume that U is connected. Using elementary reasoning (e.g. see [2, Prop. III.1 and Prop. III.2]), U = U{C_n | n = 4,5,6,7,...} where $C_n \subset \mathbb{R}^n$ is compact, $C_n \subset C_{n+1}$, and where a subset G of U is open in U iff G \cap C_n is open in C_n, n \ge 4. In what follows "manifold" will be used only for a compact, p.1. manifold, possibly with boundary. We observe that if K is any compact set and K \subset W where W is open in Rⁿ, then there is an n-manifold M such that K \subset Int_WM \subset M \subset W. Given $\varepsilon > 0$ and n \geq 2, let D(n, ε) = {x = (x₁,...,x_n) | x \in Rⁿ and |x_i| $\leq \varepsilon$, i = 1,2,...,n}.

Choose a 4-dimensional manifold M_{2} such that $C_{4} \subset$ $M_{A} \subset U^{4}$. By Lemma 1 there is an $\varepsilon_{2} > 0$ such that for every $\mathbf{x} \in M_2$, $\mathbf{B}^8(\mathbf{x}, 2\varepsilon_2) \subset \mathbf{V}^8$, some $\mathbf{V} \in \mathbf{V}$. Choose a manifold M_2 of dimension 8 such that $[M_2 \times D(2, \epsilon_2)] \cup C_8 \subset Int_8 M_3 \subset$ $M_2 \subseteq U^8$. Choose $\rho_2 > 0$ such that $\rho_2 < \min\{1, d_8(M_2 \times E_2, M_3 \in U^8)\}$ \mathbb{R}^{∞} Int₈M₃)}. Let $\mathbb{E}_2 = D(2, \varepsilon_2)$ and $\mathbb{F}_2 = D(2, 2)$. Define a p.l. homeomorphism $h_2: M_2 \times E_2 \rightarrow M_2 \times F_2$ by $h_2(m,e) =$ $(m, (2/\epsilon_2)e)$. Let $F_3 = D(6,3)$, and define $i_2: M_2 \times E_2 \rightarrow$ $M_3 \times F_3$ by $i_2(m,e) = (((m,e),0),0)$ and $\beta_2: M_2 \times F_2 \rightarrow M_3 \times F_3$ by $\beta_2(m,f) = ((m,0), (f,0))$. Define $H_2: M_2 \times E_2 \times I \rightarrow$ $M_3 \times F_3 \text{ by } H_2(m,e,t) = \{ ((m,(1-2t)e),0), t \in [0,1/2] \\ ((m,0),((2/\epsilon_2)e,0)), t \in [1/2,1] \}.$ Then, regarding H₂ as a map into $U^8 \times R^6$, H₂ is limited by $V^8 \times R^6$. By Theorem 2 there is a p.l. ambient isotopy A₃: $R^{14} \times I \rightarrow R^{14}$ such that $(A_3)_1 i_2 = \beta_2 h_2$ and such that for every $\mathbf{x} \in \mathbb{R}^{14}$ either $A_3(\mathbf{x} \times \mathbf{I}) = \mathbf{x}$ or $A_3(\mathbf{x} \times \mathbf{I}) \subset$ $B^{14}(H_2((m,e) \times I), \delta_3)$ some $(m,e) \in M_2 \times E_2$. It follows that $(A_3)_+(M_3 \times F_3) = M_3 \times F_3$. Thus, we may regard A_3 as a p.1. ambient isotopy A_3 : $M_3 \times F_3 \times I \rightarrow M_3 \times F_3$. As such A_3 is limited by $(M_3 \times F_3) \cap (V^8 \times R^6)$. Set $g_2 = h_2$.

Suppose, inductively, that for $n \ge 3$ we have defined M_k , F_k , $2 \le k \le n$; E_{k-1} , β_{k-1} : $M_{k-1} \ge F_{k-1} \rightarrow M_k \ge F_k$, g_{k-1} : $M_{k-1} \ge E_{k-1} \rightarrow M_{k-1} \ge F_{k-1}$, i_{k-1} : $M_{k-1} \ge E_{k-1} \rightarrow M_k \ge F_k$, $3 \le k \le n$; A_n : $M_n \ge F_n \ge 1 \rightarrow M_n \ge F_n$; and α_{k-2} : $M_{k-2} \ge E_{k-2} \rightarrow M_{k-1} \ge E_{k-1}$, $3 \le k \le n$, (the condition on the α 's being only for n > 3) such that M_k is a 2^k -dimensional manifold in U^{2^k} , $(M_{k-1} \times E_{k-1}) \cup C_{2^k} \subset Int_{2^k} M_k$, $F_k = D(2^k-2,k)$, $\beta_{k-1}(m,f) = ((m,0), (f,0))$, $i_{k-1}(m,e) = ((m,e),0)$, g_{k-1} is a p.l. homeomorphism, $g_{k-1}\alpha_{k-2} = \beta_{k-2}g_{k-2}$ (this condition, again, only for n > 3), and such that A_n is a p.l. ambient isotopy limited by $(M_n \times F_n) \cap (V^{2^n} \times R^{2^n-2})$ with $(A_n)_1 i_{n-1} = \beta_{n-1}g_{n-1}$.

We proceed to construct M_{n+1} , F_{n+1} , E_n , β_n , q_n , α_{n-1} , i_n and A_{n+1} satisfying analogous conditions. Define β_n : $M_n \times F_n + U^{2^{n+1}} \times R^{2^{n+1}-2}$ by $\beta_n(m,f) = ((m,0), (f,0))$. Then $\beta_n A_n$ is limited by $V^{2^{n+1}} \times R^{2^{n+1}-2}$. By Lemma 2 there is a $\gamma_n > 0$ such that for every $x \in M_n \times F_n$, $B^{2^{n+2}-2}(\beta_n A_n (x \times I), \gamma_n) = V^{2^{n+1}} \times R^{2^{n+1}-2}$. Choose $\varepsilon_n > 0$ such that $\varepsilon_n < \gamma_n$ and such that $M_n \times D(2^n-2,\varepsilon_n) = U^{2^{n+1}-2}$. Let $E_n = D(2^n-2,\varepsilon_n)$. Choose manifold M_{n+1} of dimension 2^{n+1} such that $[(M_n \times E_n) \cup C_{2^{n+1}}] = Int_{2^{n+1}}M_{n+1} = M_{n+1} = U^{2^{n+1}}$. Choose $\rho_n > 0$ such that $\rho_n < mim\{1, d_{2^{n+1}}(M_n \times E_n, R^{\infty} \setminus Int_{2^{n+1}}M_{n+1}\}$. Let $F_{n+1} = D(2^{n+1}-2, n+1)$. Define a p.1. homeomorphism $h_n \colon M_n \times E_n + M_n \times F_n$ by $h_n(m,e) = (m, (n/\varepsilon_n)e)$. Define $i_n \colon M_n \times E_n + M_{n+1} \times F_{n+1}$, and $\alpha_{n-1} \colon M_{n-1} \times E_{n-1} + M_n \times E_n$ by $i_n(m,e) = ((m,e),0)$ and $\alpha_{n-1}(m,e) = ((m,e),0)$. Note that $\beta_n(M_n \times E_n) \subset M_{n+1} \times F_{n+1}$ and consider the following diagram.

$$\begin{array}{c} M_{n-1} \times E_{n-1} & \stackrel{\alpha_{n-1}}{\longrightarrow} & M_n \times E_n \\ \downarrow & g_{n-1} & \downarrow & h_n \\ M_{n-1} \times F_{n-1} & \stackrel{\beta_{n-1}}{\longrightarrow} & M_n \times F_n & \stackrel{\beta_n}{\longrightarrow} & M_{n+1} \times F_{n+1} \end{array}$$

Let $g_n = (A_n)_1 h_n$. Then g_n is a p.l. homeomorphism, and $g_n \alpha_{n-1} = (A_n)_{1 n-1} = \beta_{n-1} g_{n-1}$. Define H_n : $M_n \times E_n \times I \rightarrow M_{n+1} \times F_{n+1}$ by

$$H_{n}(m,e,t) = \begin{cases} ((m,(l-4t)e),0), t \in [0,1/4] \\ ((m,0),([n(4t-1)/\epsilon_{n}]e,0)), t \in [1/4,1/2] \\ \beta_{n}A_{n}(h_{n}(m,e),2t-1), t \in [1/2,1]. \end{cases}$$

Then H_n is a homotopy between the p.l. embeddings i_n and $\beta_n g_n$. Also, if $\pi_{n+1}: M_{n+1} \times F_{n+1} \rightarrow M_{n+1}$ is the projection, then $\pi_{n+1}H_n(x \times I)$ is contained in the γ_n -neighborhood of $\pi_{n+1}\beta_n A_n (h_n(x) \times I)$. Thus, by choice of γ_n , H_n is limited by $(M_{n+1} \times F_{n+1}) \cap (V^{2^{n+1}} \times R^{2^{n+1}-2})$. By Lemma 2 there is a $\delta_{n+1} > 0$ such that $\delta_{n+1} \leq \rho_n$ and such that for every $\mathbf{x} \in \mathbf{M}_{n} \times \mathbf{E}_{n}, \ \mathbf{B}^{2^{n+2}-2}(\mathbf{H}_{n}(\mathbf{x} \times \mathbf{I}), \ \delta_{n+1}) \subset \mathbf{V}^{2^{n+1}} \times \mathbf{R}^{2^{n+1}-2}, \text{ some}$ $v \in V$. By Theorem 2 there is a p.l. ambient isotopy $A_{n+1}: R^{2^{n+2}-2} \times I + R^{2^{n+2}-2}$ such that $(A_{n+1})_{1}i_{n} = \beta_{n}g_{n}$ and such that for every $x \in \mathbb{R}^{2^{n+2}-2}$ either $A_{n+1}(x \times I) = x$ or $\mathbf{A_{n+1}}(\mathbf{x}\times\mathbf{I}) \ \subset \ \mathbf{B}^{2^{n+2}-2}(\mathbf{H_n}(\mathbf{m},\mathbf{e}) \ \times \ \mathbf{I}) \ , \ \delta_{n+1}) \ \text{ some } \ (\mathbf{m},\mathbf{e}) \ \in \ \mathbf{M_n} \ \times \ \mathbf{E_n}.$ It follows that $(A_{n+1})_t$ is the identity off $M_{n+1} \times F_{n+1}$, $t \in I$. Thus, we may regard \mathtt{A}_{n+1} as a p.l. ambient isotopy $A_{n+1}: M_{n+1} \times F_{n+1} \times I \rightarrow M_{n+1} \times F_{n+1}$. As such, A_{n+1} is limited by $(M_{n+1} \times F_{n+1}) \cap (V^{2^{n+1}} \times R^{2^{n+2}-2})$. This completes the inductive step.

By induction we have α_n , β_n , g_n , $n \ge 2$, such that the following diagram commutes for every n.

The g_n's induce a homeomorphism of direct limits,

 $g_{\infty}: \operatorname{dir} \lim\{M_n \times E_n; \alpha_n\} + \operatorname{dir} \lim\{M_n \times F_n; \beta_n\}.$ As shown in [4,p. 379] dir $\lim\{M_n \times E_n; \alpha_n\}$ is homeomorphic to U and dir $\lim\{M_n \times F_n; \beta_n\}$ is homeomorphic to U × R[∞]. Thus, $(g_{\infty})^{-1}$ induces a homeomorphism g: U × R[∞] + U. To see that g is V-close to π , let $(m, x) \in U \times R^{\infty}$. Then y = $g(m, x) \in M_n$, some n, and $(m, x) = g_{\infty}(y) = g_n(y, 0) \equiv \beta_n g_n(y, 0) =$ ((m, 0), (x, 0)). Since $\{(A_{n+1})_1 i_n((y, 0)) = \beta_n g_n((y, 0)) =$ $((m, 0), (x, 0)), (A_{n+1})_0 i_n((y, 0)) = ((y, 0), 0)\} \subset V^{2^{n+1}} \times R^{2^{n+1}-2}$ some $v \in V$, we have $\{(m, 0), (y, 0)\} \subset V^{2^{n+1}}$, some $v \in V$, as required. The proof is now complete.

Bibliography

- R. H. Bing, *Radial engulfing*, Conference on the Topology of Manifolds, the Prindle, Weber and Schmidt Complementary Series in Mathematics, Prindle, Weber and Schmidt, Boston, Mass., 1968.
- 2. R. E. Heisey, Manifolds modelled on R^{∞} or bounded weak-* topologies, Trans. Amer. Math. Soc. 206 (1975), 295-312.
- _____, Manifolds modelled on the direct limit of Hilbert cubes, Geometric Topology, Academic Press, New York, 1979, 609-619.
- 4. ____, Open subsets of R^{∞} are stable, Proc. Amer. Math. Soc. 59 (1976), 377-380.
- 5. D. W. Henderson, A simplicial complex whose product with any ANR is a simplicial complex, General Topology and its Applications 3 (1973), 81-83.
- C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Ergebnisse Math. Grenzgebiete, Band 69, Springer-Verlag, New York, 1972. MR. # 3236.
- T. B. Rushing, *Topological embeddings*, Academic Press, New York, 1973.

Vanderbilt University Nashville, TN 37235