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FACTORING OPEN SUBSETS
OF R* WITH CONTROL

R. E. Heisey

In this paper we show that if U is an open subset of
R” = dir lim R™, then the projection map m: U x R” + U can
be approximated by homeomorphisms. One corollary of this
result is that any homotopy equivalence f: U + V between
open subsets of R” is homotopic to a homeomorphism. A
second corollary is that if h: |K| » |L| is a homotopy
equivalence, where K and L are countable simplicial com-
plexes, then f x id: |K| x R® » |L| x R” is homotopic to a

homeomorphism.

1. Ba¢kground and Statement of Results

Lét R denote the reals, and let R” = lim R%. ‘Let M
and N denote paracompact, connected R”-manifolds. It is not
known if M is stable, i.e. if M x R” is homeomorphic to M.
In [2] it is shown that (1) M x R embeds as an open subset
of R”, and that (2) if M and N have the same homotopy type,
then M x R” and N x R are homeomorphic. Thus, if it were
known that R -manifolds are stable then it would follow that
M embeds as an open subset of R” and that if M and N have
the same homotopy type then they are homeomorphic. 1In [4]
it is shown that if U is an open subset of R” then U x R”
is homeomorphic to U. Here we improve this result and show
that there are homeomorphisms U x R® » U arbitrarily close
to the projection map (Theorem 1 below). Hopefully, the

techniques used here will be useful in proving stability for
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general R -manifolds. Note, too, that because of (1) above
and Theorem 1 the existence of any homeomorphism M x R” +~ M
will now imply the existence of homeomorphisms M x R® + M

arbitrarily close to the projection map.

Theorem 1. If U is an open subset of R and V is an
open cover of U, then there is a homeomorphism g: U X R” +~ U

which is V-close to the projection map w: U x R” + U.

By g V-close to Twe mean that for every (x,y) € U x R”
there is a Vv € V such that {g(x,y),x = ©n(x,y)} € V. Thus,
Theorem 1 says that the projection map can be approximated
by homeomorphisms. The proof of Theorem 1, given in section
3, refines the argument in [4] using some of the techniques
developed in [3]. It also uses a theorem from piecewise
linear (p.l.) topology which we prove in section 2 as
Theorem 2. This p.l. theorem seems to be known, but we
could not find a proof in the literature.

Since R” is locally convex, e.g. [2, Theorem IV.1l], we
may take the cover / in Theorem 1 to consist of convex sets.
Any homeomorphism g: U x R” + U which is V-close to 7 will
then be homotopic to m via the straight line homotopy. Thus,

we obtain the following.

Corollary 1. For any open subset U of R™ there is a
homeomorphism g: U x R™ + U which is homotoptie to the pro-

Jeetion map.

Now, let f: U + V be a homotopy equivalence where U
and 'V are open subsets of R”. By [2, Theorem II.9 and Prop.

III.1] there is a homeomorphism h: U x R” + V x R” which is
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homotopic to £ x id. By Corollary 1 there are homeomorphisms
hV: Vv x R® > V and hU: U x R® » U, each homotopic to the
corresponding projection. It follows that thhU_l: Uu-»v

is a homeomorphism homotopic to f. We have proved the

following.

Corollary 2. Any homotopy equivalence £: U -~ V between

open subsets of R” is homotopic to a homeomorphism.

With regard to Corollary 2 we remark that although
(nonempty) open subsets of R are not metrizable they do
have the homotopy type of ANR's [2, Theorem II.10]. Thus,
Corollary 2 holds as well if f is a weak homotopy equivalence.
As indicated at the end of [5], if X and L are count-
able simplicial complexes, then |K| x R” and |L] x R” are
homeomorphic to open subsets of R”. Thus, as a special

case of Corollary 2 we obtain the following.

Corollary 3. If K and L are countable simplicial eom-
plexes, and if £: |K| + |L| Zs a homotopy equivalence, then

£ x id: |K| x R » |L| x B” {s homotopic to a homeomorphism.

2. Preliminary results

For convenience, if x is an element of a space X we
will often write x for {x}. If (X,d) is a metric space,
C =X and € > 0, then by B(C,e) we denote {x € X| 4(C,x)<e}.
Let I = [0,1]. If H: X x I - Y is a homotopy define Ht’

t € I, by Ht(x) = H(x,t). If Y =X, H, = id and each Ht is

0
a homeomorphism we say that H is an ambient isotopy. If H

is also p.l. we say that H is a p.1. ambient isotopy.
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Theorem 2. Let P be a finite polyhedron of dimension

+
k. Let H: P x I » R® = R" l, n 2 2k+1, be a homotopy such

that HO = f and H) = g are p-l. embeddings. Then given

€ > 0 there is a p.1. ambient isotopy A: R o« 1 - gL

1

such that (a) A, f = g and (b) for every x € g either

1
A(xxI) = x or A(xxI) c B(H(pxI),c) some p € P.

1

Proof. Let § = ¢/6. Define H': P x I » Rn+ by

H'(p,t) = (H(p,t),ts). Let PO =P x {0,1}. Then H'/po is
a p.l. embedding. Let d be the usual metric on Rn+l. By
[6, Theorem 5.4, p. 61] there is a p.l. embedding

1

G: P x I » R"™?! such that d(G,H') < § and G/py = H'/p,-

Note that d(G,H) < 26 and Gy = f. Let g = G; = (g,6).

Choose w < §/2 such that d(x,y) < wu implies
d(§f_l(x), §f_l(y)) < /2 for every x,y € £(P). Choose
n > 0 such that for every p€ P

i) diam(G(p x [0,n])) < w/2 and

ii) diam (G(p x [1-n,1))) < w/2.
Choose y > 0 such that y < ¢ and (1) d4(G(P x [n,1]), GO(P))>Y
and (2) 4d(G(P x [0,1-nl), Gl(P)) >y. Let U= % - neighbor-
hood of Gl(P). By an engulfing theorem of Bing [1l, Theorem
B, p. 8] (taking L. = ¢, C = Gl(P) in the notation of [1])

1 1

there is a p.l. ambient isotopy F: R« 1 R such that

1

F/(Gl(P) x I) = id, for every x € ld either F(xxI) = x or

F(xxI) < B(G(pxI), y/2) some p € P, and G(PxI) < Fl(U).

1 x I > Rn+l

Define E: R™ by E(x,t) = F;_F{'(x). Then E
is a p.l. ambient isotopy with the same properties as F
except that the last condition becomes El(G(PxI)) c U.

We proceed to show that d(Elf,g) < 286. For p€ P
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choose g(p) € P as follows. If F(f(p) x I) = f(p) take

g(p) = p. Otherwise take g(p) = q where q is any point P
such that E(f(p)xI) < B(G(gxI), y/2). Then, in either case,
E(f(p)xI) = B(G(e(p)xI), y/2). Since f(p) = Eof(p) €

B(G(8(p)xI), y/2) there is a t, € I such that

0
d(f(p) = G,(pP), G(o(P), ty)) <y/2. By (1) and then (i)

above it follows that t, < n and d(G(6(p)., to), Go(e(p)) =

0
f(e(p))) < w/2. Thus d(f(p), £(6(pP)) <¥v/2 + w/2 < w so
that, by choice of w, d(g(p), g(6(p))) < &/2. Choose

t) € I such that d(Elf(p), G(8(p), tl)) <y/2. Then, since
E  (G(PXI)) = U, 4(G(8(p), ty), G (P)) <vy. Applying (2) and

then (ii) above we obtain t, > 1 - n and 4(G(6(p), tl),

1
G (8(p)) = g(8(p))) < w/2. Thus A(E f(p), g(B(P))) <v/2 +
w/2 < w, and A(E £(p), g(p)) < A(E f(p), g(B(P))) +
d(g(6(p)), g(p)) < w + 8/2 < 8. Therefore, d(e,f,g) < 26.
By the unknotting theorem in [7, p. 111] (with P = L)
there is a p.l. ambient isotopy F: Rn+l x I -+ Rn+l such that
FlElf = g, diam(F(xxI)) < 28 for every x, and F(xxI) = x
for every x such that d(x, Elf(p)) > 28. Define
A: Rn+l x I > Rn+l by At = FtEt' Then A is a p.l. ambient
isotopy satisfying the conclusion of the theorem. To see
that (b) holds in the case where E(xxI) = x and F(xxI) # x,
note first that d4d(x, Elf(p)) < 26. Thus, d(x,g(p) =

Hl(p)) < 46 so that A(xxI) = B(H(pxI), 6§ = ¢) as required.

3. Proof of Theorem 1
In addition to the notation introduced at the beginning
of section 2 we will use the following. If H: X x I -+ Y is

a homotopy and § is an open cover of Y we say that H is
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limited by § if for each x € X, H(xxI) € G, some G € §. 1If
¢ is an open cover of Y and X is any space then X x ¢ =
{x x G| € §}. 1f ¢ is an open cover of Y and A © Y then
ANY=1{angG|Ge G} We use d, to denote the usual metric
on Rk. If A c Rk we denote by IntkA the topological interior
of A in Rk, and, for € > 0, we denote by Bk(A,e) the set
{x € R*|q, (A,x) < €}. We identify R” with R" x {0} = R™!,
In this way R = U{R"|n = 1,2,3,...}. If X c R” we let
x" = x n R

We will need two lemmas. The proof of the first is
straightforward, and we omit the proof. Lemma 2 is proved

in [3].

Lemma 1. Let C be a compact subset of a locally compact
metric space (X,d). Let ¢ be a collection of open subsets
of X whose union contains C. Then there is an ¢ > 0 such

that for each x € C, B(X,e) = G some G € §.

Lemma 2. [3, Lemma 4]1. Let H: X x I + Y be a homotopy
where X 18 a compact metriec space and Y 18 a metric space.
Let § be an open cover of Y such that H is limited by § .
Then there is an € > 0 such that for every x € X there is a

G € § such that B(H(xxI),e) < G.

Proof of Theorem 1. For convenience, we may assume that
U is connected. Using elementary reasoning (e.g. see [2,
Prop. III.l1 and Prop. III.2]), U = U{Cn|n = 4,5,6,7,...1}

where Cn < rR" is compact, Cn < C and where a subset G

n+l’
of U is open in U iff G N Cn is open in Cn, n 2 4. In what

follows "manifold" will be used only for a compact, p.l.
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manifold, possibly with boundary. We observe that if K is
any compact set and K « W where W is open in Rn, then there

is an n-manifold M such that K < IntWM M cW. Givene > 0

and n 2 2, let D(n,e) = {x = (xl,...,xn)|x ¢ R" and
]xi| g, 1=1,2,...,n}.
Choose a 4-dimensional manifold M2 such that C4 <
M, = U4. By Lemma 1 there is an €y > 0 such that for every
X € MZ’ B8(x,2€2) (= VB, some V € V. Choose a manifold M3
of dimension 8 such that M, x D(2,e,)]1 v Cg = IntgMy <
8

3

Qo
R \IntBMB)}' Let E2 2

p.1l. homeomorphism hy: M, x E, + M, x F, by hz(m,e)

2’
= D(2,2). Define a

M; €U . Choose p, > 0 such that p, < mim{l,ds(M2 x E

= D(2,€2) and F

(m,(2/ez)e). Let F3 = D(6,3), and define izz M2 X E2 >

M3 X F3 by iz(m,e) = (((m,e),0),0) and 62: M2 x F2 > M3 X F3

by ez(m,f) = ((m,0), (£,0)). Define Hy: My x E, x I »

2 2

= ((m, (1-2t)e),0), t € [0,1/2]
M3 X F3 by H2(m161t) {((m,O),((2/62)e,0)), t € [1/2'1]}-

Then, regarding H, as a map into U8 X R6, H, is limited by

V8 X R6. By Theorem 2 there is a p.l. ambient isotopy

14 14 .
A3. R x I » R such that (A3)112 = 62h2 and such that

for every x € R14 either A3(xXI) = X or A3(xXI) [~

Bl4(H2((m,e) x I),63) some (m,e) € M, x E,. It follows that
(A3) (Mg x F3) = My x Fy. Thus, we may regard A; as a p.l.
ambient isotopy A3: Mgy X F3 x I > M3 X F3. As such A3 is

C . 8 6 _
limited by (M; X Fj) n (V° x R®). set g, = hy,.
>

Suppose, inductively, that for n 2 3 we have defined

25k Sn; B, B_q: My X F_ > M X Fp,

k-1 % Beo1 o Mpe1 x Freonr dpon® Mooy OBy T M X Fo

n; An: Mn X Fn x I > Mn x Fn; and ak_zz

>

w
IA
=
IA

Mo ™ Exop

3 2k 5 n, (the condition on the o's being only
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for n > 3) such that M, is a Zk-dimensional manifold in

Uzk M, . x B, 1) U ck c Int M, F,= D(2F-2,k)
r My X By Jk K FxT 1K)
Bk_l(m,f) = ({(m,0),(£,0)), ik_l(m,e) = ((m,e),0), -1 is a

p.l. homeomorphism, I-1%-2 = Bk—ng—Z (this condition,

again, only for n > 3), and such that An is a p.l. ambient

2" 2"-2
isotopy limited by (M_ x F ) N Ve xR ) with (A )i =

Bn—lgn-—l'

We proceed to construct Mn+l’ Fn+l’ En’ Bn’ 9y’ %po1’ 1n
and An+l satisfying analogous conditions. Define Bn: M xXF -

n n
2n+1 2n+l_2
U x R by Bn(m,f) = ((m,0),(£,0)). Then BnAn is

2n+l 2n+l__2
limited by v X R . By Lemma 2 there is a Yp > O
n+2

such that for every x € M_ x F_, B2 —2(8 A (xxI),y )
n n'n n
2n+l 2n+l_2
v x R . Choose €_ > 0 such that € < Yo and such
n+1
n 2 -2 _ n_
that Mn x D(2 —2,en) U . Let En = D(2 2,en).

n

Choose manifold Mn+l of dimension 2n+l such that

2n+l
M (=] .  Choose

< Int2n+an+l Mo+
}.

U

[(Mn X En) C2n+l]
. 0

p, > 0 such that p < mim{1,d n+l(Mn x E_,R \Int

2
-2,n+l). Define a p.l. homeomorphism

M
2n+l n+1

_ n+1l
Let Fn+l = D(2

hn: M XE +*M XF by hn(m,e) = (m,(n/en)e). Define

i+ M

n n x En > Mn+l X Fn+l’ and ot M

n-1 % En-l > Mn x E

by in(m,e) = ((m,e),0) and a _,(m,e) = ((m,e),0). Note that

n

Bn(Mn x En) SM o4 X Foi and consider the following diagram.

o
n-1 x E
- > n
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Let 9, = (An)lhn. Then 9y is a p.l. homeomorphism, and
n%n-1 = (An)l n-1 - fn-19n-1- Define Hps My x Ep x I >
Mp+1 X Frey DY
[ ((m, (1-40)e),0), € [0,1/4] }
Hy(mse,t) = ¢ ((m,0),([n(4t-1)/c le,0)), t € [1/4,1/2]}
8.A (h (me),2t-1), t € [1/2,1]. J

Then Hn is a homotopy between the p.l. embeddings in and

M x F

Bngn. Also, if m . ,: n+l

n+l * Mn+l is the projection,

then nn+lHn(xXI) is contained in the Yn—neighborhood of

nn+anAn(hn(x) x I). Thus, by choice of Y, Hy is limited
2n+l 2n+l_2 )
by (Mn+l x Fn+l) n (v x R ). By Lemma 2 there is

aé > 0 such that § < p, and such that for every

+1
n+1 n+l
(H (xxI), § ;) < v2 x R? —2, some

n+l

n+2

x €M x E, B2 2
n n

vel. By Theorem 2 there is a p.l. ambient isotopy
2™22 2™2.,
R x I+ R such that (An+l)lin = 8,9,
n+2
such that for every x € R2 2 either An+l(xxI) = X or
+2
on

A and

n+l’

An+l(xXI) < B

It follows that (An+l)t is the identity off M ., xF

-2
(Hn(m,e) x 1), 6n+l) some (m,e) € M, x E.

n+l’

t € I. Thus, we may regard An as a p.l. ambient isotopy

+1

: Mn+l>< Fn+l X I+Mn+l>< F

limited by (Mn+1 X Fn+1) n

the inductive step.

A n+l" As such, A is

(V2n+l < R2n+2_2

n+l n+1l

). This completes

By induction we have o, B, g , n 2 2, such that the

following diagram commutes for every n.

o
n
Mn X En ——— Mn+l x En+1
9n lgn+l
Bn
Mn X Fn —_— Mn+l x Fn+l
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The gn's induce a homeomorphism of direct limits,

g,: dir llm{Mn x En;an} + dir llm{Mn x Fn;Bn}.
As shown in [4,p. 379] dir lim{Mn x En;an} is homeomorphic
to U and dir lim{Mn X Fn;sn} is homeomorphic to U x R”.

Thus, (gm)_l induces a homeomorphism g: U x R” + U. To see

that g is V-close to 7, let (m,x) € U x R . Then y =

g(m,x) € M , some n, and (m,x) = g_(y) = gn(YIO) = Bngn(yr0)=
((m,0), (x,0)). Since {(An+l)lin((y,0)) = B,9,((y,0)) =
n+l
((m,0), (x,0)), (A1) o8, ((v,0)) = ((y,00,00} «v® = x
2n+l_2 2n+l
R some V € V, we have {(m,0),(y,0)} cV , some

v € V, as required. The proof is now complete.
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