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FACTORING OPEN SUBSETS
 

OF Roo WITH CONTROL
 

R. E. Heisey 

In this paper we show that if U is an open subset of 

Roo dir lim Rn , then the projection map TI: U x Roo ~ U can 

be approximated by homeomorphisms. One corollary of this 

result is that any homotopy equivalence f: U ~ V between 

open subsets of Roo is homotopic to a homeomorphism. A 

second corollary is that if h: IKI ~ ILl is a homotopy 

equivalence, where K and L are countable simplicial com

plexes, then f x id: IKI x Roo ~ ILl x Roo is homotopic to a 

homeomorphism. 

1. Background and Statement of Rettulta 

L~t R denote the re~is~ and let Roo = lim Rn • · Let M 
-+ 

and N denote paracompact,'connected Roo-manifolds. It is not 

known if M is stable, i.e. if M x Roo is homeomorphic to M. 

In [2] it is shown that (1) M x Roo en~eds as an open subset 

of Roo, and that (2) if M and N have the same homotopy type, 

then M x Roo and N x Roo are homeomorphic. Thus, if it were 

known that Roo-manifolds are stable then it would follow that 

M embeds as an open subset of Roo and that if M and N have 

the same homotopy type then they are homeomorphic. In [4] 

it is shown that if U is an open subset of Roo then U x Roo 

is homeomorphic to U. Here w~ improve this result and show 

that there are homeomorphisms U x Roo -+ U arbitrarily close 

to the projection map (Theorem 1 below). Hopefully, the 

techniques used here will be useful in proving stability for 
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general Roo-manifolds. Note, too, that because of (1) above 

and Theorem 1 the existence of any homeomorphism M x Roo + M 

will now imply the existence of homeomorphisms M x Roo + M 

arbitrarily close to the projection map. 

Theopem I: If U is an open subset of Roo and V is an 

open covep of U, then there is a homeomorphism g: U x Roo + U 

which is V-close to the projection map TI: U x Roo + U. 

By g V-close to TI we mean that for every (x,y) E U x Roo 

there is a V E V such that {g(x,y),x = TI(x,y)} c V. Thus, 

Theorem 1 says that the projection map can be approximated 

by homeomorphisms. The proof of Theorem 1, given in section 

3, refines the argument in [4] using some of the techniques 

developed in [3]. It also uses a theorem from piecewise 

linear (p.l.) topology which we prove in section 2 as 

Theorem 2. This p.l.' theorem seems to be known, but we 

could not find a proof in the literature. 

Since Roo is locally convex, e.g. [2, Theorem IV.l], we 

may take the cover V in Theorem 1 to consist of convex sets. 

Any homeomorphism g: U x Roo + U which is V-close to ~ will 

then be homotopic to TI via the straight line homotopy. Thus, 

we obtain the following. 

Copollary 1. Fop any open subset U of Roo there is a 

homeomorphism g: U x Roo + U which is homotopic to the pro

jection map. 

Now, let f: U + V be a homotopy equivalence where U 

and V are open subsets of Roo. By [2, Theorem 11.9 and Prop. 

III.l] there is a homeomorphism h: U x Roo + V x Roo which is 
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homotopic to f x ide By Corollary 1 there are homeomorphisms 

h : V x Roo ~ V and h : U x Roo ~ U, each homotopic to the v u 
-1corresponding projection. It follows that hvhh : U ~ Vu 

is a homeomorphism homotopic to f. We have proved the 

following. 

Corollary 2. Any homotopy equivalence f: U ~ V between 

open subsets of Roo is homotopic to a homeomorphism. 

With regard to Corollary 2 we remark that although 

(nonempty) open subsets of R are not metrizable they do 

have the homotopy type of ANR's [2, Theorem 11.10]. Thus, 

Corollary 2 holds as well if f is a weak homotopy equivalence. 

As indicated at the end of IS], if K and L are count

able simplicial complexes, then IKI x Roo and ILl x Roo are 

homeomorphic to open subsets of Roo. Thus, as a special 

case of Corollary 2 we obtain the following. 

Corollary 3. If K and L are countable simplicial com

plexes, and if f: IKI ~ ILl is a homotopy equivalence, then 

f x id: IKI x Roo ~ ILl x Roo is homotopic to a homeomorphism. 

2. Preliminary results 

For convenience, if x is an element of a space X we 

will often write x for {x}. If (X,d) is a metric space, 

C c X and E > 0, then by B(C,E) we denote {x E Xl d(C,x)<E}. 

Let I = [0,1]. If H: X x I ~ Y is a homotopy define H ,t 

t E I, by Ht(X) = H(x,t) . If Y = X, HO 
= id and each Ht is 

a homeomorphism we say that H is an ambient isotopy. If H 

is also p.l. we say that H is a p.l. ambient isotopy. 
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Theorem 2. Let P be a finite polyhedron of dimension 

Rn Rn lk. Let H: P x I + C + , n ~ 2k+l, be a homotopy such 

that	 HO = f and HI = g are p.l. embeddings. Then given 

· 1 A n+l Rn+ l 
£ > O there ~s a p.. amb··~ent ~sotopy : R x I + 

such that (aJ Alf = g and (bJ for every x E Rn+ l either 

A(xxI) = x or A(xXI) c B(H(pxI),E) some pEP. 

Rn lProof. Let 0 = £/6. Define HI: P x I + + by 

HI (p,t) = (H(p,t) ,to). Let Po = P x {O,l}. Then HI/PO is 

a p.l. embedding. Let d be the usual metric on Rn+l • By 

[6, Theorem 5.4, p. 61] there is a p.l. embedding 

lRnG: P x I + + such that d(G,H ' ) < 0 and G/PO = HI/PO. 

Note that d(G,H) < 20 and GO = f. Let g = Gl = (g,o). 

Choose w < 0/2 such that d(x,y) < w implies 

d(gf-l(x), gf-l(y» < 0/2 for every x,y E f(P). Choose 

11 > 0	 such that for every pEP 

i) diam(G(p x [0'11]» < w/2 and 

ii) diam (G(p x [1-11,1]» < w/2. 

Choose y > 0 such that y < wand (1) d(G(P x (11,1]), GO (P» > y 

and (2) d (G (P x [0, 1-n] ), Gl (P» > y. Let U = ~ - neighbor

hood of Gl(P). By an engulfing theorem of Bing [1, Theorem 

B, p. 8] (taking L = ~' C = Gl(P) in the notation of (1]) 

l lRn Rnthere	 is a p.l. ambient isotopy F: + x I + + such that 

F/(Gl(P) x I) = id, for every x E Rn+ l either F(xxI) = x or 

F(xxI) c B(G(pxI), y/2) some pEP, and G(PxI) c Fl(U). 

Define E: Rn+l x I + Rn+l by E(x,t) = F Fi1 (X). Then El _t 

is a p.l. ambient isotopy with the same properties as F 

except that the last condition becomes El(G(PXI» c U. 

We proceed to show that d(Elf,g) < 20. For pEP 
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choose S(p) E P as follows. If F(f(p) x I) = f(p) take 

S(p) p. Otherwise take S(p) = q where q is any point P 

such that E(f(p)xI) c B(G(qxI), y/2). Then, in either case, 

E(f(p)xI) C B(G(S(p)xI), y/2). Since f(p) = EOf(p) E 

B(G(S (p) xl), y/2) there is a E I such thatto 

d(f(p) = GO (p), G(S (p), to)) < y /2. By (1) and then (i) 

above it follows that to < n and d (G ( e(p), to)' GO (e (p) ) 

f (S (p))) < w/2. Thus d (f (p) , f (S (p)) < Y/2 + w/2 < w so 

that, by choice of w, d(g(p), g(S(p))) < 0/2. Choose 

t E I such that d(Elf(p), G(S(p), tl)) < y/2. Then, since
l 

E (G(pxI)) C 0, d(G(S (p), t ), G (P)) < y. Applying (2) and
l l l 

then (ii) above we obtain t > 1 - nand d(G(S(p), tl)'l 

Gl(S(p)) = g(S(p))) < w/2. Thus d(Elf(p), g(8(p))) < y/2 + 

w/2 < w, and d(Elf(p), g(p)) ~ d(Elf(p), g(S(p))) + 

d(g(S(p)), g(p)) < W + 0/2 < o. Therefore, d(Elf,g) < 20. 

By the unknotting theorem in [7, p. Ill] (with P = L) 

. 1 mb" n+l n+l h ht here lS a p .. a lent lSOtOpy F: R x I ~ R suc t at 

FlElf = g, diam(F(xxI)) < 20 for every x, and F(xXI) = x 

for every x such that d(x, Elf(p)) ~ 20. Define 

Rn Rnl lA: + x I ~ + by At = FtE . Then A is a p.l. ambientt 

isotopy satisfying the conclusion of the theorem. To see 

that (b) holds in the case where E(xxI) = x and F(xxI) ~ x, 

note first that d(x, Elf(p) < 20. Thus, d(x,g(p) = 

Hl(p» < 40 so that A(xxI) c B(H(pxI), 60 = s) as required. 

3. Proof of Theorem 1 

In addition to the notation introduced at the beginning 

of section 2 we will use the following. If H: X x I ~ Y is 

a homotopy and § is an open cover of Y we say that H is 
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limited by § if for each x E X, H(xxI) c G, some G E §. If 

§ is an open cover of Y and X is any space then X x § = 

{X x GIG E §}. If § is an open cover of Y and A c Y then 

A n § = {A n GIG E §}. We use d
k 

to denote the usual metric 

on Rk . If A C Rk we denote by IntkA the topological interior 

of A in Rk , and, for e: > 0, we denote by Bk (A, e:) the set 

{x E Rkldk(A,X) < e:}. We identify Rn with Rn x {a} C Rn+l . 

In this way Roo = u{Rnln = 1,2,3, ... }. If X c Roo we let 

Xn X n Rn
• 

We will need two lemmas. The proof of the first is 

straightforward, and we omit the proof. Lemma 2 is proved 

in [3]. 

Lemma 1. Let C be a compact subset of a locally compact 

metric space (X,d). Let § be a collection of open subsets 

of X whose union contains C. Then there is an e: > 0 such 

that for each x E C, B (x, e:) c G some G E §. 

Lemma 2. [3, Lemma 4] • Let H: X x I + Y be a homotopy 

where X is a compact metric space and y is a metric space. 

Let § be an open cover of Y such that H is limited by § . 

Then there is an E > 0 such that for every x E X there is a 

G E § such that B(H(xxI),e:) < G. 

Proof of Theorem 1. For convenience, we may assume that 

U is connected. Using elementary reasoning (e.g. see [2, 

Prop. 111.1 and Prop. 111.2]), U = U{Cnln = 4,5,6,7, ... } 

where C c R
n 

is compact, C C C + l ' and where a subset G n n n 

of U is open in U iff G n C is open in Cn' n ~ 4. In what n 

follows "manifold" will be used only for a compact, p.l. 
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manifold, possibly with boundary. We observe that if K is 

any compact set and K c W where W is open in Rn , then there 

is an	 n-manifold M such that K c IntwM c MeW. Given £ > a 

and n	 ~ 2, let D(n,£) = {x (xl, ... ,xn)lx E Rn and 

l,2, ... , n} . 

Choose a 4-dimensional manifold M such that C c2 4 
4M c	 u . By Lemma 1 there is an £2 > 0 such that for every4 

8 8 Vx E M B (x,2£2) c V , some V E . Choose a manifold M2 , 3 

of dimension 8 such that [M x D(2'£2)] U C c Int8M c2 8 3 

M3 c u8 
. Choose P2 > 0 such that P2 < mim{1,d8 (M2 x E2 , 

R
oo 
\Int 3 )}. Let E = D(2'£2) and F = D(2,2). Define a8M 2	 2 

p.l.	 homeomorphism h 2 : M x E + M x F by h (m,e)2 2 2 2 2 

(m, (2/£2)e). Let F D(6,3), and define i 2 : M x E +3 2 2 

M x F 3 by i (m,e) = «(m,e),O),O) and 82 : M x F + M x F3 2 2 2 3 3 

by 8 (m,f) = «m,O), (f,O)). Define H2 : M x E x I +2 2 2 

M x F by H (m,e,t) = {( (m, (l-2t)e) ,0), t E t[OE,1/r2l/]2,1] }.
3 3 2 ( (m, 0) , ( (2/£ 2) e, 0) ) ,
 

8
Then,	 regarding H2 as a map into u x R6 , H2 is limited by 

6V8 
x	 R . By Theorem 2 there is a p.l. ambient isotopy 

14 14A3 : R x I + R such that (A3 )li = 8 h 2 and such that2 2

for every x E R14 either A3(XXI) x or A3 (XX I ) c 

B14 (H2 «m,e) x I) '03) some (m,e) E M2 x E2 . It follows that 

(A 3 )t(M3 x F 3 ) = M3 x F 3 . Thus, we may regard A3 as a p.l. 

ambient isotopy A3 : M3 
x F x I + M x · As such A3 is3 3 F 3

limited by (M x F ) n (V 8 x R6 ). Set g23 3 h 2 · 

Suppose, inductively, that for n ~ 3 we have defined 

Mk , Fk , 2 ~ k ~ ni Ek- 1 , 8k- l : Mk - l x Fk - l + Mk x Fk , 

gk-l:	 Mk- l x Ek - l + Mk- l x Fk- l , i k - l : Mk - l x Ek - l + Mk x Fk , 

3 ~ k	 ~ ni An: M x F x I + M x Fni and ak- 2 : Mk- 2 x Ek- 2 +n n n 

Mk- l x Ek - l , 3 ~ k ~ n, (the condition on the a's being only 
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for n > 3) such that Mk is a 2k-dimensional manifold in 
k 

U
2

, (Mk- l x Ek- l ) U C k C Int kMk' Fk= D(2
k
-2,k), 

2 2 
Bk- l (m, f) = «m, 0) , (f, 0)), i k- l (m,e) = «m,e), 0), gk-l is a 

p.l. homeomorphism, gk-Ia k-2 = Bk- 2gk- 2 (this condition, 

again, only for n > 3), and such that An is a p.l. ambient 
n n 

isotopy limited by (M x F ) n (V2 x R2 -2) with (An)li n n n l 

Bn-lgn- l · 

We proceed to construct M +l , F +l , En' an' gn' an-I' inn n

and A +l satisfying analogous conditions. Define B : M x F + n n n n 
2n+1 2n+ l _2

U x R by B (m, f) = «m, 0) , (flO) ) • n 
2n+1 2n+I _2

limited by V x R . By Lemma 2 there is a Yn > 0 

2n+2_ 2such that for every xE M x F , B (BnAn(Xx1),y ) Cn n n 
2n+1 2n+I _2 

V x R . Choose E > ° such that En < Yn and such 
2n~I_2 

that M x D(2n-2,E ) C U Let E D(2n-2,E).n n n n 
1Choose manifold M +l of dimension 2n+ such that n 

2n+1 
[(M x En) U C +1 l c Int2n+lMn+l c M +1 cU. Choosen n2n
p > ° such that P < mim{l,d +1(M x E ,Roo\Int +IM +ll. 

n n 2n n n 2n n 

Let F +l = D(2n+1-2,n+l). Define a p.l. homeomorphismn 

by in(m,e) = «m,e),O) and an_l(m,e) «m,e),O). Note that 

CBn(M x En) M +l x F +l and consider the following diagram.n n n


a n-l x E
Mn-l x En-l .. Mn n ,I ~ i 

gn-l nI ! h 

B

'~n

~.. 
Bn- l n 

M x F ~ M x F -.-... M +l x F n+ln- l n-l n n n
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(An)lh · Then gn is a p.l. homeomorphism, andn 

(An)l n-l = Sn-lgn-l· Define Hn : M x En x I ~ n 

Mn+l x Fn+l by 

( \ 

I «m, (l-4t) e) ,0), t E [0, 1/4] I 
I 

H (m,e,t) «rn,O), ([n{4t-1)!E:n1e,O», t E [1/4,1/21~ n tBnA (h (rn,e) ,2t-1), t E [1/2,11. J n n 

Then H is a homotopy between the p.l. embeddings in and n 

Bng · Also, if TI + l : M + l x F + l ~ M + l is the projection,n n n n n 

then TIn+lHn(xxI) is contained in the yn-neighborhood of 

'lT + l SnAn (h (x) x I). Thus, by choice of Y n' H is limited n n n 
2n+l_2

(V 2n+l 
by (M + l x F + l ) n x R ). By Lemma 2 there is n n 

a 0n+l > 0 such that 0n+l ~ P and such that for everyn 
n+2 2n+ l 2n+1_22 x E M x En' B -2(Hn(XXI), 0n+l) c V x R , some n 

V E V. By Theorem 2 there is a p.l. ambient isotopy 
2n+ 2_2 2n+ 2_2 

A + l : R x I ~ R such that (A +l)li = S 9 and n +2 n n n n 
2n -2

such that for every x E Reither An+l(XXI) = x or 
2n +2_ 2

An+l(XX I ) C B (Hn(m,e) x I), 0n+l) some (m,e) E M x En. n 

It follows that (An+l)t is the identity off M + l x F + l ,n n 

t E I. Thus, we may regard An+ l as a p.l. ambient isotopy 

A + l : M + l x F + l x I ~ M + l x F + l . As such, A +l isn n n n n n 

limited by (M + l x F + l ) n (V 2n+l 
x R2n+ 2- 2 ). This completesn n 

the inductive step. 

By induction we have a , S , 9 , n ~ 2, such that the n n n 

following diagram commutes for every n. 

a 
M x E n 

x En n ------. Mn+ l n+ l 

1 !9n+l9n 
Sn 

M x F 
n n Mn +l x Fn" +l 
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The	 gn's induce a homeomorphism of direct limits, 

As shown in [4,p. 379] dir 1im{M x EniU } is homeomorphicn n 

to U and dir lim{M x FniS } is homeomorphic to U x Roo. n n 
-1

Thus, (goo) induces a homeomorphism g: U x R
00 

~ U. To see 

that 9 is V-close to TI, let (m,x) E U x Roo. Then y 

g(m,x) E M , some n, and (m,x) = goo(y) = gn(y,O) = Sngn(y,O)n
 

( (m, 0), (x , 0) ) . Since {(A +1 ) 1 i (( y , 0» = S 9 ((Y , 0) )
n n n n 2n +l 
( (m, 0) , (x, 0) ), (A +1) Oi ((y, 0» = ((y, 0) , O)} c V x
 

I nn 2n+l
2n+	 -2
R some V E V, we have {(m,O),(y,O)} c V , some 

V E	 V, as required. The proof is now complete. 

Bibliography 

1.	 R. H. Bing, Radial engulfing, Conference on the Topology 

of Manifolds, the Prindle, Weber and Schmidt Comple

mentary Series in Mathematics, Prindle, Weber and Schmidt, 

Boston, Mass., 1968. 

2.	 R. E. Heisey, Manifolds modelled on Roo or bounded weak-* 

topologies, Trans. Amer. Math. Soc. 206 (1975), 295-312. 

3. , Manifolds modelled on the direct limit of 
Hilbert cubes, Geometric Topology, Academic Press, New 

York, 1979, 609-619. 

4.	 , Open subsets of Roo ape stable, Proc. Arner. Math. 

Soc. 59 (1976), 377-380. 

5.	 D. W. Henderson, A simplicial complex whose ppoduct with 

any ANR is a simplicial complex, General Topology and 

its Applications 3 (1973), 81-83. 

6.	 C. P. Rourke and B. J. Sanderson, Intpoduction to piece

wise-lineap topology, Ergebnisse Math. Grenzgebiete, 

Band 69, Springer-Verlag, New York, 1972. MR. # 3236. 

7.	 T. B. Rushing, Topological embeddings, Academic Press, 

New York, 1973. 



373 'IDPOIffiY PRXEEDINGS Volume 3 1978
 

Vanderbilt University
 

Nashville, 'IN 37235
 


	a5.pdf



