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PROJECTIVE COVERS OF ORDINAL SUBSPACES 

K. Kunen and L. Parsons 

o. History and Preliminaries 

Gleason [G] introduced in 1958 the notion of projective 

cover for compact Hausdorff spaces. Later, Ponomarev [PI, 

P2, P3] and Strauss [S] independently obtained more general 

results. A detailed historical survey is given in [Wi2]. 

The projective cover, also known as the absolute, of a space 

X, denoted E(X), is characterized as that extremally dis­

connected space which is the perfect, irreducible preimage 

of X. Its existence and uniqueness are established in the 

references, above, for regular topological spaces. 

Many properties, particularly those of the compactness 

gender, are preserved from a regular topological space (here 

we assume all spaces to be completely regular) to its pro­

jective cover. Of import is that a space X has paracompact 

projective cover if and only if X is paracompact. The 

normality of a space is not necessarily preserved in its 

projective cover. Warren [Wa] showed that the projective 

cover of wI is not normal. Malyhin [M] showed that if K 

is a singular cardinal with uncountable cofinality, or regu­

lar but not inaccessible, then E(K) is not normal. In this 

paper we characterize those sets of ordinals that have nor­

mal projective cover. 

The following useful theorems of Iliadis [1] are stated 

here for reference: 

Theorem 0.1. If X contains a dense set D of isoZated 
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points, then E(X) is homeomopphic to the set of those ultpa­

filteps on D which convepge to points of x, with the pelative 

topology of SD. 

Theopem 0.2. If G is open in x, and X is dense in·the 

extpemally disconnected space T, then clTG is open in T. 

The following concepts play a significant role in our
 

results:
 

Definition. A K-Aronszajn tree is a tree of height K 

such that all levels are of cardinality less than K, having 

the additional property that no branch runs through the tree. 

Definition. A cardinal K is said to be weakly compact
 

if and only if it is strongly inaccessible and there is no
 

K-Aronszajn tree.
 

Weakly compact cardinals, whose non-existence is con­

sistent with the axioms of ZFC, are, if they exist, quite 

large. In fact, the set of inaccessible cardinals less 

than a weakly compact cardinal is stationary in that car­

dinal. Weakly compact cardinals are treated in detail in 

[D] and [KI]. 

Section I is devoted to an analysis of the projective 

cover of ordinals and cardinals. We show that the projective 

cover of an inaccessible cardinal is normal if and only if 

the cardinal is weakly compact. Then, the results of Warren 

and Malyhin, above, are extended as follows: If a is an 

ordinal, then E(a) is normal if and only if a is a successor 

or has countable cofinality or contains a weakly compact 
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final segment. 

Section 2 considers ordinal subsets. If S is an infi­

nite set of ordinals, then a cofinite subset of S is dense 

in some limit ordinal y. We prove that E(S) is normal if 

and only if for all limit ordinals a ~ y, the conditions S 

is stationary in a and a i Simply E(a) is normal. 

1. The Projective Cover of Ordinals 

Theorem 1.1. If K is a regular cardinal, then E(K) is 

the set of non-uniform ultrafilters on K. 

Proof. Use 0.1. The set of successor ordinals is dis­

crete and dense in K. Every non-uniform ultrafilter p on 

that set contains a set A whose supremum is less than K. 

The set clKA is compact, so p converges. Conversely, if p 

converges to a < K, then p contains the successor ordinals 

of a + 1, and thus is non-uniform. The following remark 

completes the proof. 

Remark. If D is the set of successor ordinals of K 

and E is the set of ultrafilters of K that converge to ordi­

nals less than K, then the bijection ~:D + K defined by 

~(a) = a-I for a > w and ~(a) = a for a < w, induces a 

homeomorphism ~#:E + E(K). It will often be convenient, as 

above, to regard the projective cover of K as the set of 

ultrafilters of K that converge to ordinals less than K. 

Theorem 1.2. If cfK =w, then E(K) is normal. 

Proof. From the hypothesis, K is Lindelof, the latter 

property being preserved to the projective cover. 
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Lemma 1.3. If K is a cardinal and cf K > w., then E(K eK) 

is not normal. 

Proof. Regard the ordinal KeK as the lexicographic 

product KeK, for notational convenience, topologized with 

the order topology. (E.g., K = (1,0)). According to Theorem 

0.1., E(KeK) is the collection of ultrafilters of K eK that 

converge to ordinals less than KeK. 

Let H = {p E E (K \K ): (3 S < K) ( V a < K ) [{ S} x (K -a) E p]}. 

Note that for each p E E(KeK), there is a S 
p 

< K for which 

(Sp x K) E p. We assume that Sp is the least such ordinal. 

Le t K = {p E E (K e K ): S x S E p}.
p p 

The closures of Hand K in E(KeK) are disjoint: Let 

P E E(KeK). The union of the sets (S x S ) and S x (K-S )
P P P P 

is in p, so exactly one is in p. Thus, p is an element of 

exactly one of cl H, cl K. 

To show that the closures of Hand K cannot be separated 

by open sets of E(KeK), it suffices, in view of Theorem 0.1., 

to show that clSDH n clSDK ~ ~, where D is the set K eK with 

the discrete topology. The latter two sets are completely 

separated if and only if they are separated by a partition 

of D [GJ]. 

If 0' c D with cl D' ~ cl H, then for each a < K, there 

corresponds an ordinal ~a such that for S > ~a' (a,S) E 0'. 

Otherwise, there is an a < K and a sequence {SO}O<K such that 

(a,So) ~ 0' for each 0 < K. Then choose an ultrafilter q 

containing {(a,So): 0 < K}, and converging to (a+l,O). We 

have q E H, and q f cl 0', a contradiction. 

We now apply the hypothesis that cf K > w. Choose 

aD E K arbitrarily. If aD, ... , an are selected (assume an 
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is the largest), then define a + l = an + w + ~a. From the n 
n 

hypotheses, an < a + l < K. Moreover, a sup{a : nEw}n n 

is less than K • 

Consider the square a x a. Let D = {(an'~a +i): i E w},n 
n 

for each nEw. By choice of a, D C D' n (a x a) for each 
n 

n. We may choose an ultrafilter q containing U D for each 
n=l. n 

i E w. Then 6 = a and a x a E q. So q E K n cl D'. Thus,
q 

D' cannot separate cl Hand cl K and the theorem follows. 

Theorem 1.4. Let y be a cardinal with uncountable 

cofinality. Either of the following implies E (y) is not nor­

mal: (aJ y is singular~ (bJ y is regular and not inacces­

sible. 

Proof. (a) Let cf y = K > w. We find an increasing 

sequence of limit ordinals, {~ : a < K}, with sup
a ~a = y • 

a<K 
We may assume that for each a < K , 1{6: < 6 < ~ K • ~a ~a+l} I 
Define a perfect map f: y + K -K by induction as follows: 

f (0) 0 

If A is a limit ordinal, then put f(A) = sup f(6) 
6<A 

If f(8) is defined and a is the least index for 

which 8 < ~a' then put f(8+l) = f(8) + 1 if 

f ( 8 ) < K - a and put f ( 8+1) = K - a iff ( 8) = K - a • 

The map f induces a perfect map f: E (y) + E (K -K ). Since 

E(K-K) is not normal (Lemma 1.3.), E(y) is not normal. 

The proof of (b) is given in [M]. We improve this re­

suIt later. 

Theorem 1.5. If K is a strongly inaccessible cardinal~ 

then E(K) is normal if and only if there is no K-Aronszajn 

tree. 
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The proof is deferred until later. 

If < is the partial order of a K-Aronszajn tree, we 

write a) (b in case a ~ band b I a. If Zl' ... , Zn are
 
n n
 

K-Aronszaj n trees, II Z J II lev Z In the product0 \. 0 • 

i=l]. 0.< Ki=l a.]. 

tree a < b if and only if a(i) < b(i) for all i = 1, , n. 

Finally, a): (b if and only if a(i)) (b(i) for all i = 1, , n. 

Lemma 1.6. If Zl' ••• , Zn are K-Aronszajn trees, then 
n 
II Zo is a K-Aronszajn tree. 

i=l ].
 

Proof. Any branch through IIZ would induce a branch

i
 

through each Zi.
 

More general results concerning product trees appear in 

[Will • 

Lemma 1.7. Let Z be a K-Aronszajn tree. Let S c Z 

with lsi = K. There is an SI c Z for which each point of SI 

has K successors in S and IS I I = K. 

Proof· Fix ~ < K. Consider Sc- = S n lJ lev Z. The 
~ a.~~ a. 

cardinal IS~I = K. Then TI~[S~] c lev~z and has cardinality 

less than K • Thus, there is an s~ E lev~z which preceeds K 

points of s~. Let S I = {s ~ : ~ < K}. 

Lemma 1.8. Let {Zi: i E n} be K-AronszaJn trees and
 

let Z = IT Zo. If S c Z with lsi = K, then there exist
 
ie:n ].
 

a, b E S such that a): (b.
 

Proof. By induction. The lemma is trivially true for 

n = 1. Let n > 1. Apply the inductive hypothesis to SI of 

Lemma 1.7.: There are r, 5 E SI with i ~ 0 ~ r(i» (s(i). 

(Use Lemma 1.6.). Then r has K successors in S. There must 
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be b,b' > r (both in S) for which b(O)) (b' (0). Let a > s 

be above the level of b,b', with a E S. Clearly, i ~ 0 

implies a(i)) (b(i) and a(i)) (b' (i). Since a is above the 

level of b,b', one of the pairs a,b or a,b' satisfies the 

lemma. 

Lemma 1.9. Let T be a K-Aponszajn tpee~ whepe K is 

reguZar and unaountabZe. Let as t K and suppose r levaST,
S

c 

with IrSI = n < w. Thepe exist e and z;: (without Zoss of 

genepaZity e < z;:) such that TI [rr] n r = ~.esa e 
Ppoof. By induction on n. Clearly, the theorem holds 

if n = 1: If the conclusion is false, then the rS's form a 

path through the tree. 

Assume that the theorem is true for n ~ k, and that 

n = k + 1. For each 13 < K , let ~S be the least ordinal for 

which I 'JT~ [rSJ I = k + 1. Then ~S ~ as· Two cases arise: 
13 
{~S :I. 13 < K } is unbounded in K • 

II. < K } is bounded in K •{~S : 13 

In case I we define, inductively, an increasing function 

13: K ~ K. Let 13(0) = O. Assume 13(0) has been selected. 

Since the set {~S: 8 < K} is unbounded, choose 8(0+1) > 8(0) 

so that ~Sla+l) > aSIa)' and let Sa = TI ) [rsla+l »). Then 
aSla
 

ISol ~ k and So c lev T. If 13(0) 's are selected for all
 
as (0) 

13 < :\, choose 13 ( :\) ~ sup 13 (o). Then 13 ( 0) t K for 0 < K. 

0<:\ 
And for each 0 < K, there is a So c lev T. Without loss 

as (0) 
of generality, we may assume the Isol 's are equal. Then by 

the induction hypothesis, there are nand E (n < E) so that 

TI [S J n S =~. Let e = S(n+l ) and z;: = 13 (E+l) . 
as(n) E n 
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Claim: TI [r] n r e =~. Pf: Suppose t E TI [rr] n 
a r:: a ~ e e 

r e. Then t E TI [r ] n rQ(~+l). Therefore,
as(n+l) S(E:+I) IJ Co 

TI (t) E TI [TI [r ]] n TI [r ]

as(n) as(n) as(n+l) S(E:+l) as(n) S(n+l)
 

TI [r ] n S = TI [TI [r ]] n S = 
as(n) S(E:+l) n as(n) as(E:) S(E:+I) n 

TI [S ] n S ~. Contradiction. The claim follows, 
as(n) E: n 

establishing the theorem in Case I. 

Now consider Case II. The set {~S: S < K} is bounded 

in K • Then there is some y such that y ~ ~S for each 

S < K. ITIy[r
S
]I = k + 1 for each S such that as ~y. Con­

sider the set of unordered (k+l)-tuples of distinct elements 

of lev T. There are fewer than K of them. Since each 
y 

rS(a ~y) can be associated with a unique member of this
S 

set, there is at least one (k+l)-tuple with K rs's so associ­

ated. (Here, we use the regulari ty of K) • I. e., there are 

t l , ... , t k+ l , all distinct elements of levyT, and an in­

creasing function S: K -+- K, with each as (0) ~ y, so that 

TIy [rS(o)] = {tl ,t2 ,··· ,tk+l }· 

Let rB(o) be ordered: rB(o) 

iTI (x ) = t . for i = 1, 2, ... , k+l. Let T. = T for each i. y o l k+l 1 

As observed above, IT T. is a.tree, with the canonical partial
i=l 1 

ordering, and by Lemma 1.8., there are nand € (without loss 

of generality n < E:) such that rS(n»: (rS(E:). 

C l aim: TI a [ r B(E:)] n r S (n) = ~. P f : If i -:F j, then 
B(n) 

TI (xi) -:F x j , because TI (xi) = t. -:F t. = TI (x j ). On the a S (n) E: n . ': E: 1 J Y n
 
other hand, TI a (xl) -:F xl because r Q ( »! ( r Q ( ). This


B(n) E: n IJ n IJ €
 

establishes the claim and the theorem follows. 

Lemma 1.10. Let K be a regular uncountable cardinal, 
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T a K-Aronszajn tree. If F is a family of pairwise disjoint 

finite subsets of T and IFI = K, then there is a level 1.1 < K 

and an infinite G C F suoh that V r E G[r c lJlev~T] and 
~>1.1 

V r,s E G[r ~ s -+ 7T [r] n 7T [s] = .0].
1.1 1.1 

Proof. Suppose that the conclusion is false. We will 

choose by induction a family of finite sets that contradicts 

Lemma 1.9. Choose a level 1.1 arbitrarily. Then there is a
0 

finite set GO = {r1, ••• ,r } which has the property that 
no 

7T [r.] are pairwise disjoint, but for any other rEF that 
1.1 1

0 
is contained in lJ lev T,7T [r] meets one of the 7T [r.]'s.c

~>1.10 s 1.1 0 1.1 0 1 

Next, if G and 1.1 are selected, then define 1.1 +l = sup lJ G ,
a a a a 

and define G + as above. If y is a limit ordinal, let a l 

1.1 = sup 1.1 Q • Define G as above. Then the 1.1 'S strictly 
y S<y fJ Y a 

increase to K. 

Let S = 7T [lJG]. Since each S is finite and there 
a 1.1 a a a 

are K of them, we may assume without loss of generality that 

ISal = n for each a < K. But by the choice of the Ga'S, if 

S < 8, then 7T [S8] n So ~~. The family {G } yields the 
1.1 S fJ a 

contradiction. 

We now give the proof of Theorem 1.5. 

Proof· (+) Suppose E(K) is not normal. We construct 

a K-Aronszajn tree. Let Hand K be disjoint closed sets of 

E(K) which cannot be separated by a partition of K. The 

sets Hand K can surely be separated on clE(K)a for each 

a < K, since the latter is compact. (Here, regard a as a 

discrete subspace of E (K) ). Let T = {x c a: X separates H 

and K at some level a and sup X = a}. 
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Put X E levaT if and only if sup X = a and X separates 

H, K on cl a. Order T by the following scheme: Xl < X if2 

and only if Xl is an initial segment of X2 . Note that if X' 

is an initial segment of X, then X' separates Hand K at 

level sup X'. Thus, the ordering is a tree ordering. More­

= 2 1alover, since K is inaccessible, Ilev TI < K. The height
a 

of T must be K since at each level a, Hand K can be separated. 

The union	 of any branch through the tree would separate Hand 

K. 

(~) In this direction we only use the uncountability 

and	 regularity of K. The following quantities are defined: 

T is the K-Aronszajn tree that exists by hypothesis 

D~ = the finite subsets of lev~T 

D lJ D~
 
~<K
 

A lJ D 
n a~n a 

E(K) is the set of non-uniform ultrafilters of D 

is an arbitrary element of lev T (n < K)Yn n 
pn {d E D~: 7T~(Yn) E d} (pn c D~) 
~	 ~ 

Qn cDD~\P2 
~ ~ 

H lJ pn 
n ~~n ~ 

K lJ Qn 
n ~~n ~ 

H {Hc : n < K}n
 
K {K

c : n < K}
n 

Each of Hand K has the finite intersection property, 

and thus they may be regarded as closed sets in E(K). We 

shall show that these two disjoint closed sets cannot be 

separated by a partition of D. For the sake of contradiction, 
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assume that there is an SeD with cl S ~ K, cl S n H = ~. 

Then by assumption, Hand K are separated by the parti­

tion {S,SC} of D. We define by induction an increasing 

function ~: K -+ K and a sequence {a~ (a): a < K} of finite 

subsets of K, with a~ (a) c K'~ (a) and D~ (a) n S c lJ p2 (a) • 

nEa~ (a) 

First, fix ~ E K. Let p be an ultrafilter containing 
n 

Dc n S. Since H is a filterbase, p must omit some () HC 

S i=l n i 
n 

Therefore, lJ H E p, so for some j, 1 ~ j ~ n, H E p.
i=l ni n·Jn· n· 

Thus, P J = H n Dc E p, and p E ClE(K)PCJ. It now follows 
~ nj S S 

that {c1 p2: n ~ ~} is an open cover of the compact set 

c1(D~ n S). There must exist a finite set a~ such that 

cl(D~ n S) c lJ cl P~. The set a~ CK,\~. Necessarily, 
nEa~ 

D n S c lJ P 2. 
~ nEa~ 

The induction goes as follows: Let ~(O) = 0; if ~(a) 

is selected, let ~(a+l) > sup{a~(a)}' where a~(a) is chosen 

as above. Let ~(y) = sup ~(a) ify is a limit ordinal. Note 
a<y 

that the a~(a) 's are disjoint. 

Let N = {Yn: n E a~(a)}. The family {N : a < K} con­a a 

sists of pairwise disjoint non-empty subsets of T. Apply 

Lemma 1.10. There is a ~ < K and an infinite subfamily 

{N ,N , ... } with all N 's being contained above the level 
a a ia 1 2 

~, such that i ~ j implies ~ [N ] n ~ [N ] =~. Let 
~ ~a i a j 

y sup {~(a )}
nEw n 

Claim 1. A ,S c lJ K for some finite b c K. 
y nEb n 
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Pf: Recall that A = lJ D~. Let p E cl (A'S) c cl SC, so 
yY ~~ 

n
 
p 1- K. There exist, then, n ... , n such that r) KC f. p.
l , 

n i=l ni n
 
Therefore, lJ K E p. For some j , K E p, or p E cl K .•
 

n· n· ni=l 1 ] ] 

It follows that {cl K : n < K } is an open cover of cl(A \S). 
n y
 

So there is a finite b c K such that cl (A \8) c lJ cl K =
 
Y nEb n
 

cl lJ K. Necessarily, A \ S C lJ K. Claim I is established. 
nE b n Y nE b n 

Let c = b\y 

Claim 2. c ~~. Pf: Suppose bey. Let n* be the 

largest ordinal of b. Choose ~ so that n* < ~ < y. Let 

x E D~. If x E Ay\S, then by the last claim, there is an 

nO E b (no~n*) such that x EKe A , which is impossible.
nO no 

Therefore, xES, so D~ c S. 

Let nl' nn be given. We show that {D~} U 

{Hc 
, ... ,Hc 

} have non-empty intersection. First, we may
nl nn 

assume without loss of generality that Ilev~TI ~ wand that 

ni 6 ~ for all i = 1, ... , n, (for if ni < ~, then D~ c H
C 

). 
s ni 

Let e E leV~T\{TI~(Yn.): i = 1, ... , n}. Then {e} E He for 
s s 1 ni 

each i = 1, ... , nand {e } E D~ . 

There then is an ultrafilter p containing {Hc : n < K} U 
n 

{D~}. The point p is in H, and p E cl D~ c cl S. But cl S 

was assumed to miss H. This contradiction establishes 

Claim 2. 

Let J = {j: TI (y ) E TI [N ] for some n E c}. Clearly,
l.l n l.l <lj
 

J is a finite set. Let J = {k ... , k } and let k be the
l , n
 

largest member of J (put k = 0 if J = ~). Let i > k, n E c,
 

n' E a~(<l.). 
1 
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CZaim 3. n' E a~(a.) implies 
1 

Therefore, TI (Y ,) E TI [N ]. But TI,I(Y ) ,
11 n 11 a i nt"" 

TI [N ] because i ~ J. Claim 3 now follows. 
11 a i 

Choose m so that ~ (am) > max(b n y), or m a if 

b n y =~. Fix rna > k, m. 

nCZaim 4. D~(~)'\S c lJ Q~(~). Pf: Let x E D~(~)\S. 
nEc 

The set D~(~) is contained in A ' so x E Ay\S. Therefore,y 
n x E K for some nEb (by Claim 1). I.e., x E Q~(~). Suppose

n 

Y E y. Then n < ~ (a .) for some j (assume j is the least such).n J 

The ordinal ~ (am) is greater than max (b n y ), therefore j ~ m. 

But x E D~(~), or ~(~) ~ n < ~(aj). It follows that mO < j. 

A contradiction arises because rna > m. Claim 4 is thus estab­

lished. 

nIf x E D~(~) n S, then x E lJ p~(~)' by choice of 
nEa~ (~) 

n n
the a~ (a) 's. Claim 4 gives D~ (~) lJ Q~ (~) U lJ P ~ (~) . 

nEc nEa~ (~) 

Let d = {TI ~ ( ~) (y n): n E c}. Then d E D~ ( ~) . If dElJ Q~ ( ~) , 
nEc 

then for some n E c, d E Q~(~), so TI~(~) (Y ) 1 d. The latter n

is clearly impossible, so d cannot be an element of lJ Q2 (~) . 
nEc 

n nEIf d lJ P ~ (~)' then for some n E a ~ (~)' d E P ~ (~) . 
nEa~(~) 

Therefore, TI~(~) (Y ) E d. But rna > k, so for each n' E c, 
n

TI (Y ) ~ TI (Y ,), by Claim 3. It follows that for each 
11 n 11 n 

n' E C, TI ~ (~) (y n) ~ TI ~ (~) (Y n' ). On the other hand, 

TI~(~) (Yn) E d, so TI~(~) (Y n) = TI~(~) (y n,) for some n' E c, 

a contradiction. Therefore, d cannot be an element of 
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nVa~(S)p~(S). We now conclude that the assumption of the
 

existence of the set S must have been false.
 

We remark that a cardinal K has normal projective cover 

if and only if either cf(K) = w or K is weakly compact. 

The following theorem concludes the section: 

Theopem 1.11. Let a be an opdinal. E(a) is nopmal if 

and only if one of the following aonditions holds: 

(aj a is a suaaessop 

(bj af a = w 

(aj af a = K > w, whepe K is weakly aompaat and thepe 

is a B fop whiah a = B + K 

Ppoof· 

(a) implies E(a) is compact. 

(b) implies E(a) is normal by Theorem 1.2. 

(c) implies E(a) is the disjoint union of E(B+l) and
 

E(K), both which are normal (the normality of the latter
 

follows from Theorem 1.5).
 

Suppose none of a, b, c holds. Then a is a limit ordi­

nal of uncountable cofinality. Let cf a = K. Because (c) 

fails, if K is weakly compact, then a contains a closed copy 

of KeK and E(a) is not normal, by Theorem 1.3. Otherwise 

E(K) is not normal by Theorems 1.4 and 1.5, and E(a) contains 

a closed copy of E(K). 

2. The Projective Cover of Ordinal Subspaces
 

In this section we show that the normality of E(S) for
 

any ordinal sUbspace S can be decided in terms of the nor­


mality of the ordinals in which S is stationary. We remark
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that we need only consider sets of ordinals that are dense 

in their suprema, for if A is a set of ordinals, we define 

inductively a homeomorphism, f: A ~ y, that has the property 

that sup f[A] = Y and cl f[A] = y: 

If A is a limit ordinal, 

sup f(a ) if a, is a limit point of A 
a<A a I\. 

sup f(a ) + 1 otherwise 
a<A a 

Theorem 2.1. If Y is an ordinal and A is dense in y .J 

then E (A) = <1>+ [A]" where <1>: E (y) ~ y is the canonica l map. 

Proof. Since A contains the isolated points of y , 

<I> + [A] contains the isolated points of E (y ). Thus, <1>+ [A] is 

dense in the extremally disconnected space E (y ), and is, i t­

self, extremally disconnected. [Theorem 0.2]. Moreover, 

<I> I <1>+ [A] is a perfect, irreducible map from <I>+[A] onto A. 

We have seen that <1>+ [A] must be the projective cover of A. 

A more general version of this theorem appears in [Wo]. 

Lemma 2.2. Assume the following: The ordinal y is a 

limit ordinal; D is the collection of successor ordinals of 

y; S is a stationary set of y containing D; and F is a closed 

set of E (y ) • Let Z be the set of ultrafi lters on D which 

contain no subset of D which is bounded in y; and <1>: E (y) ~ Y 

is the canonical map. Then clSD(F n <1>+[5]) n z = clSDF n z. 

Proof. The left-hand side is clearly included in the 

right-hand side. We take p E clSDF n Z and a neighborhood 
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thereof, V = C1SDE, where E c D. 

Consider V n F. This set is non-empty, since we chose 

P E cl F. Obviously, for each S < y, clSD(D n S) cannot 

contain V n Fj for if it did~ then (y\S) nEE p, so that 

~\e) n D E p. But the SD-closure of the latter then would 

be a neighborhood of p which does not meet F. 

We then have that ~[V n F] = A is unbounded in y. But 

A is also closed in y, since V and F are closed sets and ~ 

is a closed map. Thus, A meets S because S is stationary 

in y. 

Let a E A n S. There is an ultrafilter q converqi.ng 

to a, with q E V n F n ~+[S]. Thus, V meets F n ~+[S]. But 

V was an arbitrary basic neighborhood of p, so P E Z n 

clSD(F n ~+[S]). The proof of the lemma is now complete. 

Theorem,2.3. If S is a stationary set of y which con­

tains the isolated points of y, and E (y) is not normal, then 

E(S) is not normal. 

Proof. Let D be the isolated points of y. If E (y) is 

not normal, then there are two closed sets Hand K which are 

disjoint in E (y ), but whose closures in SD are not disjoint. 

Then since D C E(S) c E(y) C SD, H n E(S) and K n E(S) 

are closed sets in E(S) which are disjoint. But by Theorem 

2.1, E(S) = ~+[S], and by Lemma 2.2, their closures in SD 

are not disjoint. 

If Gl and G2 are open sets separating H n E (S) and 

K n E (5) , then clSDGl and cl G2 are open sets (see LemmaSD


0.2) separating clSDH and clSDK, a contradiction.
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Lemma 2.4. Let S be contained as a dense, non-stationary 

subset of a limit ordinal y. If every closed initial segment 

of S has normal projective cover, then E(S) is normal. 

Proof. Let Key be a closed, unbounded set disjoint 

from S. If K = {~ : ex < A} is the canonical well ordering
ex 

of K, then E(S) lJ E (S the right-hand siden [~a' ~a+ 1 ] ) , 
a<A 

being the free union of normal sets. 

Lemma 2.5. Let S be contained and dense in the limit 

ordinal y • Suppose E (y) is normal and that every closed 

initial segment of S has normal projective cover. Then E(S) 

is normal. 

Proof. By Theorem 1.11, the cofinality of y is either 

w or y = 8 + K where K is weakly compact. 

In the former case E(S) is the free union of normal 

sets and, thus, is normal. In the latter, we may assume 

without loss of generality that y is a weakly compact car­

dinal. 

For the sake of contradiction, assume that E(S) is not 

normal. As in Theorem 1.5 we build a y-Aronszajn tree. 

Let D be the successor ordinals of y • 

Remark. In this proof we regard the projective cover 

of a subset of y as a subset of E (y ). See Theorem 0.1. 

There are closed sets Hand K of E(S) that cannot be 

separated by open sets of E(S). Clearly, Hand K cannot be 

separated by a partition of D. Let ex < y. By hypothesis, 

E(S n ex + 1) is normal, so H n E(S n a + 1) and 

K n E(S n a + 1) can be separated by disjoint open subsets 

of E(S n a + 1). These disjoint open sets have disjoint 
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open closures in E(a + 1) because E(5 n a + 1) is contained
 

in E(a + 1) as a dense subset and the latter is extremally
 

disconnected. Thus, H n E(a + 1) and K n E(a + 1) may be
 

separated by a partition of D n (a + 1).
 

Let T = {X c D: X separates Hand K at some level a 

and sup X = a}. The remainder of the proof is as in the 

necessity (+) of Theorem 1.5. The tree T is the contradictory 

Aronszajn tree. 

Theorem 2.6. Let 5 be dense in the limit ordinal y.
 

E(5) is normal if, and only if for all limit ordinals a ~ y,
 

the conditions 5 is stationary in a and a i 5 imply E(a) is
 

normal.
 

Proof· (+) The condition a i 5 implies E(5 n a) is 

a closed subset of E(5) and hence is normal. But, 5 is 

stationary in a, so Theorem 2.3 implies that E(a) is normal. 

(+) By induction on the closed initial segments of 5.
 

We show that for a ~ y, 5 n a closed in 5 implies
 

E(S n a) is normal.
 

Case I. a = S + 1. If S is a successor or if S i 5, 

5 n S is closed in Sand S n a is normal. Otherwise, S is 

a limit ordinal and S E 5. Let U be the collection of ultra-

filters on the successor ordinals of y that converge to S. 

Then U c E(5 n S + 1). Let Hand K be disjoint closed sets 

of E(5 n a). If x E U, there is a clopen neighborhood Ax 

intersecting at most one of H, K. Since U is compact, 

there are Ax ' ••• , Ax which cover U. Let B 
1 n
 

B'(A U ••• U Ax). The set B is bounded in S by some o.
 
xl n 
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But Hand K can be separated on AU ••• U Ax and also on 
xl n 

E(S n Q + 1), the latter being normal by the induction 

hypothesis. 

Case II. a = A (a limit ordinal). Again, assume all 

closed initial segments of S in A have normal projective 

cover. We need only consider the case A i S, for if A E S, 

S n A is not closed in S. If S is stationary in A, then 

E(A) is normal by hypothesis and E(S n A) is normal by Lemma 

2.5. If S is not stationary in A, then E(S n A) is normal 

by Lemma 2.4. 

Engelking and Lutzer have shown [ELl that a set of 

ordinals is paracompact if and only if it is non-stationary 

in every cofinally uncountable limit which it does not con­

tain. In view of this we have: 

Theorem 2.7. Assume that for each inaccessible cardinal 

K, there is a K-Aronszajn tree (i.e., no weakly compact 

cardinal exists). Then for a set S of ordinals, E(S) is 

normal if and only if S is paracompact. 

Proof· (+) Paracompactness is always preserved from 

a space to its projective cover. 

(~) Assume S is not paracompact. Then S is stationary 

in some cofinally uncountable limit K which is not in S. 

Without loss of generality, we may assume that S contains 

each isolated point of K, (as above, build a suitable homeo­

morphism which collapses S). 

If there is no weakly compact cardinal, we have seen 

(Theorems 1.4 and 1.5) that E(K) is not normal. We infer 
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from Theorem 2.3 that E(S) is not normal. 

3. Closing Remarks 

The projective cover of a weakly compact cardinal (if 

such exist) has been shown to be normal, extremally dis­

connected, not paracompact. Kunen [K2] has constructed a 

space with the same properties using only the axioms of ZFC. 

The former space is locally compact; the latter is not. 

Both are countably paracompact. Kunen's example is presented 

below. We begin with a 

Definition. A family of sets {A : a E I} is said to be 
a 

independent if given disjoint finite subsets, J and K of I, 

(1 A n 
aEJ a 

Hausdorff [H] has shown that there exists a family of
 

wl Wl

2 independent subsets of w ' {A : a < 2 }. A finitelyl a 

additive measure can be defined so that the A 's are inde­a 

pendent events of probability 1/2, and that the measure of 

each point is zero. 
W 

Let {H : a < 2 l} enumerate p(w ); and for ~ < wI' let 
a l 

J~ be the filter generated by {A : ~ E H } U {Ac : ~ i H }.
s a a a a 

Pick an ultrafilter p~ containing J~, which contains no set 

of measure zero. 

ExampZe 3.1. The example X is D U {p~: ~ < wI}.
swl 

The space X is extremally disconnected, as it is dense 

in SD . But X is not collectionwise Hausdorff, for if the 
wI 

points {p~: ~ < w } can be separated by mutually disjointl 
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basic open sets, say {cl B~: ~ < wI}' then the B~'s are 

mutually disjoint se~s of positive measure. It follows that 

X cannot be paracompact. 

But X is normal: Let H C WI. Then H = H for some a 

a < wI. The open set cl A contains {p~: ~ E H }, but misses a	 a 

{p~: ~	 i H }.a 
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