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ONSUBMETACOMPACTNESS 

Heikki J. K. Junnila 

1. Introduction 

In the theory of covering properties of topological 

spaces, it has proved fruitful to search for characterizations 

of these properties by conditions different from and, if 

possible, weaker than those appearing in the original defini

tions. Perhaps the earliest example of this type of a charac

terization is the one given by Alexandroff and Urysohn for 

compactness: a topological space is compact if, and only if, 

every monotone open cover of the space has a finite subcover 

([1]). The best known example, and perhaps the most important 

result in this field of research, is A. H. Stone's coincidence 

theorem: a Hausdorff space is paracompact if, and only if, 

the space is fully normal ([31]). A remarkable aspect of 

Stone's result is that it equates two properties which at a 

first glance appear to be completely dissimilar. In the 

proof of his theorem, Stone employed a very powerful technique 

that has later been modified to yield many characterizations 

of paracompactness and of related properties. Using a varia

tion of this technique, E. Michael obtained a result that 

explains Stone's coincidence theorem by characterizing para

compactness (in the class of Hausdorff spaces) by a condition 

that is easily seen to be weaker than the conditions defining 

paracompactness and full normality ([23]). The applicability 

of Stone's technique of proof is not restricted to the theory 

of paracompact spaces: D. Burke has used modifications of 
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this technique to show that the property of subparacompactness 

has characterizations analoguous to those given by Stone and 

Michael for paracompactness ([5]). Though the most important 

and successful so far, Stone's technique is not the only one 

available to attack problems in covering theory: J. Mack 

and W. Sconyers have taken important steps on the path ini

tiated by Alexandroff and Urysohn bycharacterizingparacompact

ness and metacompactness in terms of refinements of monotone 

open covers ([20] and [27]). 

In the present paper, we give several characterizations 

for some of the covering properties mentioned above. We 

obtain these characterizations by first studying submetacompact 

spaces. SUbmetacompact (= e-refinable) spaces were intro

duced by J. M. Worrell Jr. and H. H. Wicke in [33]. These 

spaces have turned out to be useful in the theory of covering 

properties as well as in the theory of generalized metric 

spaces. Submetacompactness provides a simultaneous generali

zation of paracompactness, metacompactness and subparacompact

ness; on the other hand, as we will see in Section 2 below, 

simple expandability-type criteria allow us to pass from 

submetacompactness to these more restricted properties. Thus 

the theory of submetacompact spaces provides a unified ap

proach to a large portion of covering theory. 

In Section 3 of this paper we use an extension of Stone's 

technique of proof to obtain a characterization for submeta

compact spaces by a condition significantly weaker than the 

one defining these spaces. We then use this characterization 

to exhibit some invariance properties of submetacompactness. 

In the end of the section we characterize the three covering 
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properties related to submetacompactness. 

In Section 4 we show that an Alexandroff-Urysohn type 

characterization holds also for submetacompactness. This 

allows us to restrict our consideration to refinements of 

interior-preserving open covers and to obtain the following 

result: a topological space is submetacompact if, and only 

if, every directed open cover of the space has a a-closure

preserving closed refinement. As a corollary to this result, 

we see that a continuous image of a submetacompact space under 

a closed mapping is submetacompact. 

In Section 5 we show that the strong E#-spaces of E. 

Michael are submetacompact. This result shows that the pro

perty of submetacompactness is of some independent interest 

and not just a useful stepping-stone to other, stronger pro

perties. We also show that every orthocompact strict p-space 

is submetacompact and that a strict p-space is submetacompact 

if, and only if, it is a	 E#-space. 

Notation and Terminology. Our terminology follows that 

of [13]; we do not, however, require paracompact or metacompact 

spaces to satisfy any separation axioms. 

The set {1,2,···} of the	 natural numbers is denoted by 

N.	 The symbol <p stands for a nO-tuple n and NO = {<p}. If 

k n E Nand (nl,···,nk ) E N for some k = 0,1,.··, then 

(nl,···,nk ) m n denotes the element (nl,···,nk,n) of the set 

Nk +l • An infinite sequence whose nth term is x (for ~ E N)
n 

is denoted by (Xn>:=l' or simply by (x >.n 

Throughout the following, X denotes a topological space. 

Let L be a family of subsets of X. The symbol LF is used to 
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denote the family consisting of all finite unions of sets 

from L. Note that LF 
is a directed family (see [20]). Let 

A be a subset of X. The families {L nAIL E L} and {L E LI 

L n A ~ ~} are denoted by LIA and (L)A' respectively. If 

A {x}, then we write (L)x in room of (L)A. We let 

St(A,L) = U(L>A and St(A,L)O Int(St(A,L». 

Let Nand L be families of subsets of X. If for each 

N E N, there is L E L such that N c L, then N is a partial 

refinement of Lj if, moreover, uN uL, then N is a refine-

n 
ment of L. If Ll,···,L are covers of X, we let A L. 

n i=l 1 
n 

{ n L. IL. E L. for each i}j note that this family is a re
i=l 1 1 1 

finement of every L.. Let Nand L be covers of X. N is a 
1 

point-star refinement of L at a point x E X provided that 

St(x,N) c L for some L E L. A sequence <N >of covers of X n 

is a point-star refining sequence for the cover L provided 

that for each x E X, there exists n E N such that N is a n 

point-star refinement of L at x. 

A family L of subsets of X is interior-preserving if for 

each L' c L, we have Int n L' n{IntLIL EL'}. Note that 

L is interior-preserving iff the family {X - LIL E L} is 

closure-preserving. Every point-finite family of subsets 

of X is interior-preserving. A family U of open subsets of 

X is interior-preserving iff for each x E X, the set n<U)x 

is open. Consequently, if U is an interior-preserving open 

family, then the families {uUIIU ' c U} and {nUIIU ' c U} are 

interior-preserving and openj in particular, the family UF 

is interior-preserving. 

A cover L of X is semi-open if x E St(x,L)O for each 
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x E X. It is easily seen that L is a semi-open cover of X 

iff A c St(A,L) for each A c X. Every closure-preserving 

closed cover, as well as every open cover, is semi-open. 

Note that if Ll,···,L are semi-open covers of X, then the n 
n 

cover A L. is semi-open. For some other properties of semi
i=l 1. 

open and interior-preserving families, see [16]. 

2. Submetacompactness and Other Coverin. Properties 

We have decided to use the name "submetacompact" for 

a-refinable spaces, since this name makes evident the rela

tion these spaces have to some other spaces defined by cover

ing properties. To retain some continuity between our termi

nology and that concerning various generalizations of a-refin

able spaces, we adopt the following definition. 

Definition 2.1. A sequence (L ) of covers of X is a 
n 

a-sequence if for each x E X, there exists nEE such that 

the family L is point-finite at x. n 

Remark. Worrell and Wicke observed in [33] that the set 

of points at which an open cover of X is point-finite is an 

Fa-subset of X and they decuded the following: a cover N of 

X has a a-sequence of open refinements iff there exists a 

countable closed cover [ of X such that for each C E [, the 

cover Nlc of the subspace C of X has a point-finite open (in 

C) refinement. 

Definition 2.2. A topological space is submetaaompaat 

if every open cover of the space has a a-sequence of open 

refinements. 
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We have the following diagram of implications between 

submetacompactness and some other covering properties. 

paracompact metacompact 
~ ~ 

subparacompact submetacompact 

(The leftmost implication holds in the class of Hausdorff

spaces and the other three hold without any restrictions.) 

It is well known that none of the implications in the 

above diagram is reversible; however, there are certain addi

tional conditions under which these implications can be re

versed. In [33], Worrell and Wicke extended earlier results 

of Michael and Nagami ([22] and [26]) and McAuley ([21]) with 

the following theorem: every collectionwise normal submeta

compact Hausdorff-space is paracompact. Since paracompact 

Hausdorff-spaces are collectionwise normal, it follows from 

this theorem that collectionwise normality characterizes 

paracompactness in the class of subrnetacompact Hausdorff-spaces. 

We shall now indicate some other conditions that characterize 

stronger covering properties in the class of submetacompact 

spaces. 

Recall that an expansion of a family N of subsets of X 

is a family {E(N) IN E N} of subsets of X such that N c E(N) 

for each N E N. The space X is almost discretely expandable 

provided that every discrete family J of closed subsets of X 

has an open expansion {V(F) IF E J} such that for each x E X, 

the family {F E Jlx E V(F)} is finite ([30]; in [4], spaces 

with this property are called point-wise collectionwise normal). 

The space X is 8-expandable provided that every locally finite 

family J of closed subsets of X has a sequence ({Vn(F) IF E 

J})
OO

n=l of open expansions such that for each x E X, there 
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exists n E N and a neighborhood W of x such that the family 

{F E JIVn(F) n W ~ ~} is finite ([29]). The space X is 

discretely subexpandable provided that every discrete family 

J of closed subsets of X has a sequence ({Vn(F) IF E J}>~=l 

of open expansion such that for each x E X, there exists 

n E N such that x E Vn(F) for at most one F E J ([19]; this 

property is called collectionwise sUbnormality in [11]). 

Theorem 2.3. Let X be a submetacompact space. Then 

(i) X is paracompact iff X is 8-expandable. 

(ii) X is metacompact iff X is almost discretely expanda

ble. 

(iii)	 X is subparacompact iff X is discretely subexpanda

ble. 

(i) follows from Corollary 2.10 and Theorem 1.5 of [29] 

(note that the assumption of regularity appearing in Theorem 

1.5 of [29] is unnecessary, since expandable spaces are counta

bly paracompact, by Theorem 2.8 of [30]). (ii) is proved in 

[4] (it also follows from Theorems 4.3 and 2.8 of [30], since 

submetacompact spaces are countably metacompact) . (iii) is 

proved in [11] (for a related result, see [19], Theorem 3.2). 

3. Submetacompactness and Semi-Open Covers 

We need some terminology to state the results of this 

section. 

Definition 3.1. Let Nand L be covers of X. We say 

that L is a point-star F-refinement of N at a point x E X, 

if there exists a finite subfamily N' of N such that x E nN' 

and St(x,L) c uN'; if L is a point-star F-refinement of N at 
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each point of X, then we say that L is a point-star F-refine

ment of N. A point-star F-refining sequence for N is a 

sequence <L >of covers of X such that for each x E X, some 
n 

member of the sequence is a point-star F-refinement of N at 

x. 

The dot over the F appearing in these definitions stands 

for the "centeredness" condition x E nN'; without this condi

tion we arrive at point-star F-refinements, that is, point

star refinements of the directed cover NF. 
Note that a point-wise W-refinement ([17]; this concept 

was introduced in [32]) of a cover is a point-star F-refine

ment of the cover; in particular, a point-finite refinement 

of a cover is a point-star F-refinement of the cover. Simi

larly we see that a e-sequence of refinements of a cover is 

a point-star F-refining sequence for the cover. 

Theorem 3.2. A topo~ogica~ space is submetacompact iff 

every open cover of the space has a point-star F-refining 

sequence by semi-open covers of the space. 

Proof. Since every open cover is semi-open and every 

e-sequence of refinements of a cover is a point-star F-refin

ing sequence for the cover, the condition is necessary. To 

prove sufficiency, assume that every open cover of X has a 

point-star F-refining sequence by semi-open covers of X. 

Let lj be an open cover of X. Represent lj in the form 

lj {U \a < y}, where y is an ordinal. We use induction on 
a 

n 
n to define open covers V = {VS(t) Is < 2y} of X for t E U N .t n=O 

Let V (¢) = ~ and V + (¢) = U for each a < Yi this defines a y a a 

the open cover V¢ = {V (¢) Is < 2y}. Let n E N and assumes
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that we have defined the open covers V = {VS(s) Is < 2y} for s 

s E Nn - l . For each s E Nn - l , the open cover Vs of X has a 

point-star F-refining sequence (Ls~k) by semi-open covers of 

X. We now define, for all s E Nn - l , kEN and a < y: 

Va (s~k) U n [V (s) u St (X - u V S(s) , Ls~k) 0]a a S~y+a 
(* ) and 

V + (s~k ) = u n ( u VS(s)) n St (X - U VS (s) , 
y a a S>y+a S<y+a 

Ls~k) o. 

Since every element of Nn can be uniquely represented in the 

form s~k for some s E Nn - l and kEN, the above formulas 

ndefine the families V = {VS(t) Is < 2y} for t E N . To comt 

plete the induction, it remains to verify that the families 

V , t E Nn , are open covers of X. It is easily seen thatt 

these families consist of open subsets. To show that they 

n cover X, let t = s~k be a member of N and let x E X. Since 

the family V covers X, the set {S < 2ylx E VS(s)} is nons 

empty; let 0 be the least element of this set. If 0 < y, 

then Vo(s) c Vo(s~k) and hence x E Vo(s~k). Assume that 

o > y. Let p = 0 - y so that 0 = y + p. We show that either 

x E V (s~k) or x E V + (s~k). Assume that x ~ V + (s~k). p y p y p 

Since x E V + (s), we have x E U. By the definition of 0,y p p 

we have x i. u VS(s). Consequently, St(x,Ls~k) c St(X 
S<y+p 

u VS(s),L ~k). Since the cover Ls~k is semi-open, it fol
S<y+o s 
lows that x E St(X - u VS(s),L ~k)o. Since x ~ V + (s~k) 

S<y+o s Y p 
and x E U n St(X - u VQ(s),L ~k)O, it follows from the 

p S<y+o ~ s 
definition of the set V + (s~k) that x ~ U VQ(s). Conse

y p S>y+p ~ 

quently, x ~ u VS(s). It follows that x E St(X 
S~y+p 

u vS(s),L ~k)o. Since x E Up' it follows that x E Vp(S~k). 
S~y+p s 
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We have shown that if x I V + (s~k), then x E V (s~k). Con
y p p 

sequently, either x E V (s~k) or x E V + (s~k). It follows
P y P 

from the foregoing that the family Vs~k covers X. 
00 

We have now defined the covers V , t E U Nn . Note that
t 

n=O 
there are only countably many of these covers and that each 

one of them is an open refinement of U. To complete the 

proof, it suffices to show that for each x E X, there exists 

n 
s E U N such that the family V is point-finite at x. Let 

n=O s 
x E X. There exists a sequence ( k >~=l of natural numbers n 

such that if we let s(O) = ~ and sen) = (kl , ••• ,k ) for each n 

n EN, then the cover Ls(n) is a point-star F-refinement of 

Vs(n-l) for each n E~. For each n E N, let A - l be a finite n 

subset of {SiS < 2y} such that x E n{VS(s(n-l» Is E An-I} and 

St(x,Ls(n» c u{VS(s(n-l» Is E An-I}' and let S(n-l) be the 

largest element of the set An-I. Denote by 8 the least ele

ment of the set {S(n-l) In E ~} and let mEN be such that 

8 = S(m-l). We show that the family Vs(m) is point-finite at 

x and we start by showing that x t u VS(s(m». Since 
S~y 

o = max A and st(x,Ls(m» c U{vS(s(m-I» Is E Am-I}' wem- l 

have x ~ St(X ~ U VQ(s(m-l»,L ( » whenever p > 8. It fol-
S<P ~ s m 

lows, using the definition of the sets V (s(m» for p ~ y,p 

that x ~ U{V (s(m» Ip ~ y and p > 8} . Consequently, to show 
p 

that x t U VS (s (rn) ) , it suffices to show that 8 < y. Assume 
S~y 

on the contrary that 0 ~ y. Then it follows from the fore

going that x ~ U V (s(m». Since 0 ~ y and s(m+l) sCm) ~ 
p>8 P 

k + we have VQ(s(m+l» c U V (s(m» for each S ~ 8. Itl ,m ~ p>S p 
follows that x ~ U VQ(s(m+l». Since x E VQ(m+l) (s(m+l», 

S~8 ~ ~ 

it follows that S(m+l) < o. However, by the definition of 
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0, we have S(m+l) ~ o. This contradiction shows that we must 

have 0 < y. It follows that x I. u VS (s (m) ) · Hence, to show 
S~y 

that the family V is point-finite at x, it suffices tos(m) 

show that the set {a < ylx E Va (s (m) ) } is finite. Let 

C {a < Ylx E Va (s (m) ) } and for each n ~ m, let Bn = {a < yl 

y + a E An}. Since the sets An are finite, so are the sets 

B ; hence to show that the set C is finite, it suffices to 
n m 

show that C c n~lBn. Let a E C. We have x E va(s(m)) - Va(~) 

and hence there exists k < m such that x E V (s(k+l)) 
a 

Va(s(k)). Since a < y, it follows using the definition of 

the set Va(s(k+l)) that x E St(X - u VS(s(k)) ,Ls(k+l)). 
S~y+a 

Let y E X - u VS(s(k)) be such that x E St(y,L (k+l)). 
S~y+a s 

Then y E St(x,Ls(k+l)) c U{VS(s(k)) Is E Ak }. Hence there 

exists v E Ak such that y E Vv(s(k)). Since y E X 

u VS(s(k)), we have v = y + a. Consequently, y + a E A
k

S~y+a m 
and a E Bk . We have shown that C c n~lBn. It follows that 

the set C is finite and the family Vs(m) is point-finite at 

x. 

Before exhibiting some corollaries to the above theorem, 

we make two observations concerning the above proof; these 

observations will be used in the next section in the proofs 

of some further characterizations of submetacompactness. 

Remark 3.2.1. Let k be a cardinal number. We say that 

a space X is ~-submetacompact if every open cover U of X with 

I UI ~ ~ has a e-sequence of open refinements. It follows 

from the above proof that X is ~-submetacompact if every open 

cover U of X with lUI ~ k h~s a point-star F-refining sequence 

by semi-open covers. 
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00 
nRemark 3.2.2. If the covers U and L , t E U N ,

t 
n=l 

appearing in the above proof are interior-preserving and 

n open, then it is easily seen that the covers V , t E ~ N ,
t 

n=O 
defined by formulas (*) above, will also be interior-preserving 

and open. Hence it follows from the proof that if every 

interior-preserving open cover of X has a point-star F-refining 

sequence by interior-preserving open covers of X, then every 

interior-preserving open cover of X has a e-sequence of 

(interior-preserving and) open refinements. 

The following is an immediate consequence of the result 

of Theorem 3.2. 

Corollary 3.3. A topological space is submetacompact 

iff every open cover of the space has a e-sequence of semi-

open refinements. 

The next two results deal with the preservation of the 

property of submetacompactness in certain topological opera

tions. 

Proposition 3.4. A continuous image of a submetacompact 

space under a pseudo-open finite-to-one mapping is submeta

compact. 

Proof. Let f be a continuous, pseudo-open finite-to-one 

mapping from a submetacompact space X onto a space Y. To 

show that Y is submetacompact, let 0 be an open cover of Y. 

Then the family U = {f
-1 (0) \0 E O} is an open cover of X. 

Let (V ) be a e-sequence of open refinements of the cover U. n n 
For each n E N, let W A V and let L = {f(W) Iw E W }.n k n nk=l 
It is easily seen (and follows from Lemma 1.4 of [18]) that 
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for every n E N, the family L is a semi-open cover of Y. We 
I n 

show that <L ) is a point-star F-refining sequence for O. 
n 

Let y E Y and let f-l{y} = {x{l), ••• ,x{j)}. For each i = 

1, ••• ,j there exists neil E N such that the family (Vn{i))x{i) 

is f inite. Let V' U{ (Vn (i) ) x (i) Ii=l, • • • , j} and for each 

V E V', let O(V) E 0 be such that V c f-l(O{V)). Let m = 

max {n (1) , • • • , n (j) } and let 0' = {O (V) IV E V}. Then 0' is a 

finite subfamily of 0 and y E nO'. It is easily seen that 

St{f-l{y},W ) c U{f-l{O) 10 EO'}. It follows that St{y,L ) c 
m m

uO'. Hence the family L is a point-star F-refinement of the 
m 

cover 0 at point y. We have shown that (L ) is a point-star
n 

F-refining sequence for O. It follows from the foregoing and 

Theorem 3.2 that the space Y is submetacompact. 

Proposition 3.5. A topological space is 3ubmetacompact 

if it has a point-finite semi-open cover such that every set 

of the cover is contained in some submetacompact subspace of 

the space. 

Proof. To prove this result, use Lemma 1.3 of [18] and 

arguments similar to those used in the proof of the preceding 

proposition to produce a point-star F-refining sequence by 

semi-open covers for a given open cover of the space; compare 

also with the proof of Corollary 2.3 of [18]. We omit the 

details. 

Since every locally finite closed cover of a topological 

space is semi-open, it follows from Proposition 3.5 that the 

Locally Finite Sum Theorem holds for submetacompactness. 

In the remaining results of this section we characterize 

the three covering properties related to submetacompactness 
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through expandability conditions (Theorem 2.3). 

Theorem 3.6. A topological space is metacompact iff 

every open cover of the space has a semi-open point-star 

F-refinement. 

Proof. Necessity is immediate. To prove sufficiency, 

assume that every open cover of X has a semi-open point-star 

F-refinement. It follows from Theorem 3.2 that X is submeta

compact. To show that X is metacompact it suffices, by 

Theorem 2.3, to show that X is almost discretely expandable. 

Let J be a discrete family of closed subsets of X. For each 

F E J, let U(F) = X - U(J - {F}). Then the family {U(F) I 

F E J} is an open cover of X. Let L be a semi-open point

star F-refinement of V. For each F E J, let V(F) St(F,L)o. 

Then the family {V(F) IF E J} is an open expansion of the 

family J. We show that for each x E X, the family {F E JI 

x E V(F)} is finite. Let x E X. Since L is a point-star 

F-refinement of V, there exists a finite subfamily JI of J 

such that St(x,L) C U{U(F) IF E J'}. From the definition of 

the sets U(F), F E J, it follows that we have St(x,L) n F = ~ 

for every F E J ~ J'. Consequently, the family {F E JI 

x E V(F)} is contained in the finite family J'. We have shown 

that X is almost discretely expandable. 

Note that Theorem 3.6 gives as direct corollaries the 

characterizations of metacompactness given in [32] and [18]. 

Theorem 3.7. A topological space is paracompact if 

every open cover of the space has a semi-open point-star 

refinement. 
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Proof. Assume that every open cover of X has a semi

open point-star refinement. It follows from Theorem 3.6 that 

X is metacompact. We show that X is cOllectionwise normal; 

it then follows from the Michael-Nagami theorem that X is 

paracompact. Let J be a discrete family of closed subsets 

of X. For each F E J, let U(F) = X - U(J - {F}). The family 

U = {U(F) IF E J} is an open cover of X. Let L be a semi-open 

point-star refinement of Uand for each F E J, let V(F) 

St(F,L)o. The family {V(F) IF E J} is an open expansion of 

the family J and it is easily seen that if F and F' are two 

distinct elements of J, then V(F) n V(F I
) =~. We have shown 

that X is cOllectionwise normal. 

By Corollary 3.5 of [16], an open cover of a topological 

space has a semi-open point-star refinement iff the cover has 

a cushioned refinement (this follows also from Lemma 3.10 

below); hence Theorem 3.7 is just a reformulation of a well

known result of E. Michael ([23])). 

Theorem 3.8. A topological space is subparacompact iff 

every open cover of the space has a point-star refining se

quence by semi-open covers of the space. 

Proof. Necessity follows from Theorem 1.2 of [5]. To 

prove sufficiency, assume that every open cover of X has a 

point-star refining sequence by semi-open covers of X. It 

follows from Theorem 3.2 that X is submetacompact. We show 

that X is discretely subexpandable; it then follows from 

Theorem 2.3 that X is subparacompact. Let J be a discrete 

family of closed subsets of X and let U(F) X - U(] - {F}) 
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for each F E J. Let <L > be a point-star refining sequencen 

for the open cover {U(F) IF E J} of X such that for each 

n E N, the family L is a semi-open cover of X. Settingn 

V (F) = St(F,L )0 for all F E J and n E N, we get a sequencen n 

<{V (F) IF E J}> ~=l of open expansions of J. This sequencen 

has the required property since if x E X, then St(x,L ) c U(F)
n 

for some n E· Nand F E J; clearly x ~ Vn(F') if F' ~ F. 

Note that we could have proved the above result more 

directly, without relying on Theorem 2.3, by using the remark 

made after Definition 2.1 and the follow~ng observation: if 

N is a point-finite family of subsets of X and L a semi-open 

cover of X, and if we let H(N) {x E XISt(x,L) eN} for each 

N E N, then the family {H(N) IN E N} is locally finite and 

H (N) c N for each N E N. 

D. Burke showed in [6] that a perfect space is subpara

compact if every open cover of the space has a a-cushioned 

refinement and he asked whether this result remains true 

without the assumption of perfectness (see also Problem 2.8 

of [19]). We now prove a lemma which can be used together 

with Theorem 3.8 to answer Burke's question. 

Recall that a family ~ of subsets of X is cushioned in 

a family N of subsets of X provided that there exists a map 

~: ~ -+ N such that U~' c U~ (~') for each ~' c ~ ([23]). 

Lemma 3.9. Let lj be an open cover of X and let A be a 

subset of X. Then there exists a family of subsets of X cover

ing A which is cushioned in lj iff there exists a semi-open 

cover of X which is a point-star refinement of lj at each 

point of A. 
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Proof. Assume that there exists a family mof subsets 

of X such that A c Um and a map ~: m~ u such that Um' c 

U~(m') for each m' c m. For each x E Um, let M E (m)x and x 

If we set V X for each x E X - Um, then 
x 

it is easily seen that for each B c X, we have B c U{Vxlx E B}. 

It follows that for each x E X, the set W = X - {y E XI 
x 

x f. V } is a neighborhood of x. Let L = {{x,y} c Xix E V y Y 

and y E V } · Then L is a cover of X and for each x E X, we 
x 

have St(x,L) c V We have Vx E U for each x E A and it falx 

lows that L is a point-star refinement of U at each point of 

A. It is easily verified that for each x E X, the neighbor

hood V n W of x is contained in the set St(X,L)i hence L is x x 

a semi-open cover of X. 

To prove the converse, assume that there exists a semi-

open cover K of X such that K is a point-star refinement of 

Uat each point of A. Let N(U) = {x E XISt(x,K) c U} for each 

U E U. Then the family N = {N(U) Iu E U} of subsets of X 

covers the set A. For each MEN, let ~(M) E U be such that 

M = N(~(M)). Note that for each MEN, we have St(M,K) c ~(M). 

We show that uN' c u~(N') for each N' c N. Let N' c N. Then 

U~' c St(U~',K) since the cover L is semi-open. We have 

st(uN',K) = U{st(N,K) IN EN'} c U~(N'). Hence uN' c u~(N'). 

Letting A = X in the above result, we have the result 

of Corollary 3.5 of [16]. 

A a-cushioned refinement of a cover N of X is a cover 

u m of X such that for each n E I, the family m is cush
nEN n n 
ioned in the cover N. It follows from Lemma 3.9 that an 

open cover of X has a a-cushioned refinement iff the cover 
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has a point-star refining sequence by semi-open covers of X. 

Hence we can restate the result of Theorem 3.8 in the follow

ing way: a topological space is subparacompact iff every open 

cover of the space has a a-cushioned refinement. 

4. SubmetacompactDe88 and Directed Covers 

In the last section we characterized submetacompactness, 

as well as some other covering properties, in terms of re

finernents of arbitrary open covers of a topological space. 

In this section we obtain some characterizations of submeta

compactness in terms of refinements of some special open 

covers. We start with the following result. 

Proposition 4.1. A topoZogicaZ space is submetacompact 

iff every monotone open cover of the space has a 6-sequence 

of open refinements. 

Proof. Necessity is trivial. To prove sufficiency, 

assume that every monotone open cover of X has a 6-sequence 

of open refinements. We use transfinite induction and Remark 

3.2.1 to show that X is ~-submetacompact for every cardinal 

number m. There is nothing to prove for m finite. Assume 

that m is an infinite cardinal such that we have shown X to 

be' ~-submetacompact for every k < m. To show that X is 

~-submetacompact, it suffices to show that every open cover 

U of X with lUI ~ ~ has a point-star F-refining sequence by 

open covers of X. Let U be an open cover of X such that 

lUI ~ m. We can represent U in the form U = {U(a) la < y}, 

where y is the initial ordinal corresponding to m. For each 

a < y, let V(a) = U U(6). Then the family {V(a) la < y} is 
6~a 
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a monotone open cover of X and hence this family has a 

8-sequence, say <V ), of open refinements. We may assume 
n 

that for each n E N, the family V is of the form V = {V (a)n n n 

a < y}, where vn(a) c V(a) for each a < y. For all n E • 

and a < y, the family {U (S) IS ~ a} U { u Vn ( S) } is an open 
S>a 

cover of X with cardinality less than ~; hence this family 

has a 8-sequence, say (Wn,k(a»k:l' of open refinements. 

For all n E Nand hEN, denote by Fn, h the closed set 

{x E X I I (V) I ~ h}. For each n EN, let H U F hand 
n x n hEN n, 

for each x E H , denote by a(x,n) the largest element of the 
n 

finite set {a < Ylx E Vn(a)}. Note that if n EN and x E H ,n 

then x ~ U Vn(S) and it follows that for each k E I, the 
S>a(x,n) 

family (Wn, k(a(x,n») x is a partial refinement of the subfam

ily {U(S) Is ~ a(x,n)} of V. For all n EN and k E II, and 

for every x E H , let W k(x) E (W k(a(x,n))) , and further,n n, k n, x 

1 e t 0 k (x) V ( a (x, n» n [ n W . (x) ]. Then , f or all n E :II 
n, n i=l n,l 

and kEN, the family 0 k = {O k(x) Ix E F k} U {X - F k}n, n, n, n, 

is an open cover of X. We show that for every x E X, there 

exist natural numbers nand k such that the family 0 n, k is a 

point-star F-refinement of V at x. Let x E X. Then there 

exists n E N such that the family (Vn)x is finite. Let.A be 

a finite set of ordinals such that (V )x {Vn(a) la E A} and n 

let h = IA/. Then x For each a E A, there existsE Fn,h· 

k(a) E N such that the family Wn,k(a) (a) is point-finite at 

x. For each a E A, let 7? = {W E ({Jj k( )(a» IW cU for a n, a x 

some U E U} and let U be a finite subfamily of (U)x such a 

that the family 7? is a partial refinement of the family U . 
a a 

Then V' = U U is a finite subfamily of U and x E nU'. Let 
aEA a 

k = max({h} U {k(a) la E A}). We show that St(x,O k) c uV ' . n, 
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Let 0 E 0 k be such that x E o. Since x E F h C F we 
n, . n, n,k' 

see that there is y E F k such that 0 = ° k{y). Since n, n, 

o k{y) C V (a{y,n)), we have x E Vn{a{y,n)), that is,n, n 

a{y,n) E A. Let k' = k{a{y,n)). Then k' ~ k and it follows 

that 0 k{y) C W k' (y). The set W k' (y) is contained in n, n! n, 

some set of the family {uBIB ~ a{n,y)}. Since x E 0n,k{y) 

C W k' (y), it follows that W k' (y) E ~ ( ). Consequently,n, n, a y,n 

the set Wn, k' (y) is contained in some set of the family U'. 

It follows that 0 k{y) C uU'. We have shown that St{x,O k)n, n, 

C UU'i hence the family 0 .k is a point-star F-refinement of n,· 

Uat x. Arranging the open covers of the countable collec

tion {On,k1n E N} in a sequence, it follows from the fore

going that we get a point-star F-refining sequence for U. 

This completes the proof of the iliductive step. 

By a well-known result of set theory, every monotone 

cover of X has a subcover which is well-ordered by set in-

elusion. If L is such a "well-monotone" cover of X, then 

nL' E L' for each L' c Li hence L is interior-preserving. 

Consequently, it follows from Theorem 4.1 that a topological 

space is submetacompact if every interior-preserving open 

cover of the space has a e-sequence of open refinements. To 

be able to utilize this observation, we need the following 

lemmas. 

Lemma 4.2. The following conditions are mutually equiva

lent for an interior-preserving open cover U of x: 

(iJ ur has a a-closure-preserving closed refinement. 

(iiJ UF has a point-star refining sequence by interior-

preserving open covers. 
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(iii) lj has a point-star F-refining sequence by interior-

preserving open covers. 

Proof.	 (i) => (iii): Let] U] be a closed refine
nEN n 

ment of ljF such that for each n E N, the family] is closure
n 

preserving. For all 11 E N and x E X, let Wn(x) = [n(tJ)x] n 

[X .... U(]n .... (]n) x)] · For every n EN, the families {nlj/l 

lj' c lj} and {X .... U]' I] I c ] } are interior-preserving and open
n 

and it follows that the cover (1/ = {Wn(x) Ix E X} of X has n 

these same properties. To show that «(l/n) is a point-star 

F-refining sequence for lj, let x E X. There exists n E N, 

FE] and a finite subfamily ljl of lj such that x E F C Ulj'.n 

Let lj" = (ljl) • We show that St (x, (1/ ) c ulj". Let y E X be x n 

such that x E Wn(y). Then x t U(]n .... (]n)y) and it follows, 

since x E FE] , that y E F. Consequently, there exists 
n 

U E lj' such that y E U. We have x E W (y) c n(lj) c U and 
n y 

so U E lj". We have shown that St(x,(l/n) c ulj". It follows 

from the foregoing that «(1/ > is a point-star F-refining se
n 

quence for lj. 

(iii) ~ (ii) . Trivial. 

(ii) => (i) • Let <V > be a point-star refining sequence
n 

for UF such that each V is an	 interior-preserving open cover n 

of X. For all n E Nand lj' c lj, let Fn(ljl) = {x E xISt(x,V )n 

c Ulj/}. Note that for each n E N, if x E X and y E n(Vn)x' 

then (Vn)x c (Vn)y and hence St(x,V ) c St(y,V ); it follows n n 

that x E Fn(ljl) whenever the set Fn(ljl) intersects the 

neighborhood n(V) of x. For	 each n E N, let] = {F (ljl) I n x n n 

ljl c lj and ljl finite}. It follows from the foregoing that 

for each n E N, the family J is closed and closure-preserving.
n 

It is easily seen that the family U J is a refinement of the 
nEN n 
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family tiF• 

Lemma 4.3. Let ti be an open cover of a submetacompact 

space X. Then there exists a a-closure-preserving closed 

cover J of X such that for each x E X3 there exists F E J 

and a finite subfami ly ti' of (IJ) x such that x E F c: uti'. 

Proof. Let (V > be a e-sequence of open refinements 
n 

of ti. For all n E Nand kEN, denote by Hn,k the closed 

subset {x E Xl I (Vn)x l ~ k} of X. For all n E N and V c V ,n 

let F (V) = X - U(V - V). For every n E N, let J = {F (V) I 
n n n n 

V c V and V finite} and further, for every kEN, let 
n 

J lC J IH k. For all n E Nand kEN, the family V IH kn,k n n, n n, 

is a point-finite, and hence interior-preserving, open cover 

of the subspace H k of Xi it follows that the family J
D, n,k 

is closed and closure-preserving in H k and hence in X,n, 

since H k is a closed subspace of X. We show that the n, 

a-closure-preserving closed family] = U{] kin E Nand n, 

k E I} has the property required in the lemma. Let x E X. 

Since (V > is a e-sequence, there exist n E Nand kEN such 
n 

that x E Hn,k. Let lj' be a finite subfamily of (lj)x such 

that (Vn)x is a partial refinement of lj'. If we let F = 

F «V) ) n H k' then x E FE] k and it is easily seen that n n x n, n, 

F c uti'. 

we are now ready to prove the main result of this section. 

Theorem 4.4. The following conditions are mutually 

equivalent for a topological space: 

(iJ The space is submetacompact. 

(iiJ Every interior-preserving directed open cover of the 
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space has a point-star refining sequence by interior-

preserving open covers of the space. 

(iii)	 Every interior-preserving directed open cover of the 

space has a a-closure-preserving closed refinement. 

(iv)	 Every directed open cover of the space has a a-clo

sure-preserving closed refinement. 

Proof. It follows from Lemma 4.3 that (i) ~ (iv). 

That (iv) => (iii) is obvious. The implication (iii) ~ (ii) 

follows from Lemma 4.2 using the observation that a cover 

L of X is directed iff LF refines L. To see that (ii) ~ (i) 

holds, assume that X satisfies (ii). Then it follows from 

Lemma 4.2 that every interior-preserving open cover of X has 

a point-star F-refining sequence by interior-preserving open 

covers. Further, it follows by Remark 3.2.2 that every 

interior-preserving open cover of X has a 8-sequence of open 

refinements. Finally, it follows from the remark made after 

Theorem 4.1 that X is submetacompact. 

As an easy consequence of Theorem 4.4, we have the fol

lowing result, which extends a result of J. Chaber ([10]) and 

answers a question of J. Boone and R. Hodel ([4] and [15]). 

Corollary 4.5. A contiHuous image of a submetacompact 

space under a closed mapping is submetacompact. 

Proof. Let f be a closed and continuous mapping from a 

submetacompact space X onto a space Y. To show that the 

space Y is submetacompact, let U be a directed open cover of 

Y. Then the family V = {f-l(U) Iu E U} is a directed open 

cover	 of X. By Theorem 4.4, the cover V has a refinement 

U J , where each I is a closure-preserving family of closed n~Nn 
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subsets of X. It is easily seen that for each n E N, the 

family K = {f(F) IF E J } is closed and closure-preserving in 
n n 

Y. Moreover, the family U K is a refinement of the cover n
~N 

U. The conclusion now follows from Theorem 4.4. 

By the remark following Proposition 3.5, the Locally 

Finite Sum Theorem holds for submetacompactness; note that 

this result can also be easily proved using Theorem 4.4. 

Using Theorems 2.3 and 4.4, one can derive several 

characterizations for paracompactness, metacompactness and 

subparacompactness; for example, the characterizations given 

for metacompactness and paracompactness in Theorems 3.1 and 

3.4 of [17] can be derived in this way. For subparacompact 

spaces, we get the following characterization. 

Theorem 4.6. A topological space is subparacompact iff 

every interior-preserving open cover of the space has a 

a-closure-preserving closed refinement. 

Proof. Since every locally finite family is closure-

preserving, the condition is necessary. To prove sufficiency, 

assume that every interior-preserving open cover of X has a 

a-closure-preserving closed refinement. It follows from 

Theorem 4.4 that X is submetacompact. To complete the proof, 

let ] be a discrete family of closed subsets of X and for 

each F E J, let U(F) = X ~ U(J ~ {F}). Then the family 

U = {U(F) IF E ]} is an interior-preserving open cover of X. 

The open cover U has a a-closure-preserving closed refinement 

and it follows from a remark made after Lemma 3.9 that lj has 

a point-star refining sequence by semi-open covers of X. The 

foregoing and the proof of Theorem 3.8 show that X is 
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discretely subexpandable. The conclusion now follows from 

Theorem 2.3. 

Leaving out "interior-preserving" from the above 

theorem, we have a result of D. Burke ([5]). 

5.	 Submetacompactness, I# -Spaces and Strict p-Spaces 

We now apply some results of the preceding section to 

obtain characterizations of submetacompactness in the classes 

of L#-spaces and strict p-spaces. 

We need some definitions to state our first result. 

Recall that a family N of subsets of X is a network at a sub

set A of X provided that whenever U is an open subset of X 

such that A c U, then A c N c U for some N E N. The space X 

is a strong L#-space (a E#-space) if X has a o-closure

preserving closed cover J such that for each x E X, the set 

C(x) = n(J) is (countably) compact and the family J is a x 

network at the set C(x) ([24]; it is an easy consequence of 

Lemma 1.6 of [25] that the above definition and those given 

in [24], [28] and [7] are all equivalent). A topological 

space is isocompact ([3]) if every countably compact closed 

subspace of the space is compact. 

Theorem 5.1. The following conditions are mutually 

equivalent for a topological space X: 

(i) X is a strong L#-space. 

(ii)	 X is an isocompact L#-space. 

(iii) X is a submetacompact L#-space. 

Proof. By a result of [33], every submetacompact space 

is isocompact; consequently, we have (iii) ~ (ii). That 
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(ii) => (i) follows directly from the definitions. To prove 

that (i) => (iii), assume that X is a strong I#-space. Let 

the cover J and the sets C(x), x E X, be as in the definition 

above, and let C= {C(X} Ix E X}. Since the cover [ of X 

consists of compact subsets of X, this cover is a refinement 

of every directed open cover of X. Since J is a network at 

each set of the cover [, it follows that every directed open 

cover of X has a refinement consisting of sets of J. Conse

quently, X satisfies condition (iv) of Theorem 4.4 and it 

follows from that theorem that X is submetacompact. 

Before applying the above result to the theory of strict 

p-spaces, we use it to obtain a characterization of a-spaces 

([28]). We need the following auxiliary result. 

Lemma 5.2. Let X be a submetacompact space with a 

Go-diagonal. Then X has a a-closure-preserving closed cover 

K such that n(K)x = {x} for each x E x. 

Proof. Since X has a Go-diagonal, it follows from a 

well-known result that X has a sequence <Un> of open covers 

such that n st(x,U} {x} for each x E X. By Lemma 4.3 
nEN n 

there exists for each n E N a a-closure-preserving closed 

cover K of X such that for each x E X, we have x E K c 
n 

St (x, U ) for some K E K Clearly, the family K = u K has 
n n nnEN 

the properties required in the lemma. 

Proposition 5.3. A Tl-space is a a-space iff it is a 

I#-space with a Go-diagonal. 

Proof. Necessity of the condition is known (see e.g. 

[7], Theorem 2.4.l). To prove sufficiency, assume that X is 
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a E#-space with a Go-diagonal. It follows from Corollary 

2.A of [9] that X is isocompact. By Theorem 5.1, X is sub

metacompact. The conclusion that X is a a-space now follows 

from Lemma 5.2 and Corollary 2.2 (ii) of [28]. 

For strict p-spaces ([2]), we employ the following 

characterization ([8]): X is a strict p-space iff X is a 

Tychonoff-space and X has a sequence (U >of open covers such 
n 

that for each x E X, the set K(x) = n st(x,U ) is compact 
nEN n 

and the family {St(x,U ) In E N} is a network at the set K(x).
n 

It is an open question, whether every strict p-space is sub

metacompact (for some partial answers to the question, see 

[12]); we now use the result of Theorem 5.1 to obtain a trans

lation of this question into another form. 

Theorem 5.4. A strict p-space is submetacompact iff it 

#is a	 L -space. 

Proof. Since every strict p-space is isocompact (see 

e.g. [12], Lemma 3), it follows from Theorem 5.1 that a strict 

p-space is submetacompact if it is a E#-space. To prove the 

converse, let X be a submetacompact strict p-space. Let the 

open covers Un' n E N, and the sets K(x), x E X, be as in the 

above characterization of a strict p-space. By Lemma 4.3, 

there exists for each n E N a a-closure-preserving closed 

cover In of X such that for each x E X, we have x E F c 

St(x,U ) for some F E In. Let J be the family consisting of n 

all finite intersections of sets of the family U J. We 
~N n 

show that the family J has the properties required in the 

definition of a E#-space. ,It is easily seen that J is a 

a-closure-preserving closed cover of X. For each x E X, the 
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r.et C(x) = n(J) is compact, since this set is closed and it 

is contained inXthe compact set K(x). To verify that J is a 

betwork at each set C(x), let x E X and let U be an open sub

set of X such that C(x) c U. The family {U} U {X - FIF E (J)x}

is an open cover of X and hence there exists a finite sub

family J' of (J) such that the compact set K(x) is covered x 

by the family {U} U {X - FIF E J'}. Then U U (X - nJ') is 

an open set containing K(x) and hence there exists n E N such 

that St(x,U ) c U U (X - nJ'). Let F E I be such that x E F n n 

cSt(x,U) and let JII= J' U {F}. Then FeU U (X - nJ') and 
n 

it follows that nJ" c U. Since JII c (J) , we have C (x) c nJ".
x 

Moreover, J is closed under finite intersections and hence 

the set nJII is in J. It follows from the foregoing that J is 

a network at the set C(x). 

Corollary 5.5. An orthocompact strict p-space is sub

metacompact. 

Proof. Proposition 3.1 of [14] and Theorem 5.4. 

6.	 An Open Question 

We close this paper by stating what is perhaps the most 

important open question in the theory of submetacompact 

spaces. Note that an affirmative answer to the following 

question would imply that every strict p-space is submeta

compact. 

Question. Is a topological space submetacompact if 

every directed open cover of the space has a point-star re

fining sequence by (semi-) open covers? 

In li	 ht of Lemma 3.9, this question is a restatement 
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of Problem 2.7 of [19]. 
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